

Article

Subscriber access provided by UNIV OF NEW ENGLAND ARMIDALE

Total Synthesis and Structure Revision of (–)-Avicennone C

Yolanda Kleiner, Peter Hammann, Jonathan Becker, Armin Bauer, Christoph Pöverlein, and Sören M. M. Schuler

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.0c01792 • Publication Date (Web): 18 Sep 2020

Downloaded from pubs.acs.org on September 21, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

- ,

Total Synthesis and Structure Revision of (–)-Avicennone C

Yolanda Kleiner^[a], Peter Hammann^[b, c], Jonathan Becker^[d], Armin Bauer^[b], Christoph Pöverlein^{[b],*} and Sören M. M. Schuler^{[a,c],*}

[a] Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Bioresources, 35392 Giessen, Germany

[b] Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Hoechst, 65926 Frankfurt am Main, Germany

[c] present address: Evotec International GmbH, 37079 Goettingen, Germany

[d] Institute of Inorganic and Analytical Chemistry, Justus Liebig University, 35392 Giessen, Germany

* Email: christoph.poeverlein@sanofi.com; soeren.schuler@evotec.com

Supporting Information Placeholder

ABSTRACT: All four possible stereoisomers of the natural product (–)-avicennone C were synthesized using two different methods for ring closure. The absolute stereochemistry was elucidated unambiguously by comparison of the analytical data with those of the reported natural product and by single X-ray crystal diffraction of synthetic intermediates. The proposed structure needed to be revised with regard to the absolute configuration of the stereogenic center bearing the secondary hydroxyl group. The reported synthesis offers a flexible, selective, and efficient access to all possible stereoisomers and may be of value for the stereoselective synthesis of other epoxyquinone natural products.

INTRODUCTION

Epoxyquinone natural products $(NPs)^1$ such as (+)-ambuic acid (1), (-)-jesterone (2), and (-)-cycloepoxydon (3) (Figure 1) display promising biological activities and have attracted interest due to their structural novelty. (+)-Ambuic acid², which shows antimicrobial activity³, and (-)-jesterone⁴, possessing antimycotic activity, were isolated from the fungus *Pestalotiopsis* spp. (-)-Cycloepoxydon⁵, inhibiting the activation of the transcription factor NF-kB, was obtained from a Deuteromycete strain.

For epoxyquinone NPs, elucidation of the absolute stereochemistry has shown no clear preference for one specific stereoisomer. Since challenging total syntheses are required in most cases to unambiguously determine the absolute stereoconfiguration, a flexible, selective, and efficient synthetic pathway to all possible stereoisomers would be desirable.⁶ We chose (–)avicennone C ()^{7,8} as model system, because in contrast to the compounds **1**, **2**, and **3** neither biological activities nor a total synthesis have been reported. Avicennone C was isolated from mangrove tree *Avicennia marina* and its absolute stereochemistry was proposed based on NMR and CD data as well as molecular modeling by Sattler and Lin *et al.*⁷

Scheme 1. Retrosynthetic analysis.

2

3

4

5

6

7 8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

Our retrosynthetic analysis of **4** led to a final disconnection between the ketone and the aryl moiety (Scheme 1). For the ring closure we envisaged a palladium-catalyzed intramolecular cyclization similar to a published method of Muratake *et al.*⁹ Aldehyde **5** should be accessible by addition of a Grignard reagent derived from 1-bromo-2-iodobenzene (**6**) to the highly functionalized epoxy aldehyde 7^{10} , followed by protecting group manipulations and oxidation.

RESULTS AND DISCUSSION

Synthesis of epoxy aldehyde **7** (Scheme 2) was performed analogously to a described reaction sequence from Barrett *et* $al.^{10}$ The use of a prenyl cuprate, generated from freshly prepared prenyl Grignard reagent¹¹, represents the significant difference. Key feature of this sequence is the stereoselective formation of the epoxide *via* Sharpless epoxidation.¹² Both enantiomers **7** and *ent*-**7** were obtained in excellent yields and enantiomeric excesses (*ee*) over six steps on a 4–5 gram scale. The final oxidation was performed either under Swern conditions without further purification or with Dess–Martin periodinane (DMP) followed by a filtration over silica.

Scheme 2. Synthesis of the epoxy aldehydes 7 and ent-7.ª

^aConditions: (a) TBDPSCl, imidazole, CH₂Cl₂, 99%; (b) *n*-BuLi, THF, -78 °C, 30 min; EtOCOCl, 94%; (c) CuBr·SMe₂, prenyl-MgCl, THF, -40 °C, 40 min; **9**, -78 °C, 90 min, 94%; (d) DIBAL-H, PhMe, -78 °C, 92%; (e) Ti(O*i*-Pr)₄, L-(+)-DET, *t*-BuOOH, 4 Å MS, CH₂Cl₂, -20 °C, 3 d, 88%, 93% *ee*; (f) (COCl)₂, DMSO, CH₂Cl₂, -78 °C, 15 min; **12**, -78 °C, 90 min; DIPEA, -78 °C to 0 °C, 30 min, quant. used as a crude; g) DMP, CH₂Cl₂, 76%.

The preparation of the two diastereomeric alcohols 13 and 14 was first achieved by using 1,2-dibromobenzene and Knochel's turbo Grignard reagent.¹³ However, the reaction was hampered by slow formation of the aryl Grignard reagent, incomplete conversion, side reactions, and low isolated yields. A possible explanation is the tendency of 1,2-dibrombenzene to form benzyne via 1,2-elimination rather than forming the desired Grignard reagent.¹³ Switching to 2-bromo-1-iodobenzene (6) enabled complete Grignard formation with *i*-PrMgCl at low temperature and resulted in full conversion of the epoxy aldehyde 7 (Scheme 3). The resulting diastereomers were separated by careful flash chromatography and were isolated in good yields with a ratio of approx. 1:1, which could be expected from similar reactions described in literature.^{14,10} The assignment of the absolute stereochemistry of 13 and 14 was only possible retrospectively by deduction from the crystal structure of 4 (Scheme 4). After TIPS protection, the envisaged selective cleavage of

the TBDPS group of **15** and **18** was achieved in only moderate yields with ammonium fluoride in methanol since significant double deprotection occurred.¹⁵ The oxidation to aldehydes **17** and **20** worked smoothly with DMP followed by a filtration over silica.

Scheme 3. Synthesis of aldehydes 17 and 20.ª

^aConditions: (a) *i*-PrMgCl, THF, -40 °C, 45 min; **7**, -40 °C, 45 min; 42% for **13**, 42% for **14**; (b) TIPSOTf, 2,6-lutidine, CH₂Cl₂; 82% for **15**, 92% for **18**; (c) NH₄F, MeOH/THF 12:1; (d) DMP, CH₂Cl₂; 54% for **16**, 56% for **19**.

Scheme 4. Palladium-catalyzed cyclization^a and thermal ellipsoid plot of the molecular structure of 4.^b

^aConditions: (a) PdCl₂(PPh₃)₂ (0.1 eq.), Cs₂CO₃, toluene, reflux^[7]; 46% for **21**, 48% for **22**; (b) TBAF, HOAc, THF; 87%, 94% *ee* for **4**, 83%, 94% *ee* for **23**.¹⁶

^bThermal ellipsoid probability set to 50%, only one molecule of the asymmetric unit shown.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 41

42

43

44

45

46

47

48

49

50

51

52 53

54

55 56

57 58 59

60

The final cyclization of aldehydes 17 and 20 was performed under the palladium-catalyzed conditions described by Muratake et al9(Scheme 4). There are only few examples for an intramolecular palladium-catalyzed ketone synthesis by α-arylation with an aldehyde¹⁷, whilst intermolecular couplings of this type have been reported by Xiao et al.18 The conversions of 17 and 20 to the desired products 21 and 22 proceeded relatively slowly and were accompanied by side product formation. However, it was possible to isolate 21 and 22 in moderate yields contaminated with minor amounts of their double bond isomers.¹⁹ As a side product 24a was isolated²⁰ and identified as TIPS protected NP hemitectol (24b).²¹ Final deprotection of 21 and 22 yielded 4 and its hydroxyl epimer 23 in good yields. Both stereoisomers showed very similar NOE correlations, which made it impossible to determine their relative stereochemistry. The absolute stereochemistry of compound 4 was unambiguously determined by single X-ray crystal diffraction and exhibited to be the proposed structure for NP (-)-avicennone C. However, the reported NMR spectra, aspect and specific rotation⁷ of (–)-avicennone C matched with compound 23. Therefore, our results support a revision of the reported stereochemistry of the NP (-)-avicennone C (Scheme 4).

Scheme 5. Alternative protecting group strategy.^a

ent-13

OAc

ent-25

C,C

 R^2

٠R

е

n

ō

Br

ō

R¹=H, R²=Ac: ent-26

R¹=Ac, R²=H: ent-27

Br

Ō`

R¹=Ac, R²=TIPS: ent-28

OTIPS

ent-16

ОH

OTROPS

h

ent-14

b

,\OAc

ent-29

c,d

R²

 R^1

 \cap

OTBDPS

Br

Ō`

Br

ō

<u>,</u>О,

R¹=H, R²=Ac: ent-30

R¹=Ac, R²=H: *ent-*31

Br

ō

R¹=Ac, R²=TIPS: ent-32

OTIPS

ent-19

ЮH

^aConditions: (a) *i*-PrMgCl, THF, -40 °C, 45 min; *ent*-7, -40 °C, 45 min; 39% for *ent*-13, 45% for *ent*-14; (b) Ac₂O, pyridine, DMAP (0.1 eq.), CH₂Cl₂; 93% for *ent*-25, quant. for *ent*-29; (c) TBAF, HOAc, THF; (d) DBU, CH₂Cl₂; 91% over two steps for *ent*-27/*ent*-26²², 94% over two steps for *ent*-31/*ent*-30²²; (e) TIPSOTf, 2,6-lutidine, CH₂Cl₂; 74% for *ent*-28, 74% for *ent*-32; (f) LiOH, THF/H₂O 5:1, 79% for *ent*-16, 85% for *ent*-19.

For the synthesis of the corresponding enantiomers a different protecting group strategy was applied in order to obtain improved yields (Scheme 5). The hydroxyl functions of *ent*-13 and *ent*-14, obtained from 6 and *ent*-7, were acetate protected. During TBDPS deprotection of the primary hydroxyl group a partial acetate migration was observed even though the TBAF solution was buffered with acetic acid. Treatment of the prepurified mixture of regioisomers with DBU in anhydrous CH_2Cl_2 resulted in almost full conversion to compounds *ent*-27 and *ent*-31.²² *Ent*-16 and *ent*-19 were obtained by TIPS protection followed by saponification.

Besides final product **4**, in the entire synthetic pathways we were only able to obtain single crystals for *ent*-**32**.²³ The absolute configurations determined were in complete alignment.

For the final cyclization a different method with less side product formation, shorter reaction times, and no isomerization of the prenyl double bond would be desirable. An alternative cyclization strategy could start with a selective lithium-bromine exchange at low temperature followed by an addition of the lithium-species to a carboxylic acid²⁴, an ester²⁵, or an amide²⁶. This approach requires mild oxidation of the primary hydroxyl group to the carboxylic acid and subsequent ester or amide formation. During our literature search for suitable reaction conditions a one-pot hydroxyl to nitrile oxidation procedure described by Vatéte attracted our attention.²⁷ The oxidation of ent-16 and ent-19 to the corresponding nitriles proceeded smoothly. For the lithium-bromine exchange a solution of ent-33 or ent-34 in anhydrous THF was cooled to -100 °C and a stoichiometric amount of n-BuLi solution was added. Within a few minutes complete conversion to the desired products was detected via LCMS and TLC. A slightly acidic aqueous work-up ensured full hydrolysis of the intermediate imines to liberate ketones ent-21 and ent-22. The final products ent-4 and ent-23 were obtained by cleavage of the TIPS protection group (Scheme 6).

Scheme 6. Alternative cyclization for ent-avicennones.^a

^aConditions: (a) TEMPO (0.2 eq.), NH4OAc, BAIB, MeCN/H₂O 9:1; 63% for *ent-33*, 68% for *ent-34*; (b) *n*-BuLi, THF, -100 °C, 5 min; 80% for *ent-21*, 95% for *ent-22*; (c) TBAF, HOAc, THF; 79% for *ent-4*, 93% *ee*; 93% for *ent-23*, 92% *ee*.

For our goal of an efficient and flexible access to any specific stereoisomer of the epoxyquinoids, the unselective Grignard ad-

2

3

4

dition remained the final optimization parameter. To circumvent the loss of material due to formation of undesired stereoisomers, Mitsunobu inversions were attempted for 13 and 14. Whilst acetate 29 was obtained in good yields and full inversion of the stereocenter from 13, the Mitsunobu reaction of 14 resulted in a mixture of both stereoisomers 25 and 29 as well as side product formation.²⁸ From common intermediate 29, (–)-avicennone C (23) was finalized in 7 steps with an overall yield of 31% under optimized conditions. In contrast to the failed inversion of 14, the Mitsunobu reaction of 23 and 4 worked successfully and subsequent saponification of acetates 35 and 36 yielded the fully inverted products in good yields (Scheme 7).

^aConditions: (a) for **13**: PPh₃, HOAc, DIAD, THF; 70%; (b) for **14**: Ac₂O, pyridine, DMAP (0.1 eq.), CH₂Cl₂; 97%; (c) TBAF, HOAc, THF; (d) DBU, CH₂Cl₂; 98% over two steps; (e) TIPSOTf, 2,6-lutidine, CH₂Cl₂; 66%; (f) LiOH, THF/H₂O 5:1, 85%; (g) TEMPO (0.2 eq.), NH₄OAc, BAIB, MeCN/H₂O 9:1; 69%; (h) *n*-BuLi, THF, -100 °C, 5 min; 92%; (i) TBAF, HOAc, THF; 89%; (j) PPh₃, HOAc, DIAD, THF; 90% for **35**, 73% for **36**; (k) LiOH, THF/H₂O 5:1, 90% for **4**, 93% for **23**.

CONCLUSION

We synthesized all four possible stereoisomers of avicennone C following two different pathways and revised the reported stereochemistry of (–)-avicennone C (23) unambiguously. Besides elegant protecting group manipulation utilizing an acetate group, the most significant synthetic achievement was realized by an alcohol to nitrile oxidation-cyclization sequence providing high yields as well as avoiding side product formation. Furthermore, a step-neutral Mitsunobu inversion approach enabled us to also recycle the undesired diastereomer 13. Based on this concept we established a robust and scalable total synthesis

route towards epoxyquinone NPs in general and provided sufficient amounts of all four avicennone C stereoisomers for follow-up biological and physico-chemical profiling, which is currently ongoing. Finally, this study demonstrates that even the structure elucidation of relatively small NPs such as (–)-avicennone C bears the risk of misassignments and emphasizes the importance of total synthesis not only for material supply and generation of analogs, but also for unambiguous structure determination.

EXPERIMENTAL SECTION

General Information. All chemicals and solvents/anhydrous solvents were commercially supplied and used without further purification. For heating of reaction mixtures, aluminium flask carriers in different sizes from IKA were used. Reactions were monitored using thin layer chromatography (TLC) or using one of the following LCMS systems: 1100 HPLC (Agilent) with DAD and ELSD equipped with MSD (Agilent) ESI quadrupole MS, 1100 HPLC (Agilent) with DAD equipped with Amazon (Bruker) ESI trap MS, 1290 UPLC (Agilent) with DAD or ELSD equipped with micrOTOF (Bruker) ESI TOF MS or 1290 UPLC (Agilent) with DAD and ELSD equipped with maXis II (Bruker) ESI TOF MS. TLC was performed on pre-coated silica gel glass plates (Merck TLC Silica gel 60 F254) and compounds were detected under UV light (254 nm) and/or by staining with an aqueous solution of KMnO4 with K2CO3 and NaOH followed by heating with a heat gun. Products were purified by flash column chromatography using silica gel 60 M (Macherey-Nagel) or by using an automated flash column chromatography system (Biotage[®] SP4 with ISOLUTE[®] Flash SI II) equipped with ISOLUTE® Flash SI II columns of different sizes from Biotage or PF-15SIHC flash columns of different sizes from Interchim (eluants are given in parentheses). NMR spectra were recorded on a Bruker AVANCE II WB spectrometer (400 MHz), a AVANCE III HD spectrometer (400 MHz) or a AVANCE III HD spectrometer (600 MHz) with CDCl₃ or CD_3OD as solvent with chemical shifts (δ) quoted in parts per million (ppm) and referenced to the solvent signal ($\delta^1 H/^{13}C$: CDCl₃ 7.26/77.1, MeOD 3.31/49.0) or TMS ($\delta = 0$ ppm in CDCl₃). Assignment was confirmed based on COSY, HSQC, HMBC, and NOESY correlations. The absolute configuration of compounds 4 and ent-32 was assigned by X-ray diffraction analysis (for details regarding solvent and method for crystal growth see experimental section and Supporting Information). High resolution mass spectrometry was performed on the maXis II (Bruker) ESI TOF MS. Specific rotation was measured by a polarimeter (P 3000 series) from Krüss. For SI structures with complete analytical data see Supporting Information.

Ethyl 4-[*tert*-butyl(diphenyl)silyl]oxybut-2-ynoate (9). The synthesis of 9 was performed according to literature known procedure starting from propargyl alcohol in two steps. The analytical data are in accordance to the reported data in literature.¹⁰ ¹H-NMR (CDCl₃, 400 MHz): 7.71–7.67 (m, 4H, aryl-*H*), 7.48–7.37 (m, 6H, aryl-*H*), 4.40 (s, 2H, alkyne-CH₂), 4.23 (q, 2H, J = 7.1 Hz, Me-CH₂), 1.32 (t, 3H, J = 7.1 Hz, CH₃), 1.06 (s, 9H, ¹Bu-CH₃); ¹³C-NMR (CDCl₃, 100 MHz): 153.5 (*C*=O), 135.7 (Ar-*C*), 132.5 (Ar-*C*_q), 130.2 (Ar-*C*), 128.0 (Ar-*C*), 85.5 (alkyne-*C*), 76.9 (alkyne-*C*), 62.1 (Me-CH₂), 52.4 (alkyne-CH₂), 26.8 ('Bu-CH₃), 19.3 ('Bu-C_q), 14.2 (CH₃); HRMS (ESI) m/z

calcd. for C₂₂H₂₆O₃SiNa: (M+Na)⁺, 389.1543; found: 389.1544 $(M+Na)^+$; **R**_f (*n*-heptane/ethyl acetate 10:1): 0.38.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

43

44

45

46

47

48

49

50

51

52

53

54

55 56

57 58 59

60

Ethyl (2Z)-3-[[tert-butyl(diphenyl)silv]]oxymethyl]-6-methyl-hepta-2,5-dienoate (10). The Grignard formation was performed in oven-dried glassware under argon atmosphere. To a suspension of Mg turnings (10.6 g, 437 mmol, 4.00 eq.) in anhydrous THF (28 mL) a small crystal of I₂ was added. Prenyl chloride (12.3 mL, 109 mmol, 1.00 eq.) was dissolved in anhydrous THF (185 mL) and the chloride solution was added dropwise over a period of 8 h to the reaction mixture. After 5 min stirring at room temperature the Grignard solution was cooled until the end of the addition with an ice-water bath. After complete addition of the chloride, the reaction mixture was allowed to get to room temperature and it was stirred overnight under inert atmosphere. The supernatant layer was transferred via cannula to an oven-dried two-neck round-bottom flask. The Grignard-solution was titrated according to a literature known procedure.²⁹ Cuprate addition was carried out in moisture-free glassware under inert atmosphere. To a suspension of CuBr·Me₂S (6.13 g, 29.8 mmol, 2.10 eq.) in anhydrous THF (20 mL) the Grignard solution (3.00 eq.) was added at -40 °C. The suspension was stirred for 40 min. After this time, the mixture was cooled to -78 °C and a solution of alkyne 9 (5.20 g, 14.2 mmol, 1.00 eq.) in anhydrous THF (20 mL) was added dropwise over a period of 30 min. The resulting mixture was stirred at -78 °C for 1 h and remaining cuprate was quenched with saturated aqueous NH4Cl (200 mL). The mixture was extracted with Et₂O (3 x 300 mL) and the combined organic layers were washed with saturated aqueous NaCl (200 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (100% DCM) to give addition product 10 (5.84 g, 13.4 mmol, 94%) as colorless oil.

30 ¹H-NMR (CDCl₃, 400 MHz): 7.71–7.62 (m, 4H, aryl-H), 7.45– 31 7.33 (m, 6H, aryl-H), 5.59 (m, 1H, alkene-CH), 5.20 (m, 1H, 32 Me₂C=CH), 4.87 (m, 2H, TBDPSO-CH₂), 4.01 (q, 2H, J = 7.1 33 Hz, Me-CH₂), 3.13 (d, 2H, J = 7.4 Hz, CH-CH₂), 1.75 (s, 3H, E-C H_3), 1.61 (s, 3H, Z-C H_3), 1.16 (t, 3H, J = 7.1 Hz, C H_2 -C H_3), 34 1.08 (s, 9H, 'Bu-CH₃); ¹³C-NMR (CDCl₃, 100 MHz): 166.4 35 (C=O), 162.0 (CH=C_q), 135.8 (Ar-C), 135.1 (C_qMe₂), 133.7 36 (Ar-C_q), 129.9 (Ar-C), 127.9 (Ar-C), 120.3 (CH=CMe₂), 114.9 37 (O=C-CH), 63.1 (TBDPSO-CH₂), 60.0 (Me-CH₂), 32.8 (CH-38 CH₂), 27.2 ('Bu-CH₃), 26.1 (E-CH₃), 19.6 ('Bu-C_q), 18.0 (Z-39 CH₃), 14.4 (CH₂-CH₃); HRMS (ESI) m/z calcd. for 40 C₂₇H₃₇O₃Si: (M+H)⁺, 437.2506; found: 437.2501 (M+H)⁺; R_f 41 (n-heptane/ethyl acetate 10:1): 0.44. 42

(2Z)-3-[[tert-Butyl(diphenyl)silyl]oxymethyl]-6-methyl-

hepta-2,5-dien-1-ol (11). Under inert atmosphere DIBAl-H in toluene (1.20 M; 43.5 mL, 52.2 mmol, 3.90 eq.) was added slowly to ester 10 (5.84 g, 13.4 mmol, 1.00 eq.) dissolved in anhydrous toluene (140 mL) at -78 °C. The resulting mixture was stirred at this temperature for 1.5 h. Excess of DIBAL-H was quenched carefully with MeOH (6 mL) and afterwards saturated aqueous Rochelle's salt solution (140 mL) was added. The resulting suspension was left to warm up to room temperature and was stirred vigorously for 4 h. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (3 x 100 mL). The combined organic layers were washed with saturated aqueous NaCl (100 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product

was purified by flash column chromatography (0-30% ethyl acetate in *n*-heptane) to give alcohol **11** (4.88 g, 12.4 mmol, 92%) as colorless oil. ¹H-NMR (CDCl₃, 400 MHz): 7.72–7.66 (m, 4H, aryl-*H*), 7.47–7.36 (m, 6H, aryl-*H*), 5.46 (t, 1H, *J* = 6.9 Hz, alkene-CH), 5.13 (m, 1H, Me₂C=CH), 4.17 (s, 2H, TBDPSO-CH₂), 3.95 (d, 2H, J = 7.0 Hz, HO-CH₂), 2.84 (d, 2H, J = 7.2 Hz, Me₂C=CH-CH₂), 1.71 (s, 3H, E-CH₃), 1.60 (s, 3H, Z-CH₃), 1.40 (s, br, 1H, OH), 1.05 (s, 9H, 'Bu-CH₃); ¹³C-NMR (CDCl₃, 100 MHz): 141.4 (CH= C_a), 135.8 (Ar-C), 133.7 (C_a Me₂ or Ar-C_q), 133.5 (C_qMe₂ or Ar-C_q), 129.9 (Ar-C), 127.8 (Ar-C), 125.7 (CH₂-CH=C_q), 121.5 (CH=CMe₂), 61.9 (TBDPSO-CH₂), 58.9 (HO-CH₂), 33.4 (Me₂C=CH-CH₂), 26.9 ('Bu-CH₃), 25.9 (E-CH₃), 19.3 (^tBu-C_q), 17.8 (Z-CH₃); HRMS (ESI) m/z calcd. for C₂₅H₃₄O₂SiNa: (M+Na)⁺, 417.2220; found: 417.2214 (M+Na)⁺; $\mathbf{R}_{\mathbf{f}}$ (*n*-heptane/ethyl acetate 4:1): 0.25.

[(2S,3R)-3-[[tert-Butyl(diphenyl)silyl]oxymethyl]-3-(3methylbut-2-enyl)oxiran-2-yl]methanol (12). The reaction was carried out in oven-dried glassware under argon atmosphere. To a suspension of 4 Å molecular sieve in anhydrous DCM (25 mL) L-(+)-diethyl tartrate (0.156 mL, 0.910 mmol, 0.12 eq.) and Ti(OiPr)₄ (0.225 mL, 0.760 mmol, 0.10 eq.) were added at -30 °C followed by addition of anhydrous *tert*-butyl hydroperoxide in dodecane (5.5 M; 2.22 mL, 12.1 mmol, 1.60 eq.). The resulting mixture was stirred carefully for 40 min. After this time, allyl alcohol 11 (3.01 g, 7.62 mmol, 1.00 eq.) dissolved in anhydrous DCM (10 mL) was added to the suspension dropwise. The resulting suspension was allowed to stay at -28 °C in the freezer for 3 days. After this time, 10% aqueous NaOH solution saturated with NaCl (30 mL) was added at -20 °C and the suspension was allowed to stir for 1.5 h at 0 °C. After filtration over a frit with Celite[®] (4 x 7 cm), which was flushed with DCM (500 mL), the solvent was reduced in vacuo to a volume of 250 mL and the residue was washed with saturated aqueous NaCl (100 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (0-40% ethyl acetate in *n*-heptane) to give epoxy alcohol 12 (2.75 g, 5.09 mmol, 88%) as colorless oil. ¹H-NMR (CDCl₃, 400 MHz): 7.71–7.61 (m, 4H, aryl-H), 7.49-7.35 (m, 6H, aryl-H), 5.07 (m, 1H, Me₂C=CH), 3.82 (d, 1H, J = 11.0 Hz, TBDPSO-CH₂), 3.65 (t, 2H, J = 6.1 Hz, HO-CH₂), 3.61 (d, 1H, J = 11.1 Hz, TBDPSO-CH₂), 3.09 (t, 1H, J = 5.9 Hz, epoxy-CH), 2.52 (dd, 1H, J = 15.1, 7.5 Hz, Me₂C=CH-CH₂), 2.42 (dd, 1H, J = 15.0, 7.2 Hz, Me₂C=CH-CH₂), 1.89–1,79 (m, 1H, OH), 1.69 (s, 3H, E-CH₃), 1.60 (s, 3H, Z-CH₃), 1.07 (s, 9H, 'Bu-CH₃); ¹³C-NMR (CDCl₃, 100 MHz): 135.9/135.7 (Ar-C), 135.4 (CqMe₂), 133.0/132.8 (Ar-Cq), 130.1 (Ar-C), 128.0/127.9 (Ar-C), 117.9 (CH=CMe₂), 64.7 (TBDPSO-CH₂), 63.7 (epoxy-C_q), 61.4 (HO-CH₂ or epoxy-CH), 61.3 (HO-CH2 or epoxy-CH), 32.0 (Me2C=CH-CH2), 27.0 ('Bu-CH₃), 25.9 (E-CH₃), 19.4 ('Bu-C_q), 18.1 (Z-CH₃); HRMS (**ESI**) m/z calcd. for C₂₅H₃₄O₃SiNa: (M+Na)⁺, 433.2169; found: 433.2167 (M+Na)⁺; **R**_f (*n*-heptane/ethyl acetate 2:1): 0.38; **Chi**ral HPLC (Chiralpak IC; hexane:isopropyl alcohol 94:6): 12 (Rt = 7.2 min) : *ent*-12 (Rt = 6.3 min) 96.3 : 3.7 (93% *ee*); Specific rotation $[\alpha]_D^{22.6} = -7.4$ (c = 1.08; CHCl₃).

[(2R,3S)-3-[[tert-Butyl(diphenyl)silyl]oxymethyl]-3-(3methylbut-2-enyl)oxiran-2-yl]methanol (ent-12). Ent-12 (1.18 g, 2.88 mmol, 91%) was synthesized in analogous manner with D-(-)-diethyl tartrate instead of L-(+)-diethyl tartrate. The NMR data are identical to the ones reported for 12. HRMS (ESI) m/z calcd. for $C_{25}H_{34}O_3SiNa$: (M+Na)⁺, 433.2169; found:

2

3

43

44

45

46

47

48

49

50

51

52

53

56

57 58 59

60

433.2173 (M+Na)⁺; **R**_f (*n*-heptane/ethyl acetate 2:1): 0.38; **Chiral HPLC** (Chiralpak IC; hexane:isopropyl alcohol 94:6): *ent*-**12** (Rt = 6.6 min) : **12** (Rt = 7.7 min) 96.9 : 3.1 (94% *ee*); **Specific rotation** $[\alpha]_D^{22.6} = + 6.0$ (c = 1.32; CHCl₃).

(2R,3R)-3-[[tert-Butyl(diphenyl)silyl]oxymethyl]-3-(3-4 methylbut-2-enyl)oxirane-2-carbaldehyde (7). Condition 1: 5 Epoxy alcohol 12 (2.06 g, 5.01 mmol, 1.00 eq.) was dissolved 6 in anhydrous DCM (30 mL) and Dess-Martin periodinane 7 (15% in DCM, 20.8 mL, 10.0 mmol, 2.00 eq.) was added. After 8 stirring for 4 h at room temperature, the TLC showed complete 9 conversion of the starting material. The reaction solution was 10 flash chromatographed (100% DCM) to give epoxy aldehyde 7 11 (1.56 g, 3.81 mmol, 76%) as colorless oil. Condition 2: The reaction was carried out in moisture-free glassware under inert 12 13 atmosphere. To a solution of (COCl)₂ (0.365 mL, 4.26 mmol, 1.60 eq.) in anhydrous DCM (15 mL) anhydrous DMSO (0.605 14 mL, 8.52 mmol) was added carefully at -78 °C. After stirring 15 for 15 min, epoxy alcohol 12 (1.09 g, 2.66 mmol, 1.00 eq.) dis-16 solved in anhydrous DCM (12 mL) was added. The reaction 17 mixture was stirred for 1.5 h at -78 °C. Then DIPEA (2.32 mL, 18 13.3 mmol, 5.00 eq.) was added and the solution was stirred for 19 30 min at -78 °C and for further 30 min without cooling bath. 20 A mixture of cooled toluene/saturated aqueous NH₄Cl (3:1, 21 120 mL, pre-cooled to 0 °C) was added to the reaction mixture. 22 The aqueous layer was separated and the organic layer was 23 washed again with saturated aqueous NH₄Cl (3 x 30 mL, precooled to 0 °C), with saturated aqueous NaHCO₃ (30 mL, pre-24 cooled to 0 °C), and with brine (30 mL, pre-cooled to 0 °C). The 25 organic layer was dried over MgSO₄, filtered, and concentrated 26 under reduced pressure to yield epoxy aldehyde 7 (1.09 g, 27 1.66 mmol, quant.) as slightly yellow oil which was used in the 28 next stage without further purification. ¹H-NMR (CDCl₃, 400 29 MHz): 9.47 (d, 1H, J = 4.9 Hz, CHO), 7.72–7.61 (m, 4H, aryl-30 H), 7.49–7.36 (m, 6H, aryl-H), 5.03 (m, 1H, Me₂C=CH), 3.82 31 $(q, 2H, J = 12.0 \text{ Hz}, \text{TBDPSO-C}H_2), 3.25 (d, 1H, J = 4.6 \text{ Hz},$ 32 epoxy-CH), 2.52 (dd, 1H, J = 15.1, 7.9 Hz, Me₂C=CH-CH₂), 33 2.35 (dd, 1H, J = 15.2, 6.8 Hz, Me₂C=CH-CH₂), 1.68 (s, 3H, E-CH₃), 1.57 (s, 3H, Z-CH₃), 1.04 (s, 9H, ^tBu-CH₃); ¹³C-NMR 34 (CDCl₃, 100 MHz): 198.8 (CHO), 136.6 (C_qMe₂), 135.7/135.7 35 (Ar-C), 132.6/132.6 (Ar-C_q), 130.1 (Ar-C), 128.0/128.0 (Ar-C), 36 116.8 (CH=CMe₂), 68.6 (epoxy-C_q), 63.3 (TBDPSO-CH₂), 37 62.4 (epoxy-CH), 31.5 (Me₂C=CH-CH₂), 26.9 ('Bu-CH₃), 25.9 38 (*E*-*C*H₃), 19.3 (^{*t*}Bu-*C*_q), 18.1 (*Z*-*C*H₃); **HRMS** (**ESI**) m/z calcd. 39 for C₂₅H₃₂O₃SiNa: (M+Na)⁺, 431.2013; found: 431.2013 40 $(M+Na)^+$; **R**_f (*n*-heptane/ethyl acetate 10:1): 0.31; Specific ro-41 tation $[\alpha]_D^{22.6} = +18.9$ (c = 1.59; CHCl₃). 42

(25,35)-3-[[*tert*-Butyl(diphenyl)silyl]oxymethyl]-3-(3methylbut-2-enyl)oxirane-2-carbaldehyde (*ent*-7). *Ent*-7 (1.09 g, 2.66 mmol, quant.) was synthesized in analogous manner to condition 2 starting from *ent*-12 (1.09 g, 2.66 mmol). The NMR data are identical to the ones reported for **7**. Yield for condition 1: 85%. **HRMS (ESI)** m/z calcd. for C₂₅H₃₂O₃SiNa: (M+Na)⁺, 431.2013; found: 431.2016 (M+Na)⁺; **R**_f (*n*-heptane/ethyl acetate 10:1): 0.31; **Specific rotation** $[\alpha]_D^{22.6} = -17.3$ (c = 1.27; CHCl₃).

(*R*)-(2-Bromophenyl)-[(2*S*,3*R*)-3-[[*tert*-butyl(diphenyl)silyl]oxymethyl]-3-(3-methylbut-2-enyl)oxiran-2-yl]methanol (14) and (*S*)-(2-bromophenyl)-[(2*S*,3*R*)-3-[[*tert*-butyl(diphenyl)silyl]oxymethyl]-3-(3-methylbut-2-enyl)oxiran-2-

54 yl]methanol (13). The reaction was carried out in moisture-free55 glassware under inert atmosphere. To a solution of 1-bromo-2-

iodobenzene (6, 0.436 mL, 3.40 mmol, 1.60 eq.) dissolved in anhydrous THF (13 mL) i-PrMgCl in THF (2.0 M, 1.59 mL, 3.19 mmol, 1.50 eq.) was added dropwise at -40 °C. After stirring for 45 min, epoxy aldehyde 7 (0.868 g, 2.12 mmol, 1.00 eq.) in anhydrous THF (7 mL) was added. The reaction mixture was stirred for 45 min at -40 °C and was then diluted with saturated aqueous NH₄Cl (30 mL). The mixture was extracted with ethyl acetate (2 x 100 mL) and the combined organic layers were washed with saturated aqueous NaCl (50 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (0-20% ethyl acetate in *n*-heptane) to give addition products 14 (0.498 g, 0.880 mmol, 42% over two steps) and 13 (0.500 g, 0.880 mmol, 42% over two steps) as colorless oils. For 14: ¹H-NMR (CDCl₃, 400 MHz): 7.72–7.63 (m, 4H, aryl-H), 7.55 (dd, 1H, J = 7.9, 1.7 Hz, Br-aryl-H), 7.50 (dd, 1H, J = 8.1, 1.2 Hz, Br-aryl-*H*), 7.48–7.36 (m, 6H, aryl-*H*), 7.33 (td, 1H, *J* = 7.5, 1.2 Hz, Br-aryl-H), 7.15 (td, 1H, J = 7.7, 1.7 Hz, Br-aryl-H), 5.02 (m, 1H, Me₂C=CH), 4.88 (dd, 1H, J = 6.1, 3.6 Hz, CH-OH), 3.91 (d, 1H, J = 11.5 Hz, TBDPSO-CH₂), 3.81 (d, 1H, J = 11.6 Hz, TBDPSO-CH₂), 3.11 (d, 1H, J = 6.1 Hz, epoxy-CH), 2.72 $(dd, 1H, J = 14.8, 7.9 Hz, Me_2C=CH-CH_2), 2.59 (d, 1H, J = 4.0)$ Hz, OH), 2.28 (dd, 1H, J = 14.9, 6.8 Hz, Me₂C=CH-CH₂), 1.66 (s, 3H, *E*-CH₃), 1.58 (s, 3H, *Z*-CH₃), 1.07 (s, 9H, 'Bu-CH₃); ¹³C-NMR (CDCl₃, 100 MHz): 140.6 (Br-Ar-C_q), 136.0 (Ar-C), 135.8 (Ar-C), 135.5 (CqMe2), 133.3/133.2 (Ar-Cq), 132.9 (Br-Ar-C), 130.0/129.9 (Ar-C), 129.6 (Br-Ar-C), 128.2 (Br-Ar-C), 127.9 (Br-Ar-C), 127.9/127.8 (Ar-C), 122.2 (Br-C_a), 117.8 (CH=CMe₂), 69.3 (C-OH), 65.5 (epoxy-C_q), 64.7 (epoxy-CH), 64.2 (TBDPSO-CH₂), 31.4 (Me₂C=CH-CH₂), 27.0 ('Bu-CH₃), 25.9 (E-CH₃), 19.4 (^tBu-C_q), 18.1 (Z-CH₃); HRMS (ESI) m/z calcd. for C₃₁H₃₆BrO₂Si: (M+H-H₂O)⁺, 547.1662; found: 547.1660 (M+H-H₂O)⁺; **R**_f (*n*-heptane/ethyl acetate 4:1): 0.34; Specific rotation $[\alpha]_{D}^{24.0} = -3.4$ (c = 1.46; CHCl₃). For 13: ¹H-NMR (CDCl₃, 400 MHz): 7.75-7.68 (m, 4H, aryl-H), 7.58 (dd, 1H, *J* = 7.7, 1.6 Hz, Br-aryl-*H*), 7.54 (dd, 1H, *J* = 8.1, 1.1 Hz, Br-aryl-H), 7.51-7.37 (m, 6H, aryl-H), 7.37-7.32 (m, 1H, Braryl-*H*), 7.15 (td, 1H, *J* = 7.8, 1.7 Hz, Br-aryl-*H*), 5.08 (dd, 1H, J = 7.8, 2.5 Hz, CH-OH), 5.03 (m, 1H, Me₂C=CH), 4.02 (d, 1H, J = 11.2 Hz, TBDPSO-CH₂), 3.84 (d, 1H, J = 10.9 Hz, TBDPSO-CH₂), 3.15 (d, 1H, J = 7.8 Hz, epoxy-CH), 3.02 (d, 1H, J = 2.5 Hz, OH), 2.45 (d, 2H, J = 7.2 Hz, Me₂C=CH-CH₂), 1.65 (s, 3H, *E*-CH₃), 1.56 (s, 3H, *Z*-CH₃), 1.12 (s, 9H, ^{*t*}Bu-CH₃); ¹³C-NMR (CDCl₃, 100 MHz): 140.2 (Br-Ar-C_q), 136.0/135.8 (Ar-C), 135.5 (CqMe₂), 133.0 (Br-Ar-C), 132.7/132.5 (Ar-Cq), 130.2/130.2 (Ar-C), 129.6 (Br-Ar-C), 128.2 (Br-Ar-C), 128.1/128.0 (Ar-C), 128.0 (Br-Ar-C), 123.0 (Br-C_q), 117.8 (CH=CMe₂), 70.8 (C-OH), 65.4 (TBDPSO-CH₂), 64.7 (epoxy-CH), 63.9 (epoxy-C_q), 32.1 (Me₂C=CH-CH₂), 27.1 (^tBu-CH₃), 25.9 (E-CH₃), 19.4 ('Bu-C_q), 18.1 (Z-CH₃); HRMS (ESI) m/z calcd. for C₃₁H₃₆BrO₂Si: (M+H-H₂O)⁺, 547.1662; found: 547.1659 (M+H-H₂O)⁺; $\mathbf{R}_{\mathbf{f}}$ (*n*-heptane/ethyl acetate 4:1): 0.37; **Specific rotation** $[\alpha]_D^{24.0} = -16.2$ (c = 0.93; CHCl₃).

(S)-(2-Bromophenyl)-[(2R,3S)-3-[[tert-butyl(diphenyl)silyl]oxymethyl]-3-(3-methylbut-2-enyl)oxiran-2-yl]methanol (ent-14) and (R)-(2-bromophenyl)-[(2R,3S)-3-[[tert-butyl(diphenyl)silyl]oxymethyl]-3-(3-methylbut-2-enyl)oxiran-2yl]methanol (ent-13). Ent-14 (0.928 g 1.64 mmol, 45% over two steps) and ent-13 (0.802 g, 1.42 mmol, 39% over two steps) were synthesized in analogous manner starting from epoxy aldehyde ent-7 (1.49 g, 3.65 mmol). The NMR data are identical to the ones reported for **14** and **13**. For *ent*-**14**: **HRMS** (**ESI**) m/z calcd. for $C_{31}H_{36}BrO_2Si$: (M+H-H₂O)⁺, 547.1662; found: 547.1660 (M+H-H₂O)⁺; **R**_f (*n*-heptane/ethyl acetate 4:1): 0.34; **Specific rotation** $[\alpha]_D^{22.2} = + 1.8$ (c = 1.12; CHCl₃). For *ent*-**13**: **HRMS** (**ESI**) m/z calcd. for for $C_{31}H_{36}BrO_2Si$: (M+H-H₂O)⁺, 547.1662; found: 547.1659 (M+H-H₂O)⁺; **R**_f (*n*-heptane/ethyl acetate 4:1): 0.37; **Specific rotation** $[\alpha]_D^{22.2} = + 13.5$ (c = 0.82; CHCl₃).

7 [(R)-(2-Bromophenvl)-[(2S,3R)-3-[[tert-butvl(diphenvl)si-8 lvl]oxymethyl]-3-(3-methylbut-2-enyl)oxiran-2-vl]meth-9 oxy]-triisopropyl-silane (18). 2,6-Lutidine (0.751 mL, 6.47 10 mmol, 6.00 eq.) and then TIPS triflate (0.870 mL, 3.24 mmol, 11 3.00 eq.) were added to a solution of alcohol 14 (0.610 g, 1.08 12 mmol, 1.00 eq.) in anhydrous DCM (25 mL) at 0 °C. The reac-13 tion mixture was allowed to stir at room temperature for 1.5 h. Because the TLC showed remaining starting material, 2,6-14 lutidine (6.00 eq.) and then TIPS triflate (3.00 eq.) were added 15 a second time at 0 °C. After 2.5 h stirring at room temperature, 16 the TLC showed complete conversion. Saturated aqueous 17 NH₄Cl (30 mL) was added. The mixture was extracted with 18 ethyl acetate (2 x 75 mL) and the combined organic layers were 19 washed with saturated aqueous NaCl (40 mL), dried over 20 MgSO₄, filtered, and concentrated under reduced pressure. The 21 crude product was purified by flash column chromatography 22 (0-4% ethyl acetate in *n*-heptane) to give **18** (0.714 g, 0.99 23 mmol, 92%) as a colorless oil. ¹H-NMR (CDCl₃, 400 MHz): 7.73-7.62 (m, 4H, aryl-H), 7.48-7.32 (m, 8H, aryl-H, Br-aryl-24 H), 7.30–7.24 (m, 1H, Br-aryl-H), 7.07 (ddd, 1H, J = 8.0, 7.3, 25 1.7 Hz, Br-aryl-H), 4.83 (m, 1H, Me₂C=CH), 4.81 (d, 1H, J =26 4.8 Hz, CH-OTIPS), 3.78 (d, 1H, J = 11.5 Hz, TBDPSO-CH₂), 27 3.67 (d, 1H, J = 11.5 Hz, TBDPSO-CH₂), 3.17 (d, 1H, J = 7.828 Hz, epoxy-CH), 2.90 (dd, 1H, J = 14.7, 8.2 Hz, Me₂C=CH-29 CH_2), 1.99 (dd, 1H, J = 14.6, 6.5 Hz, $Me_2C=CH-CH_2$), 1.56 (s, 30 3H, E-CH₃), 1.48 (s, 3H, Z-CH₃), 1.07 (s, 9H, ^tBu-CH₃), 1.04-31 0.85 (m, 21H, TIPS-H); ¹³C-NMR (CDCl₃, 100 MHz): 141.3 32 (Br-Ar-C_q), 135.9/135.8 (Ar-C), 134.6 (C_qMe₂), 133.8/133.4 33 (Ar-C_a), 132.7 (Br-Ar-C), 129.7/129.7 (Ar-C), 129.7 (Ar-C), 129.3 (Br-Ar-C), 127.7 (Br-Ar-C), 127.6 (Br-Ar-C), 121.4 (Br-34 C_q), 118.7 (CH=CMe₂), 72.5 (C-OTIPS), 67.1 (epoxy-CH), 35 66.1 (TBDPSO-CH₂), 65.1 (epoxy-C_q), 31.2 (Me₂C=CH-CH₂), 36 27.0 (^{*t*}Bu-CH₃), 25.8 (*E*-CH₃), 19.5 (^{*t*}Bu-C_q), 18.1 (Z-CH₃), 37 18.0/17.9/12.3 (TIPS-C); HRMS (ESI) m/z calcd. for 38 $C_{40}H_{57}BrO_3Si_2Na:$ (M+Na)⁺, 743.2922; found: 743.2929 39 $(M+Na)^+$; **R**_f (*n*-heptane/ethyl acetate 10:1): 0.68; Specific ro-40 tation $[\alpha]_D^{23.0} = +13.4$ (c = 1.20; CHCl₃).

41 [(S)-(2-Bromophenyl)-[(2S,3R)-3-[[tert-butyl(diphenyl)si-42 lyl]oxymethyl]-3-(3-methylbut-2-enyl)oxiran-2-yl]meth-43 oxy]-triisopropyl-silane (15). 15 (0.613 g, 0.85 mmol, 82%) 44 was synthesized in analogous manner to 18 starting from 13 (0.584 g, 1.03 mmol) and was obtained as colorless oil. ¹H-45 NMR (CDCl₃, 400 MHz): 7.75–7.66 (m, 4H, aryl-H), 7.57– 46 7.48 (m, 1H, Br-aryl-H), 7.48–7.33 (m, 7H, aryl-H, Br-aryl-H), 47 7.29 (td, 1H, *J* = 7.6, 0.7 Hz, Br-aryl-*H*), 7.09 (td, 1H, *J* = 7.7, 48 1.5 Hz, Br-aryl-H), 5.09 (m, 1H, Me₂C=CH), 5.02 (d, 1H, J = 49 7.0 Hz, CH-OTIPS), 4.14 (d, 1H, J = 11.2 Hz, TBDPSO-CH₂), 50 3.90 (d, 1H, J = 11.1 Hz, TBDPSO-CH₂), 3.00 (d, 1H, J = 8.1 51 Hz, epoxy-CH), 2.93 (dd, 1H, J = 14.5, 7.9 Hz, Me₂C=CH-52 CH₂), 2.08 (dd, 1H, J = 14.5, 7.0 Hz, Me₂C=CH-CH₂), 1.66 (s, 53

3H, *E*-CH₃), 1.59 (s, 3H, *Z*- CH₃), 1.10 (s, 9H, 'Bu-CH₃), 0.91– 0.81 (m, 21H, TIPS-H); ¹³C-NMR (CDCl₃, 100 MHz): 142.0 (Br-Ar- C_q), 136.0/135.9 (Ar-*C*), 134.7 (C_q Me₂), 133.7/133.2 (Ar- C_q), 132.5 (Br-Ar-C), 129.8/129.8 (Ar-C), 129.2 (Br-Ar-C), 129.1 (Br-Ar-C), 127.8 (Ar-C), 127.7 (Br-Ar-C), 122.4 (Br- C_q), 118.8 (CH=CMe₂), 69.7 (C-OTIPS), 65.9 (epoxy-CH), 65.4 (epoxy- C_q), 64.5 (TBDPSO-CH₂), 31.2 (Me₂C=CH-CH₂), 27.1 ([']Bu-CH₃), 25.9 (*E*-CH₃), 19.5 ([']Bu- C_q), 18.1 (*Z*-CH₃), 17.9/17.8/12.3 (TIPS-C); **HRMS (ESI)** m/z calcd. for C₄₀H₅₇BrO₃Si₂Na: (M+Na)⁺, 743.2922; found: 743.2928 (M+Na)⁺; **R**_f (*n*-heptane/ethyl acetate 10:1): 0.59; **Specific rotation** [α]^{23.0} = -8.1 (c = 1.30; CHCl₃).

[(2R,3S)-3-[(R)-(2-Bromophenyl)-triisopropylsilyloxymethyl]-2-(3-methylbut-2-enyl)oxiran-2-yllmethanol (19). Condition 1: To a solution of 18 (0.714 g, 0.990 mmol, 1.00 eq.) in MeOH/THF (23.5 mL/1.5 mL) NH₄F (0.366 g, 9.89 mmol, 10.00 eq.) was added. The reaction mixture stirred for 5 h at 40 °C. Because the TLC only showed a slow conversion of the starting material, the reaction was allowed to stir overnight at room temperature and then saturated aqueous $NaHCO_3$ (50 mL) was added. The mixture was extracted with ethyl acetate (2 x 100 mL) and the combined organic layers were washed with saturated aqueous NaCl (75 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (0-20% ethyl acetate in *n*-heptane) to give the desired product 19 (0.267 g, 10.267 g)0.550 mmol, 56%) and side product SI1 (0.080 g, 0.250 mmol, 25%) as colorless oils. Condition 2: To a solution of 32 (0.174 g, 0.330 mmol, 1.00 eq.) in THF/H2O (5:1, 8.0 mL/1.6 mL) $LiOH \cdot H_2O$ (0.028 g, 0.66 mmol, 2.00 eq.) was added. The reaction mixture stirred over night at room temperature. After the TLC showed a complete conversion the next day, saturated aqueous NaHCO3 (20 mL) was added. The mixture was extracted with ethyl acetate (2 x 30 mL) and the combined organic layers were washed with saturated aqueous NaCl (20 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (0–25% ethyl acetate in *n*-heptane) to give **19** (0.137 g, 0.280 mmol, 85%) as a colorless oil. ¹H-NMR (CDCl₃, 400 MHz): 7.60 (dd, 1H, J = 7.7, 1.7 Hz, aryl-H), 7.52 (dd, 1H, J = 8.1, 1.1 Hz, aryl-H), 7.39-7.33 (m, 1H, aryl-H), 7.16 (ddd, 1H, J = 8.9, 6.5, 1.8 Hz, aryl-H), 5.17 (d, 1H, J = 7.8 Hz, CH-OTIPS), 4.94 (m, 1H, Me₂C=CH), 3.80 (dd, 1H, J = 12.1, 6.5 Hz, CH₂-OH), 3.67 (dd, 1H, J = 12.2, 6.7 Hz, CH₂-OH), 3.25 (d, 1H, J = 7.9 Hz, epoxy-CH), 2.47 (dd, 1H, J = 14.8, 7.7 Hz, Me₂C=CH-CH₂), 2.15 (dd, 1H, J = 14.8, 7.2 Hz, Me₂C=CH- CH_2), 1.66 (t, 1H, J = 6.7 Hz, OH), 1.61 (s, 3H, E-CH₃), 1.50 (s, 3H, Z-CH₃), 1.07–0.92 (m, 21H, TIPS-H); ¹³C-NMR (CDCl₃, 100 MHz): 141.3 (Ar-C_q), 135.5 (C_qMe₂), 132.9 (Ar-C), 129.8 (Ar-C), 129.6 (Ar-C), 128.0 (Ar-C), 121.5 (Br-C_a), 117.9 (CH=CMe₂), 72.4 (C-OTIPS), 68.0 (epoxy-CH), 64.9 (epoxy-C_q), 63.3 (CH₂-OH), 32.0 (Me₂C=CH-CH₂), 25.8 (E-CH₃), 18.0 (Z-CH₃), 18.0/17.9/12.4 (TIPS-C); HRMS (ESI) m/z calcd. for C₂₄H₃₈BrO₂Si: (M+H-H₂O)⁺, 465.1819; found: 465.1819 (M+H-H₂O)⁺; $\mathbf{R}_{\mathbf{f}}$ (*n*-heptane/ethyl acetate 4:1): 0.42; **Specific rotation** $[\alpha]_D^{21.3} = -15.4$ (c = 0.97; CHCl₃).

[(2*R*,3*S*)-3-[(*S*)-(2-Bromophenyl)-triisopropylsilyloxy-methyl]-2-(3-methylbut-2-enyl)oxiran-2-yl]methanol (16). 16 (0.223 g, 0.460 mmol, 54%) was synthesized in analogous manner to 19 (condition 1) starting from 15 (0.612 g, 0.850 mmol). 16 and side product SI2 (0.103 g, 0.310 mmol, 37%) were obtained as colorless oils. ¹H-NMR (CDCl₃, 400 MHz): 7.63 (dd, 1H, J = 7.9, 1.7 Hz, aryl-H), 7.51 (dd, 1H, J = 8.1, 1.6 Hz, aryl-H), 7.36 (td, 1H, J = 7.6, 0.9 Hz, aryl-H), 7.15 (ddd, 1H, J =

54

55 56

57 58

1

2

3

4

5

6

2

3

4

5

6

7

8

9

53

54

55 56

57 58 59

60

7.9, 7.4, 1.7 Hz, aryl-*H*), 5.37 (d, 1H, *J* = 7.0 Hz, CH-OTIPS), 5.09 (m, 1H, Me₂C=CH), 4.03 (dd, 1H, J = 12.0, 5.2 Hz, CH₂-OH), 3.93 (dd, 1H, J = 12.0, 8.1 Hz, CH₂-OH), 3.10 (d, 1H, J = 6.8 Hz, epoxy-CH), 2.67 (dd, 1H, J = 14.6, 8.0 Hz, Me₂C=CH-CH₂), 2.06 (dd, 1H, J = 14.5, 6.8 Hz, Me₂C=CH-CH₂), 1.81 (dd, 1H, J = 7.9, 5.1 Hz, OH), 1.68 (s, 3H, E-CH₃), 1.61 (s, 3H, Z-CH₃), 1.03–0.95 (m, 21H, TIPS-H); ¹³C-NMR (CDCl₃, 100 MHz): 141.9 (Ar-C_q), 135.6 (C_qMe₂), 132.6 (Ar-C), 129.5 (Ar-C), 129.0 (Ar-C), 127.9 (Ar-C), 122.3 (Br- C_{a}), 118.1 (CH=CMe₂), 69.8 (C-OTIPS), 67.6 (epoxy-CH), 65.6 $(epoxy-C_{a}), 62.3 (CH_{2}-OH), 32.4 (Me_{2}C=CH-CH_{2}), 25.9 (E-$ 10 CH₃), 18.0 (Z-CH₃), 18.0/17.9/12.3 (TIPS-C); HRMS (ESI) 11 m/z calcd. for C₂₄H₃₈BrO₂Si: (M+H-H₂O)⁺, 465.1819; found: 465.1826 (M+H-H₂O)⁺; $\mathbf{R}_{\mathbf{f}}$ (*n*-heptane/ethyl acetate 4:1): 0.41; 12 Specific rotation $[\alpha]_D^{27.6} = +10.1$ (c = 0.20; CHCl₃). 13

[(2S,3R)-3-[(S)-(2-Bromophenyl)-triisopropylsilyloxy-me-14 thyl]-2-(3-methylbut-2-enyl)oxiran-2-yl]methanol (ent-19) 15 and [(2S,3R)-3-[(R)-(2-Bromophenyl)-triisopropylsilyloxy-16 methyl]-2-(3-methylbut-2-enyl)oxiran-2-yl]methanol (ent-17 16). Ent-19 (0.427 g, 0.880 mmol, 85%) and ent-16 (0.346 g, 18 0.720 mmol, 79%) were synthesized according to 19 (condition 19 2) starting from ent-32 (0.542 g, 1.03 mmol) and ent-28 (0.822 20 g, 1.47 mmol). The NMR data are identical to the ones reported 21 for 19 and 16. For ent-19: HRMS (ESI) m/z calcd. for 22 C₂₄H₃₈BrO₂Si: (M+H-H₂O)⁺, 465.1819; found: 465.1822 $(M+H-H_2O)^+$; **R**_f (*n*-heptane/ethyl acetate 4:1): 0.42; Specific 23 rotation $[\alpha]_{p}^{22.0} = +21.7$ (c = 0.97; CHCl₃). For *ent*-16: HRMS 24 (ESI) m/z calcd. for $C_{24}H_{39}BrO_3SiNa$: (M+Na)⁺, 505.1744; 25 found: 505.1752 (M+Na)⁺; $\mathbf{R}_{\mathbf{f}}$ (*n*-heptane/ethyl acetate 4:1): 26 0.41; Specific rotation $[\alpha]_D^{21.2} = -35.8$ (c = 1.17; CHCl₃). 27

(2S,3S)-3-[(R)-(2-Bromophenvl)-triisopropylsilyloxy-me-28 thyl]-2-(3-methylbut-2-enyl)oxirane-2-carbaldehyde (20). 29 Alcohol 19 (0.259 g, 0.540 mmol, 1.00 eq.) was dissolved in 30 DCM (10 mL) and Dess-Martin periodinane (15% in DCM, 31 2.24 mL, 1.07 mmol, 2.00 eq.) was added. After stirring for 4 h 32 at room temperature, the TLC showed a complete conversion of 33 the starting material. The reaction solution was filtered through a short silica column (100% DCM, 20 g silica) and was then 34 purified via flash column chromatography (0-5% ethyl acetate 35 in *n*-heptane) to give epoxy aldehyde **20** (0.200 g, 0.420 mmol, 36 77%) and recovered starting material 19 (0.019 g, 0.040 mmol, 37 7%) as colorless oils. ¹H-NMR (CDCl₃, 400 MHz): 9.55 (s, 1H, 38 CHO), 7.60 (dd, 1H, J = 7.8, 1.8 Hz, aryl-H), 7.50 (dd, 1H, J = 39 8.1, 1.2 Hz, aryl-H), 7.36 (td, 1H, J = 7.6, 1.1 Hz, aryl-H), 7.17 40 (ddd, 1H, *J* = 8.0, 7.4, 1.7 Hz, aryl-*H*), 5.38 (d, 1H, *J* = 6.8 Hz, 41 CH-OTIPS), 4.95 (m, 1H, Me₂C=CH), 3.46 (d, 1H, J = 6.6 Hz, 42 epoxy-CH), 2.50 (dd, 1H, J = 15.2, 7.4 Hz, Me₂C=CH-CH₂), 43 2.40 (dd, 1H, J = 15.3, 7.4 Hz, Me₂C=CH-CH₂), 1.63 (s, 3H, E-CH₃), 1.51 (s, 3H, Z-CH₃), 1.16–0.92 (m, 21H, TIPS-H); ¹³C-44 NMR (CDCl₃, 100 MHz): 198.9 (C=O), 140.2 (Ar-C_q), 136.2 45 (C_aMe₂), 132.8 (Ar-C), 129.9 (Ar-C), 129.5 (Ar-C), 127.9 (Ar-46 C), 121.4 (Br-C_q), 116.6 (CH=CMe₂), 71.2 (C-OTIPS), 68.1 47 (epoxy-CH), 67.4 (epoxy-C_q), 28.3 (Me₂C=CH-CH₂), 25.8 (E-48 CH₃), 18.0 (Z-CH₃), 18.0/17.9/12.3 (TIPS-C); HRMS (ESI) 49 m/z calcd. for C₂₄H₃₇BrO₃SiNa: (M+Na)⁺, 503.1588; found: 50 503.1582 (M+Na)⁺; **R**_f (*n*-heptane/ethyl acetate 4:1): 0.75; **Spe-**51 cific rotation $[\alpha]_D^{25.6} = -41.9$ (c = 0.93; CHCl₃). 52

(2S,3S)-3-[(S)-(2-Bromophenyl)-triisopropylsilyloxy-methyl]-2-(3-methylbut-2-enyl)oxirane-2-carbaldehyde (17). 17 (0.162 g, 0.340 mmol, 75%) was synthesized in analogous manner to 20 starting from 16 (0.218 g, 0.450 mmol). It was

obtained as colorless oil. Starting material 16 (0.021 g, 0.040 mmol, 8%) was also recovered. ¹H-NMR (CDCl₃, 400 MHz): 9.84 (s, 1H, CHO), 7.52 (dd, 1H, J = 8.0, 0.9 Hz, aryl-*H*), 7.41–7.32 (m, 2H, aryl-*H*), 7.17 (ddd, 1H, J = 8.0, 7.0, 2.0Hz, aryl-*H*), 5.64 (d, 1H, *J* = 2.9 Hz, C*H*-OTIPS), 4.98 (m, 1H, $Me_2C=CH$, 3.29 (d, 1H, J = 2.8 Hz, epoxy-CH), 2.54 (dd, 1H, J = 15.1, 7.5 Hz, Me₂C=CH-CH₂), 2.31 (dd, 1H, J = 15.2, 7.4Hz, Me₂C=CH-CH₂), 1.62 (s, 3H, *E*-CH₃), 1.43 (s, 3H, *Z*-CH₃), 1.12–0.92 (m, 21H, TIPS-*H*); ¹³C-NMR (CDCl₃, 100 MHz): 200.5 (C=O), 140.3 (Ar-C_q), 136.4 (C_qMe₂), 132.6 (Ar-C), 129.8 (Ar-C), 129.1 (Ar-C), 128.3 (Ar-C), 121.8 (Br-C_a), 116.7 (CH=CMe₂), 70.1 (C-OTIPS), 67.7 (epoxy-CH), 66.6 (epoxy- C_q), 29.2 (Me₂C=CH-CH₂), 25.8 (*E*-CH₃), 17.8 (*Z*-CH₃), 17.9/17.8/12.3 (TIPS-C); HRMS (ESI) m/z calcd. for $C_{24}H_{37}BrO_{3}SiNa:$ (M+Na)⁺, 503.1588; found: 503.1583 $(M+Na)^+$; **R**_f (*n*-heptane/ethyl acetate 4:1): 0.77; **Specific rota**tion $[\alpha]_{D}^{25.6} = +5.8$ (c = 0.87; CHCl₃).

(1aS,7R,7aS)-1a-(3-Methylbut-2-enyl)-7-triisopropylsi-

lyloxy-7,7a-dihydronaphtho[2,3-b]oxiren-2-one (22). Condition 1: Aldehyde 20 (0.141 g, 0.293 mmol, 1.00 eq.) was dissolved in toluene (15 mL). The solution was degassed with Argon for 15 min and Cs₂CO₃ (0.286 g, 0.878 mmol, 3.00 eq.) as well as PdCl₂(PPh₃)₂ (0.021 g, 0.029 mmol, 0.10 eq.) were added. The reaction mixture was refluxed for 5 h. As the TLC showed remaining starting material, further PdCl₂(PPh₃)₂ (0.10 eq.) was added. The reaction mixture was stirred overnight at 100 °C. After the TLC showed a complete conversion of the starting material the next day, the reaction solution was filtered through a short silica gel column (*n*-heptane/ ethyl acetate 10:1, 10 g silica) and was then purified via flash column chromatography (0-4% ethyl acetate in *n*-heptane) to give 22 (0.056 g, 0.139 mmol, 48%) as a yellowish oil. Product 22 was contaminated with approx. 20% inseparable isomerization product, which was characterized after deprotection to 23. The formation of further side products was observed. TIPS protected natural product hemitectol²¹ (0.005 g, 0.013 mmol, 4%) 24a was isolated and fully characterized. Condition 2: The halogen-lithium exchange was carried out in a moisture-free glassware under argon atmosphere. To a solution of nitrile 34 (0.053 g, 0.110 mmol, 1.00 eq.) in anhydrous THF (5 mL) prediluted n-BuLi solution (0.110 mmol, 1.00 eq.) was added at -100 °C.³⁰ The obtained yellow solution was stirred for 20 min at -100 °C and for 5 min without cooling bath. During this time, the reaction solution turned from yellow to orange. For hydrolysis of the intermediate imine, aqueous citric acid (10%, 15 mL) was added and the mixture was extracted with ethyl acetate (50 mL). The organic layer was separated, washed with saturated aqueous NaHCO₃ (15 mL) as well as with saturated aqueous NaCl (20 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (0-15% ethyl acetate in n-heptane) to give ketone 22 (0.041 g, 0.100 mmol, 92%) as colorless oil. ¹H-NMR (CDCl₃, 400 MHz): 7.92 (dd, 1H, J = 7.8, 1.2 Hz, aryl-H), 7.56 (td, 1H, J = 7.5, 1.4 Hz, aryl-H), 7.44 (td, 1H, J = 7.6, 1.1 Hz, aryl-H), 7.35 (d, br, 1H, J = 7.6 Hz, aryl-H), 5.37 (d, 1H, J = 2.4 Hz, CH-OTIPS), 5.16 (m, 1H, Me₂C=CH), 3.77 (d, 1H, J = 2.6 Hz, epoxy-CH), 3.02 (dd, 1H, J = 15.3, 7.8 Hz, Me₂C=CH- CH_2), 2.55 (dd, 1H, J = 15.3, 6.8 Hz, $Me_2C=CH-CH_2$), 1.72 (s, 3H, E-CH₃), 1.68 (s, 3H, Z-CH₃), 1.14–0.94 (m, 21H, TIPS-H); ¹³C-NMR (CDCl₃, 100 MHz): 195.3 (C=O), 140.0 (Ar-C₀), 135.8 (C_qMe₂), 133.6 (Ar-C), 130.5 (Ar-C_q-CO), 129.6 (Ar-C), 129.2 (Ar-*C*), 127.6 (Ar-*C*), 117.2 (CH=CMe₂), 68.2 (*C*-OTIPS), 60.5 (epoxy- C_q), 60.1 (epoxy-CH), 26.9 (Me₂C=CH-CH₂), 26.0 (*E*-CH₃), 18.1 (*Z*-CH₃), 18.2/18.1/12.7 (TIPS-*C*); **HRMS (ESI)** m/z calcd. for C₂₄H₃₇O₃Si: (M+H)⁺, 401.2506; found: 401.2505 (M+H)⁺; **R**_f (*n*-heptane/ethyl acetate 10:1): 0.44; **Specific rotation** $[\alpha]_D^{24.2} = -140.4$ (c = 0.71; CHCl₃).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 56

57 58 59

60

(2,2-Dimethylbenzo[h]chromen-6-yl)oxy-triisopropylsilane (24a). ¹H-NMR (CDCl₃, 400 MHz): 8.14 (m, 2H, *H*-5, *H*-8), 7.42 (m, 2H, *H*-6, *H*-7), 6.55 (s, 1H, *H*-3), 6.35 (d, 1H, *J* = 9.7 Hz, *H*-1'), 5.64 (d, 1H, *J* = 9.6 Hz, *H*-2'), 1.49 (s, 6H, *H*-4', *H*-5'), 1.44–1.31 (m, 3H, *H*-11), 1.18–1.11 (m, 18H, *H*-12); ¹³C-NMR (CDCl₃, 100 MHz): 145.5 (*C*-4), 142.2 (*C*-1), 130.0 (*C*-2'), 128.2 (*C*-9), 126.2 (*C*-10), 125.7 (*C*-6), 125.4 (*C*-7), 123.1 (*C*-1'), 122.8 (*C*-5), 121.9 (*C*-8), 115.1 (*C*-2), 110.2 (*C*-3), 76.3 (*C*-3'), 27.7 (*C*-4', *C*-5'), 18.3 (*C*-12), 13.2 (*C*-11); HRMS (ESI) m/z calcd. for C₂₄H₃₅O₂Si: (M+H)⁺, 383.2401; found: 383.2399 (M+H)⁺; **R**_f (*n*-heptane/ethyl acetate 10:1): 0.78.

(1aS,7S,7aS)-1a-(3-Methylbut-2-enyl)-7-triisopropylsilyloxy-7,7a-dihydronaphtho[2,3-b]oxiren-2-one (21). 21 (0.039 g, 0.100 mmol, 46%) was synthesized in analogous manner to 22 (condition 1) starting from 17 (0.100 g, 0.210 mmol). It was obtained as colorless oil and contaminated with inseparable isomerization product (approx. 16%), which was characterized after deprotection to 4. Formation of TIPS protected NP hemitectol 24a was also observed, but the compound was not isolated. ¹**H-NMR** (CDCl₃, 400 MHz): 7.86 (dd, 1H, J = 7.8, 1.2 Hz, aryl-H), 7.68 (d, br, 1H, J = 7.7 Hz, aryl-H), 7.62 (td, 1H, J = 7.5, 1.2 Hz, aryl-H), 7.43–7.35 (m, 1H, aryl-H), 5.31 (s, br, 1H, CH-OTIPS), 5.12 (m, 1H, Me₂C=CH), 3.77 (d, 1H, J = 1.6 Hz, epoxy-CH), 2.93 (dd, 1H, J = 15.3, 8.0 Hz, $Me_2C=CH-CH_2$), 2.62 (dd, 1H, J = 15.3, 6.9 Hz, $Me_2C=CH-CH_2$) CH₂), 1.73 (s, 3H, E-CH₃), 1.68 (s, 3H, Z-CH₃), 1.35–1.13 (m, 21H, TIPS-H); ¹³C-NMR (CDCl₃, 100 MHz): 195.2 (C=O), 140.4 (Ar-C_q), 136.3 (C_qMe₂), 134.0 (Ar-C), 129.3 (Ar-C_q-CO), 128.0 (Ar-C), 127.3 (Ar-C), 126.6 (Ar-C), 117.0 (CH=CMe₂), 67.8 (C-OTIPS), 61.8 (epoxy- C_q), 58.7 (epoxy-CH), 26.3 (Me₂C=CH-CH₂), 25.9 (E-CH₃), 18.4/18.3 (TIPS-C), 18.2 (Z-CH₃), 12.9 (TIPS-C); HRMS (ESI) m/z calcd. for C₂₄H₃₆O₃SiNa: (M+Na)⁺, 423.2326; found: 423.2330 (M+Na)⁺; R_f (*n*-heptane/ethyl acetate 10:1): 0.51; Specific rotation $[\alpha]_{D}^{25.8} = -80.9$ (c = 1.04; CHCl₃).

(1aR,7S,7aR)-1a-(3-Methylbut-2-enyl)-7-triisopropylsi-

lyloxy-7,7a-dihydronaphtho[2,3-b]oxiren-2-one (ent-22) and (1aR,7R,7aR)-1a-(3-Methylbut-2-enyl)-7-triisopropylsilyloxy-7,7a-dihydronaphtho[2,3-b]oxiren-2-one (ent-21). Ent-22 (0.129 g, 0.320 mmol, 95%) and ent-21 (0.053 g, 0.130 mmol, 80%) were synthesized according to 22 (condition 2) starting from ent-34 (0.162 g, 0.340 mmol) and ent-33 (0.079 g, 0.170 mmol). The NMR data are identical to the ones reported for 22 and 21. No side product formation was observed. For ent-22: HRMS (ESI) m/z calcd. for C₂₄H₃₇O₃Si: $(M+H)^+$, 401.2506; found: 401.2509 $(M+H)^+$; R_f (*n*-heptane/ethyl acetate 10:1): 0.44; Specific rotation $[\alpha]_D^{21.3} = +$ 138.5 (c = 0.61; CHCl₃). For *ent*-21: HRMS (ESI) m/z calcd. for C₂₄H₃₇O₃Si: (M+H)⁺, 401.2506; found: 401.2501 (M+H)⁺; $\mathbf{R}_{\mathbf{f}}$ (*n*-heptane/ethyl acetate 10:1): 0.51; Specific rotation $[\alpha]_{D}^{21.3} = +139.3 \text{ (c} = 1.14; \text{ CHCl}_{3}).$

(1aS,7R,7aS)-7-Hydroxy-1a-(3-methylbut-2-enyl)-7,7a-dihydronaphtho[2,3-b]oxiren-2-one (23). In a 50 mL falcon

tube TBAF in THF (1 M, 0.245 mL, 0.250 mmol, 1.20 eq.), followed by acetic acid glacial (0.012 mL, 0.200 mmol, 1.00 eq.) were added to a solution of 22 (0.082 g, 0.200 mmol, 1.00 eq.) in THF (7 mL). After 2 h reaction time, the TLC showed a complete conversion of the starting material. The reaction mixture was loaded on silica and filtered through a small silica column (n-heptane/ ethyl acetate 3:1, 10 g silica) and was then purified via flash column chromatography (0-40% ethyl acetate in nheptane) to give 23 (0.044 mg, 0.180 mmol, 89%) as a colorless oil. Material 22, which was obtained from condition 1, was contaminated with some isomerization product. After complete deprotection 23 (0.019 g, 0.080 mmol, 83%) was obtained (sum of collected fractions with different amount of SI3 after two times careful chromatography; in total the content of SI3 was estimated to be maximum 16% by analysis of the NMR spectra). An almost pure sample of 23 was obtained for full characterization. SI3 was isolated enriched in a mixture with product 23 (ratio SI3:23 approx. 2:1; analytical data see Supporting Information). ¹**H-NMR** (CDCl₃, 600 MHz): 7.94 (dd, 1H, J = 7.8, 1.1 Hz, aryl-*H*), 7.62 (td, 1H, *J* = 7.5, 1.3 Hz, aryl-*H*), 7.47 (td, 1H, J = 7.6, 1.3 Hz, aryl-H), 7.44 (dd, 1H, J = 7.6, 1.2 Hz, aryl-H), 5.24 (d, br, 1H, J = 3.9 Hz, CH-OH), 5.14 (m, 1H, $Me_2C=CH$, 3.83 (d, 1H, J = 2.1 Hz, epoxy-CH), 2.95 (dd, 1H, J = 15.5, 8.0 Hz, Me₂C=CH-CH₂), 2.64 (dd, 1H, J = 15.3, 6.8Hz, Me₂C=CH-CH₂), 2.04 (d, 6.5 Hz, OH), 1.73 (s, 3H, E-CH₃), 1.70 (s, 3H, Z-CH₃); ¹³C-NMR (CDCl₃, 100 MHz): 194.4 (C=O), 139.6 (Ar-C_q), 136.4 (C_qMe₂), 134.4 (Ar-C), 129.9 (Ar-C), 129.8 (Ar-Cq-CO), 129.7 (Ar-C), 127.8 (Ar-C), 116.7 (CH=CMe₂), 67.2 (C-OH), 60.6 (epoxy-C_q), 60.1 (epoxy-CH), 26.8 (Me₂C=CH-CH₂), 26.0 (E-CH₃), 18.2 (Z-CH₃); HRMS (ESI) m/z calcd. for $C_{15}H_{17}O_3$: (M+H)⁺, 245.1172; found: 245.1171 (M+H)⁺; Rf (n-heptane/ethyl acetate 2:1): 0.31; Chiral HPLC (Chiralpak IC; hexane:isopropyl alcohol 95:5): 23 (Rt = 8.3 min) : ent-23 (Rt = 9.2 min) 96.8 : 2.9 (94% ee); Specific rotation $[\alpha]_D^{24.7} = -193.6$ (c = 0.70; CHCl₃).

(1aS,7S,7aS)-7-Hydroxy-1a-(3-methylbut-2-enyl)-7,7a-dihydronaphtho[2,3-b]oxiren-2-one (4). 4 (0.021 g. 0.080 mmol, 87%) was synthesized in analogous manner to 23 starting from 21 (0.039 g, 0.100 mmol) which was only obtained from condition 1. It was obtained as colorless solid (sum of collected fractions with different amount of SI4 after two times careful chromatography; in total the content of SI4 was estimated to be maximum 12% by analysis of the NMR spectra). A sufficiently pure sample of 4 was obtained for full characterization. SI4 was isolated enriched in a mixture with product 4 (ratio SI4:4 approx. 2:1; analytical data see Supporting Information). In a 4 mL Vial, a small portion of 4 was dissolved in DCM (1 mL) and n-heptane (1.5 mL) was added. The system was left at room temperature for one night. A crystal was obtained for determination by single X-ray crystal diffraction (see Supporting Information for further details). ¹H-NMR (CDCl₃, 600 MHz): 7.92 (dd, 1H, J = 7.9, 1.0 Hz, aryl-H), 7.69 (m, 2H, aryl-H), 7.42 (m, 1H, aryl-H), 5.14-5.05 (m, 2H, Me₂C=CH, CH-OH), 3.86 (d, 1H, J = 2.2 Hz, epoxy-CH), 2.94 (dd, 1H, J = 15.4, 7.9 Hz, Me₂C=CH-CH₂), 2.62 (dd, 1H, J = 15.4, 7.0 Hz, Me₂C=CH-CH₂), 2.33 (d or s, br., 1H, J = 11.2 Hz, OH), 1.73 (s, 3H, E-CH₃), 1.68 (s, 3H, Z-CH₃); ¹³C-NMR (CDCl₃, 100 MHz): 194.0 (C=O), 140.0 (Ar- C_q), 136.4 (C_qMe₂), 134.4 (Ar-C), 129.1 (Ar-C_a-CO), 128.6 (Ar-C), 127.5 (Ar-C), 127.2 (Ar-C), 116.6 (CH=CMe₂), 66.4 (C-OH), 62.4 (epoxy-C_q), 59.4 (epoxy-CH), 26.7 (Me₂C=CH-CH₂), 26.0 (E-CH₃), 18.2 (Z-

2

3

4

53

54

55 56

57 58 59

60

*CH*₃); **HRMS (ESI)** m/z calcd. for C₁₅H₁₇O₃: (M+H)⁺, 245.1172; found: 245.1172 (M+H)⁺; **R**_f (*n*-heptane/ethyl acetate 2:1): 0.36; **Chiral HPLC** (Chiralpak IC; hexane:isopropyl alcohol 95:5): **4** (Rt = 12.4 min) : *ent*-**4** (Rt = 10.8 min) 97.0 : 3.0 (94% *ee*); **Specific rotation** $[\alpha]_D^{23.7} = -241.3$ (c = 1.18; CHCl₃).

5 (1aR,7S,7aR)-7-Hydroxy-1a-(3-methylbut-2-enyl)-7,7a-6 dihydronaphtho[2,3-b]oxiren-2-one (ent-23) and 7 (1aR,7R,7aR)-7-Hydroxy-1a-(3-methylbut-2-enyl)-7,7a-di-8 hydronaphtho[2,3-b]oxiren-2-one (ent -4). Ent-23 (0.023 g, 9 0.100 mmol, 93%) and ent-4 (0.027 g, 0.110 mmol, 79%) were 10 synthesized in analogous manner to 23 starting from ent-22 11 (0.041 g, 0.100 mmol) and *ent-21* (0.055 g, 0.140 mmol). The 12 NMR data are identical to the ones reported for 23 and 4. For ent-23: HRMS (ESI) m/z calcd. for $C_{15}H_{17}O_3$: (M+H)⁺, 13 245.1172; found: 245.1175 (M+H)⁺; R_f (n-heptane/ethyl ace-14 tate 2:1): 0.31; Chiral HPLC (Chiralpak IC; hexane:isopropyl 15 alcohol 95:5): ent-23 (Rt = 9.2 min) : 23 (Rt = 8.3 min) 96.2 : 16 3.8 (92% *ee*); Specific rotation $[\alpha]_D^{25.1} = +177.1$ (c = 1.10; 17 CHCl₃). For ent-4: HRMS (ESI) m/z calcd. for C₁₅H₁₇O₃: 18 $(M+H)^+$, 245.1172; found: 245.1172 $(M+H)^+$; **R**_f (*n*-hep-19 tane/ethyl acetate 2:1): 0.36.; Chiral HPLC (Chiralpak IC; 20 hexane:isopropyl alcohol 95:5): ent-4 (Rt = 10.8 min) : 4 (Rt = 21 12.4 min) 96.3 : 3.7 (93% *ee*); Specific rotation $[\alpha]_D^{25.1} = +$ 22 218.8 (c = 1.26; CHCl₃).

23 [(S)-(2-Bromophenyl)-[(2R,3S)-3-[[tert-butyl(diphenyl)si-24 lyl]oxymethyl]-3-(3-methylbut-2-enyl)oxiran-2-yl]methyl] acetate (ent-29). To a solution of alcohol ent-14 (0.900 g. 25 1.59 mmol, 1.00 eq.) in anhydrous DCM (23 mL) anhydrous 26 pyridine (0.385 mL, 4.77 mmol, 3.00 eq.), acetic anhydride 27 (0.451 mL, 4.77 mmol, 3.00 eq.) and 4-dimethylaminopyridine 28 (0.019 g, 0.160 mmol, 0.10 eq.) were added. The reaction mix-29 ture was stirred for 2 h until the TLC showed complete conver-30 sion. Toluene (20 mL) was added and the reaction mixture was 31 concentrated in vacuo. The crude product was purified by flash 32 column chromatography (0-30% ethyl acetate in *n*-heptane) to 33 give ent-29 (0.964 g, 1.59 mmol, quant.) as a colorless oil. ¹H-NMR (CDCl₃, 400 MHz): 7.68–7.57 (m, 4H, aryl-H), 7.49 (dd, 34 1H, J = 8.0, 1.1 Hz, Br-aryl-H), 7.46–7.32 (m, 7H, aryl-H, Br-35 aryl-H), 7.28 (td, 1H, J = 4.4, 1.1 Hz, Br-aryl-H), 7.14 (td, 1H, 36 J = 7.8, 1.7 Hz, Br-aryl-H), 5.87 (d, 1H, J = 7.9 Hz, CH-OAc), 37 4.92 (m, 1H, Me₂C=CH), 3.81 (d, 1H, J = 16.8 Hz, TBDPSO-38 CH_2), 3.77 (d, 1H, J = 16.8 Hz, TBDPSO- CH_2), 3.34 (d, 1H, J39 = 7.9 Hz, epoxy-CH), 2.70 (dd, 1H, J = 14.9, 7.9 Hz, 40 Me₂C=CH-CH₂), 2.24 (dd, 1H, J = 15.0, 6.8 Hz, Me₂C=CH-41 CH₂), 2.03 (s, 3H, CO-CH₃), 1.63 (s, 3H, E-CH₃), 1.53 (s, 3H, 42 Z-CH₃), 1.04 (s, 9H, ^{*t*}Bu-CH₃); ¹³C-NMR (CDCl₃, 100 MHz): 43 169.5 (C=O), 137.0 (Br-Ar-Cq), 135.9/135.8 (Ar-C), 135.4 44 (C_qMe₂), 133.5 (Br-Ar-C), 133.5/133.1 (Ar-C_q), 130.1 (Br-Ar-C), 129.9/129.8 (Ar-C), 129.2 (Br-Ar-C), 127.8/127.8 (Ar-C), 45 127.7 (Br-Ar-C), 123.0 (Br-C_q), 117.9 (CH=CMe₂), 73.5 (C-46 OAc), 64.9 (TBDPSO-CH₂), 64.8 (epoxy-C_q), 62.5 (epoxy-47 CH), 30.9 (Me₂C=CH-CH₂), 27.0 ('Bu-CH₃), 25.9 (E-CH₃), 48 21.0 (CO-CH₃), 19.4 ('Bu-C_q), 18.1 (Z-CH₃); HRMS (ESI) m/z 49 calcd. for C₃₃H₄₀BrO₄Si: (M+H)⁺, 607.1874; found: 607.1861 50 $(M+H)^+$; **R**_f (*n*-heptane/ethyl acetate 4:1): 0.37; Specific rota-51 tion $[\alpha]_{D}^{18.7} = -8.4$ (c = 1.19; CHCl₃). 52

[(*R*)-(2-Bromophenyl)-[(2*R*,3*S*)-3-[[*tert*-butyl(diphenyl)silyl]oxymethyl]-3-(3-methylbut-2-enyl)oxiran-2-yl]methyl] acetate (*ent*-25). *Ent*-25 (0.762 g, 1.25 mmol, 93%) was synthesized in analogous manner to *ent*-29 starting from *ent*-13

(0.766 g, 1.35 mmol). It was obtained as colorless oil. ¹H-NMR (CDCl₃, 400 MHz): 7.73–7.65 (m, 4H, aryl-H), 7.51 (dd, 1H, J = 8.1, 1.0 Hz, Br-aryl-H), 7.46–7.33 (m, 7H, aryl-H, Br-aryl-*H*), 7.30 (td, 1H, *J* = 7.5, 1.2 Hz, Br-aryl-*H*), 7.15 (td, 1H, *J* = 7.7, 1.7 Hz, Br-aryl-H), 5.95 (d, 1H, J = 7.6 Hz, CH-OAc), 5.06 (m, 1H, Me₂C=CH), 4.01 (d, 1H, J = 11.2 Hz, TBDPSO-CH₂), 3.88 (d, 1H, J = 11.4 Hz, TBDPSO-CH₂), 3.20 (d, 1H, J = 7.7Hz, epoxy-CH), 2.71 (dd, 1H, J = 15.0, 7.6 Hz, Me₂C=CH- CH_2), 2.37 (dd, 1H, J = 15.0, 7.0 Hz, $Me_2C=CH-CH_2$), 1.98 (s, 3H, CO-CH₃), 1.69 (s, 3H, E-CH₃), 1.61 (s, 3H, Z-CH₃), 1.08 (s, 9H, 'Bu-CH₃); ¹³C-NMR (CDCl₃, 100 MHz): 169.1 (C=O), 137.4 $(Br-Ar-C_{a}),$ 135.9/135.8 (Ar-*C*), 135.3(CqMe₂), 133.4/133.2 (Ar-Cq), 133.2 (Br-Ar-C), 129.9 (Br-Ar-C), 129.8 (Ar-C), 128.8 (Br-Ar-C), 127.9/127.8 (Ar-C), 127.8 (Br-Ar-C), 123.7 (Br-C_q), 118.1 (CH=CMe₂), 71.3 (C-OAc), $65.3 \text{ (epoxy-}C_0), 64.1 \text{ (TBDPSO-}CH_2), 62.4 \text{ (epoxy-}CH), 31.3$ (Me₂C=CH-CH₂), 27.0 ('Bu-CH₃), 25.9 (E-CH₃), 20.9 (CO-*C*H₃), 19.4 (^{*t*}Bu-*C*_q), 18.2 (*Z*-*C*H₃); **HRMS (ESI)** m/z calcd. for C₃₃H₄₀BrO₄Si: (M+H)⁺, 607.1874; found: 607.1879 (M+H)⁺; **R**_f (*n*-heptane/ethyl acetate 4:1): 0.40; Specific rotation $[\alpha]_D^{18.7} =$ $+ 10.0 (c = 1.20; CHCl_3).$

[(2S,3R)-3-[(S)-(2-Bromophenyl)-hydroxy-methyl]-2-(3methylbut-2-envl)oxiran-2-vl]methyl acetate (ent-31). In a 50 mL falcon tube, acetic acid glacial (0.124 mL, 2.16 mmol, 1.40 eq.) followed by TBAF in THF (1 M, 1.85 mL, 1.85 mmol, 1.20 eq.) were added to a solution of TBDPS-protected ent-29 (0.939 g, 1.55 mmol, 1.00 eq.) in THF (19 mL). After 4 h, a second portion of acetic acid (0.60 eq.) and TBAF (0.50 eq.) were added to complete conversion which was monitored by TLC. The reaction mixture was loaded on silica and was then flash chromatographed (n-heptane / ethyl acetate 3:1) to give a mixture of ent-30 and ent-31. To complete the acetate migration, the product mixture was dissolved in anhydrous DCM (25 mL) and DBU (0.204 mL, 1.36 mmol, 0.90 eq.) was added. After stirring at room temperature for 2.5 h, the LC-MS showed a nearly complete migration (a stagnation of migration with remaining 5-10% of 30 was observed). Saturated aqueous NH₄Cl (30 mL) was added. The mixture was extracted with ethyl acetate (2 x 75 mL) and the combined organic layers were washed with saturated aqueous NaCl (75 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to yield ent-31 (0.534 g, 1.45 mmol, 94% over two steps)²² as colorless oil, which was pure enough to be used in the next stage without further purification. ¹H-NMR (CDCl₃, 400 MHz): 7.60 (dd, 1H, J = 7.7, 1.6 Hz, aryl-H), 7.57 (dd, 1H, J = 8.0, 1.0 Hz, aryl-H), 7.38 (td, 1H, J = 7.7, 1.1 Hz, aryl-H), 7.20 (td, 1H, J = 7.7, 1.6 Hz, aryl-H), 5.08-5.01 (m, 2H, CH-OH, Me₂C=CH), 4.35 (d, 1H, J = 12.0 Hz, CH_2 -OAc), 4.28 (d, 1H, J = 12.1 Hz, CH_2 -OH), 3.19 (d, 1H, J = 6.4 Hz, epoxy-CH), 2.73 (d, br, 1H, J = 3.4 Hz, OH), 2.56 (dd, 1H, J = 14.9, 8.1 Hz, Me₂C=CH-CH₂), 2.21 (dd, 1H, J = 14.8, 7.1 Hz, Me₂C=CH-CH₂), 2.06 (s, 3H, CO-CH₃), 1.69 (s, 3H, *E*-CH₃), 1.57 (s, 3H, *Z*-CH₃); ¹³C-NMR (CDCl₃, 100 MHz): 170.7 (C=O), 140.2 (Ar-C₉), 136.3 (C_aMe₂), 133.1 (Ar-C), 129.9 (Ar-C), 128.3 (Ar-C), 128.1 (Ar-C), 122.3 (Br-C_q), 117.0 (CH=CMe₂), 69.8 (C-OH), 65.0 (epoxy-CH), 64.3 (CH₂-OAc), 63.2 (epoxy- C_q), 32.0 (Me₂C=CH-CH₂), 25.9 (E-CH₃), 20.9 (CO-CH₃), 18.0 (Z-CH₃); **HRMS** (ESI) m/z calcd. for $C_{17}H_{21}BrO_4Na$: $(M+Na)^+$, 391.0515; found: 391.0516 (M+Na)+; Rf (n-heptane/ethyl acetate 2:1): 0.40; Specific rotation $[\alpha]_D^{18.7} = +$ 7.3 (c = 0.82; CHCl₃).

[(2S,3R)-3-[(R)-(2-Bromophenyl)-hydroxy-methyl]-2-(3methylbut-2-enyl)oxiran-2-yl]methyl acetate (ent-27). Ent-27 (0.411 g, 1.11 mmol, 91% over two steps)²² was synthesized in analogous manner to ent-31 starting from ent-25 (0.423 g, 1.14 mmol). It was obtained as colorless oil. ¹H-NMR (CDCl₃, 400 MHz): 7.60 (dd, 1H, J = 7.8, 1.7 Hz, aryl-H), 7.56 (dd, 1H, J = 8.1, 1.1 Hz, aryl-H), 7.37 (td, 1H, J = 7.5, 1.1 Hz, aryl-H), 7.18 (td, 1H, J = 7.6, 1.7 Hz, aryl-H), 5.22 (dd, 1H, J = 7.6, 1.7 Hz, CH-OH), 5.09 (m, 1H, Me₂C=CH), 4.40 (d, 1H, J = 12.1Hz, CH₂-OAc), 4.35 (d, 1H, J = 12.1 Hz, CH₂-OH), 3.21 (d, 1H, J = 7.6 Hz, epoxy-CH), 3.19–3.14 (m, 1H, OH), 2.36 (d, br, 2H, J = 7.6 Hz, Me₂C=CH-CH₂), 2.13 (s, 3H, CO-CH₃), 1.70 (s, 3H, E-CH₃), 1.60 (s, 3H, Z-CH₃); ¹³C-NMR (CDCl₃, 100 MHz): 171.5 (C=O), 139.9 (Ar-Cq), 136.0 (CqMe2), 133.1 (Ar-C), 129.7 (Ar-C), 128.3 (Ar-C), 128.0 (Ar-C), 122.9 (Br- C_0 , 117.3 (CH=CMe₂), 69.8 (C-OH), 65.2 (epoxy-CH), 63.5 (CH₂-OAc), 62.0 (epoxy-C_q), 32.2 (Me₂C=CH-CH₂), 26.0 (E-CH₃), 21.0 (CO-CH₃), 18.1 (Z-CH₃); HRMS (ESI) m/z calcd. for C₁₇H₂₁BrO₄Na: (M+Na)⁺, 391.0515; found: 391.0517 $(M+Na)^+$; **R**_f (*n*-heptane/ethyl acetate 2:1): 0.43; Specific rotation $[\alpha]_{D}^{18.7} = -16.0$ (c = 1.03; CHCl₃).

19 [(2S,3R)-3-[(S)-(2-Bromophenyl)-triisopropylsilyloxy-me-20 thyl]-2-(3-methylbut-2-enyl)oxiran-2-yl]methyl acetate 21 (ent-32). 2,6-Lutidine (1.00 mL, 8.56 mmol, 6.00 eq.) followed 22 by TIPS triflate (1.15 mL, 4.28 mmol, 3.00 eq.)were added to a solution of alcohol ent-31 (0.527 g, 1.43 mmol, 1.00 eq.) in an-23 hydrous DCM (20 mL) at 0 °C. The reaction mixture was al-24 lowed to stir at room temperature for 2 h. After this time, the 25 TLC showed remaining starting material. Therefore a second 26 portion of 2,6-lutidine (2.00 eq.) and TIPS triflate (1.00 eq.) 27 were added at 0°C. After stirring at room temperature for addi-28 tional 3 h, the TLC showed a complete conversion. Saturated 29 aqueous NH₄Cl (30 mL) was added. The mixture was extracted 30 with ethyl acetate (2 x 100 mL) and the combined organic layers 31 were washed with saturated aqueous NaCl (70 mL), dried over 32 MgSO₄, filtered, and concentrated under reduced pressure. The 33 crude product was prepurified by flash column chromatography (0-20% ethyl acetate in *n*-heptane) and finally purified by flash 34 column chromatography (0-20% ethyl acetate in *n*-heptane) to 35 give ent-32 (0.555 g, 1.06 mmol, 74%) as a colorless solid. In a 36 4 mL Vial, a small portion of ent-32 was dissolved in DCM (1 37 mL) and *n*-heptane (1.5 mL) was added. The system was left at 38 room temperature for one night. A crystal was obtained for de-39 termination by single X-ray crystal diffraction (see Supporting 40 Information for further details). ¹**H-NMR** (CDCl₃, 400 MHz): 41 7.58 (dd, 1H, J = 7.8, 1.7 Hz, aryl-H), 7.51 (dd, 1H, J = 8.1, 1.1 42 Hz, aryl-*H*), 7.36 (td, 1H, *J* = 7.5, 1.0 Hz, aryl-*H*), 7.16 (td, 1H, 43 *J* = 7.7, 1.7 Hz, aryl-*H*), 5.06 (d, 1H, *J* = 7.7 Hz, CH-OTIPS), 4.90 (m, 1H, Me₂C=CH), 4.23 (d, 1H, J = 11.9 Hz, CH₂-OAc), 44 4.12 (d, 1H, J = 11.9 Hz, CH_2 -OAc), 3.24 (d, 1H, J = 7.7 Hz, 45 epoxy-CH), 2.42 (dd, 1H, J = 14.9, 7.8 Hz, Me₂C=CH-CH₂), 46 2.10 (dd, 1H, J = 14.8, 7.2 Hz, Me₂C=CH-CH₂), 2.01 (s, 3H, 47 CO-CH₃), 1.61 (s, 3H, E-CH₃), 1.47 (s, 3H, Z-CH₃), 1.16-0.91 48 (m, 21H, TIPS-H); ¹³C-NMR (CDCl₃, 100 MHz): 170.8 (C=O), 49 141.4 (Ar-C_q), 135.6 (C_qMe₂), 132.9 (Ar-C), 129.8 (Ar-C), 50 129.6 (Ar-C), 127.9 (Ar-C), 121.8 (Br-C_q), 117.5 (CH=CMe₂), 51 72.5 (CH-OTIPS), 67.6 (epoxy-CH), 65.3 (CH₂-OAc), 62.2 52 (epoxy-C_g), 32.1 (Me₂C=CH-CH₂), 25.8 (E-CH₃), 20.9 (CO-53 CH₃), 17.9 (Z-CH₃), 18.0/17.8/12.4 (TIPS-C); HRMS (ESI) m/z calcd. for C₂₆H₄₁BrO₄SiNa: (M+Na)⁺, 547.1850; found: 54

547.1853 (M+Na)⁺; **R**_f (*n*-heptane/ethyl acetate 4:1): 0.52; **Specific rotation** $[\alpha]_D^{21.6} = +15.8$ (c = 0.95; CHCl₃).

[(2S,3R)-3-[(R)-(2-Bromophenyl)-triisopropylsilyloxymethyl]-2-(3-methylbut-2-enyl)oxiran-2-yl]methyl acetate (ent-28). Ent-28 (0.484 g, 0.920 mmol, 74%) was synthesized in analogous manner to ent-32 starting from ent-27 (0.404 g, 1.09 mmol). It was obtained as colorless oil. ¹H-NMR (CDCl₃, 400 MHz): 7.59 (dd, 1H, J = 7.8, 1.6 Hz, aryl-H), 7.50 (dd, 1H, J = 8.0, 1.1 Hz, aryl-H), 7.35 (td, 1H, J = 7.5, 1.0 Hz, aryl-H), 7.15 (td, 1H, J = 7.7, 1.7 Hz, aryl-H), 5.38 (d, 1H, J = 5.9 Hz, CH-OTIPS), 4.99 (m, 1H, Me₂C=CH), 4.53 (d, 1H, J = 11.8Hz, CH_2 -OAc), 4.46 (d, 1H, J = 11.8 Hz, CH_2 -OAc), 3.10 (d, 1H, J = 5.9 Hz, epoxy-CH), 2.57 (dd, 1H, J = 14.6, 8.1 Hz, $Me_2C=CH-CH_2$, 2.12 (s, 3H, CO-CH₃), 2.06 (dd, 1H, J = 14.6, 7.1 Hz, Me₂C=CH-CH₂), 1.64 (s, 3H, E-CH₃), 1.52 (s, 3H, Z-CH₃), 1.12–0.94 (m, 21H, TIPS-H); ¹³C-NMR (CDCl₃, 100 MHz): 170.9 (C=O), 141.4 (Ar-C_q), 135.7 (C_qMe₂), 132.6 (Ar-C), 129.5 (Ar-C), 128.9 (Ar-C), 127.9 (Ar-C), 122.1 (Br-C_q), 117.7 (CH=CMe2), 69.8 (CH-OTIPS), 65.9 (epoxy-CH), 64.1 (CH₂-OAc), 62.7 (epoxy-C_q), 32.1 (Me₂C=CH-CH₂), 25.9 (E-CH₃), 21.0 (CO-CH₃), 17.9 (Z-CH₃), 17.9/17.9/12.3 (TIPS-C); **HRMS (ESI)** m/z calcd. for $C_{26}H_{41}BrO_4SiNa$: (M+Na)⁺, 547.1850; found: 547.1832 (M+Na)⁺; **R**f (*n*-heptane/ethyl acetate 4:1): 0.53; Specific rotation $[\alpha]_D^{21.6} = -21.0$ (c = 1.38; CHCl₃).

(2S,3R)-3-[(S)-(2-Bromophenyl)-triisopropylsilyloxy-methyl]-2-(3-methylbut-2-enyl)oxirane-2-carbonitrile (ent-34). Alcohol ent-19 (0.409 g, 0.850 mmol, 1.00 eq.) was dissolved in MeCN/H₂O 9:1 (30 mL/3.3 mL) and NH₄OAc (0.261 g, 3.39 mmol, 4.00 eq.), BIAB (0.818 g, 2.54 mmol, 3.00 eq.), and TEMPO (0.027 g, 0.170 mmol, 0.20 eq.) were added. The reaction solution was allowed to stir 8.5 h at room temperature, until the TLC and the LC-MS showed a complete conversion to the nitrile (n.b. the starting material is first converted to the intermediate aldehyde and then converted to the nitrile in a two-step fashion). Saturated aqueous Na₂SO₃ (30 mL) was added. The mixture was extracted with ethyl acetate (100 mL) and the separated organic layer was washed with saturated aqueous NaCl (30 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified via flash column chromatography (0-5% ethyl acetate in *n*-heptane) to give nitrile ent-34 (0.277 g, 0.580 mmol, 68%) as a colorless solid. ¹**H-NMR** (CDCl₃, 400 MHz): 7.61 (dd, 1H, J = 7.8, 1.7 Hz, aryl-H), 7.57 (dd, 1H, J = 8.0, 1.0 Hz, aryl-H), 7.34 (td, 1H, J = 7.5, 1.0 Hz, aryl-H), 7.20 (td, 1H, J = 7.7, 1.7 Hz, aryl-H), 5.19 (d, 1H, *J* = 7.6 Hz, *CH*-OTIPS), 5.04 (m, 1H, Me₂C=CH), 3.39 (d, 1H, J = 7.6 Hz, epoxy-CH), 2.50 (dd, 1H, J = 14.9, 7.6 Hz, Me₂C=CH-CH₂), 2.41 (dd, 1H, J = 15.0, 7.4 Hz, Me₂C=CH-CH₂), 1.69 (s, 3H, E-CH₃), 1.54 (s, 3H, Z-CH₃), 1.18–0.94 (m, 21H, TIPS-*H*); ¹³C-NMR (CDCl₃, 100 MHz): 139.6 (Ar-C_q), 138.7 (C_qMe₂), 133.4 (Ar-C), 130.2 (Ar-C), 130.0 (Ar-C), 127.8 (Ar-C), 122.0 (Br-C_q), 117.5 (CN), 114.6 (CH=CMe₂), 73.6 (CH-OTIPS), 65.9 (epoxy-CH), 53.8 (epoxy-C_q), 33.1 (Me₂C=CH-CH₂), 25.9 (*E*-CH₃), 18.2 (*Z*-CH₃), 18.0/17.9/12.4 (TIPS-C); HRMS (ESI) m/z calcd. for C₂₄H₃₇BrNO₂Si: (M+H)⁺, 478.1771; found: 478.1778 (M+H)⁺; $\mathbf{R}_{\mathbf{f}}$ (*n*-heptane/ethyl acetate 10:1): 0.52; Specific rotation $[\alpha]_D^{21.7} = +14.6 \text{ (c} = 1.17; \text{ CHCl}_3\text{)}.$

(2*S*,3*R*)-3-[(*R*)-(2-Bromophenyl)-triisopropylsilyloxy-methyl]-2-(3-methylbut-2-enyl)oxirane-2-carbonitrile (*ent*-33).

59 60

55 56

57 58

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

2

3

4

5

6

7

8

9

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 56

57 58 59

60

Ent-33 (0.201 g, 0.420 mmol, 63%) was synthesized in analogous manner to ent-24 starting from ent-16 (0.322 g, 0.670 mmol). It was obtained as a colorless oil. ¹H-NMR (CDCl₃, 400 MHz): 7.73 (dd, 1H, J = 7.8, 1.3 Hz, aryl-H), 7.54 (dd, 1H, J = 8.0, 1.0 Hz, aryl-H), 7.39 (td, 1H, J = 7.6, 1.0 Hz, aryl-H), 7.19 (td, 1H, J = 7.7, 1.7 Hz, aryl-H), 5.50 (d, 1H, J = 5.5 Hz, CH-OTIPS), 5.07 (m, 1H, Me₂C=CH), 3.18 (d, 1H, J =5.4 Hz, epoxy-CH), 2.58 (dd, 1H, J = 14.9, 7.8 Hz, Me₂C=CH- CH_2), 2.39 (dd, 1H, J = 15.0, 7.3 Hz, $Me_2C=CH-CH_2$), 1.70 (s, 3H, E-CH₃), 1.57 (s, 3H, Z-CH₃), 1.20–0.98 (m, 21H, TIPS-H); ¹³C-NMR (CDCl₃, 100 MHz): 140.2 (Ar- C_{q}), 138.7 (C_{q} Me₂), 10 132.8 (Ar-C), 129.9 (Ar-C), 129.1 (Ar-C), 128.0 (Ar-C), 122.2 11 (Br-C_q), 117.4 (CN), 114.8 (CH=CMe₂), 70.2 (CH-OTIPS), 65.5 (epoxy-CH), 53.0 (epoxy- C_q), 33.3 (Me₂C=CH-CH₂), 25.9 12 (E-CH₃), 18.1 (Z-CH₃), 18.0/17.9/12.3 (TIPS-C); HRMS (ESI) 13 m/z calcd. for C₂₄H₃₇BrNO₂Si: (M+H)⁺, 478.1771; found: 14 478.1772 (M+H)⁺; **R**_f (*n*-heptane/ethyl acetate 4:1): 0.64; **Spe-**15 cific rotation $[\alpha]_D^{21.4} = +4.6$ (c = 0.88; CHCl₃). 16

General procedure for a Mitsunobu inversion.

Alcohol 13 (0.206 g, 0.370 mmol, 1.00 eq.) was dissolved in anhydrous THF (8 mL). PPh₃ (0.143 g, 0.550 mmol, 1.50 eq.) and HOAc (0.063 mL, 1.09 mmol, 3.00 eq.) were added. Then DIAD (0.107 mL, 0.550 mmol, 1.50 eq.) was added at 0 °C. The reaction solution was allowed to stir at room temperature. Every 1-2 h were added further PPh₃ (1.5 eq.), HOAc (3.00 eq.) and DIAD (1.50 eq.) at 0 °C until the LC-MS showed a complete conversion (n.b. reaction control by TLC is not possible because the starting material and the product showed the same R_f value). In total 6 eq. of DIAD had to be added for a complete conversion. The reaction mixture was loaded on silica and was then purified via flash column chromatography (0-20% ethyl acetate in *n*-heptane) to give **29** (0.154 g, 0.25 mmol, 70%) as colorless oil. All analytical data matched with the ones of 29 described in the paragraph "Resynthesis of Avicennone C".

[(S)-(2-Bromophenyl)-[(2S,3R)-3-[[tert-butyl(diphenyl)silyl]oxymethyl]-3-(3-methylbut-2-enyl)oxiran-2-yl]methyl] acetate (25). The Mitsunobu reaction of 14 (0.166 g, 0.290 mmol, 1.00 eq.) resulted in a mixture of 25 (0.020 g, 0.030 mmol, 11%), 29 (0.026 g, 0.040 mmol, 15%) and side products SI5 (0.051 g, 0.080 mmol, 26%) as well as SI6 (0.028 g, 0.090 mmol, 32%). For both side products (SI5 and SI6) NMR spectra indicated formation of only one specific diastereomer each. However, from analysis of the 2D NMR data it was not possible to unambiguously determine the stereochemistry. For analytical data of 29 see aforementioned synthetic procedure of 29. The NMR data of 25 are identical to the ones reported for ent-25. **HRMS (ESI)** m/z calcd. for C₃₃H₄₀BrO₄Si: (M+H)⁺, 607.1874; found: 607.1879 (M+H)⁺; $\mathbf{R}_{\mathbf{f}}$ (*n*-heptane/ethyl acetate 4:1): 0.40; Specific rotation $[\alpha]_D^{24.7} = -8.7$ (c = 0.97; CHCl₃).

Resynthesis of Avicennone C under improved conditions. [(R)-(2-Bromophenyl)-[(2S,3R)-3-[[tert-butyl(diphenyl)silyl]oxymethyl]-3-(3-methylbut-2-enyl)oxiran-2-yl]methyl] acetate (29). 29 (0.210 g, 0.350 mmol, 97%) was synthesized in analogous manner to ent-29 starting from 14 (0.201 g, 0.360 mmol). The NMR data are identical to the ones reported for ent-29. HRMS (ESI) m/z calcd. for C₃₃H₄₀BrO₄Si: (M+H)⁺, 607.1874; found: 607.1880 (M+H)+; Rf (n-heptane/ethyl acetate 4:1): 0.37; Specific rotation $[\alpha]_D^{22.3} = +6.7$ (c = 0.91; CHCl₃).

[(2R,3S)-3-[(R)-(2-Bromophenyl)-hydroxy-methyl]-2-(3methylbut-2-enyl)oxiran-2-yl]methyl acetate (31). 31 (0.185

g, 0.500 mmol, 98% over two steps)²² was synthesized in analogous manner to ent-31 starting from 29 (0.187 g, 0.510 mmol). The NMR data are identical to the ones reported for ent-31. **HRMS** (ESI) m/z calcd. for $C_{17}H_{21}BrO_4Na$: (M+Na)⁺, 391.0515; found: 391.0520 (M+Na)⁺; Rf (n-heptane/ethyl acetate 2:1): 0.40; Specific rotation $[\alpha]_D^{26.6} = -10.9$ (c = 0.69; CHCl₃).

[(2R,3S)-3-[(R)-(2-Bromophenyl)-triisopropylsilyloxy-

methyl]-2-(3-methylbut-2-enyl)oxiran-2-yl]methyl acetate (32). 32 (0.174 g, 0.330 mmol, 66%) was synthesized in analogous manner to *ent-32* starting from **31** (0.185 g, 0.500 mmol). The NMR data are identical to the ones reported for ent-32. **HRMS** (ESI) m/z calcd. for $C_{26}H_{41}BrO_4SiNa$: (M+Na)⁺, 547.1850; found: 547.1849 (M+Na)⁺; R_f (n-heptane/ethyl acetate 2:1): 0.67; Specific rotation $[\alpha]_{D}^{21.6} = -20.8$ (c = 0.48; CHCl₃).

(2R,3S)-3-[(R)-(2-Bromophenyl)-triisopropylsilyloxy-methyl]-2-(3-methylbut-2-enyl)oxirane-2-carbonitrile (34). 34 (0.106 g, 0.220 mmol, 69%) was synthesized in analogous manner to ent-34 starting from 19 (0.157 g, 0.320 mmol). The NMR data are identical to the ones reported for ent-34. HRMS (ESI) m/z calcd. for C₂₄H₃₇BrNO₂Si: (M+H)⁺, 478.1771; found: $478.1768 (M+H)^+$: **R**_f (*n*-heptane/ethyl acetate 10:1): 0.52: **Spe**cific rotation $[\alpha]_{D}^{23.1} = -11.0$ (c = 1.18; CHCl₃).

(1aS,7R,7aS)-1a-(3-Methylbut-2-enyl)-7-triisopropylsilyloxy-7,7a-dihydronaphtho[2,3-b]oxiren-2-one (22). See aforementioned synthetic procedure for 22 (conditions 2).

(1aS,7R,7aS)-7-Hydroxy-1a-(3-methylbut-2-enyl)-7,7a-dihydronaphtho[2,3-b]oxiren-2-one (23). See aforementioned synthetic procedure for 23.

[(1aS,7S,7aS)-1a-(3-methylbut-2-enyl)-2-oxo-7,7a-dihydronaphtho[2,3-b]oxiren-7-yl] acetate (35). Alcohol 23 (0.044 g, 0.180 mmol, 1.00 eq.) was dissolved in anhydrous THF (10 mL). PPh₃ (0.142 g, 0.540 mmol, 3.00 eq.) and HOAc (0.062 mL, 1.09 mmol, 6.00 eq.) were added. Then DIAD (0.107 mL, 0.54 mmol, 3.00 eq.) was added at 0 °C. The reaction solution was allowed to stir at room temperature. The TLC showed a complete conversion after 1 h reaction time. The reaction mixture was loaded on silica and purified via flash column chromatography (0-40% ethyl acetate in *n*-heptane) to give **35** (0.046 g, 0.16 mmol, 90%) as colorless oil. ¹H-NMR (CDCl₃, 400 MHz): 7.96 (dd, 1H, J = 7.8, 1.2 Hz, aryl-H), 7.61 (td, 1H, J = 7.6, 1.3 Hz, aryl-H), 7.45 (m, 1H, aryl-H), 7.30 (d, 1H, J = 7.8 Hz, aryl-H), 6.34 (s, 1H, CH-OAc), 5.09 (m, 1H, Me₂C=CH,), 3.87 (d, 1H, J = 2.0 Hz, epoxy-CH), 2.95 (dd, 1H, J = 15.5, 7.9 Hz, Me₂C=CH-CH₂), 2.64 (dd, 1H, J = 15.5, 6.8Hz, Me₂C=CH-CH₂), 2.33 (s, 3H, CO-CH₃), 1.73 (s, 3H, E-CH₃), 1.68 (s, 3H, Z-CH₃); ¹³C-NMR (CDCl₃, 100 MHz): 193.6 (C=O), 171.1 (CO-CH₃), 136.7 (C_qMe₂), 135.7 (C_q-CHOAc), 134.1 (Ar-CH), 129.7 (epoxy-Cq-CO-Cq), 128.9 (Ar-CH), 127.9 (Ar-CH), 126.3 (Ar-CH), 116.3 (CH=CMe₂), 67.8 (CH-OAc), 61.4 (epoxy-C_q), 56.2 (epoxy-CH), 26.5 (Me₂C=CH-CH₂), 26.0 (E-CH₃), 21.2 (CO-CH₃), 18.2 (Z-CH₃); HRMS (ESI) m/z calcd. for C17H19O4: (M+H)+, 287.1278; found: 287.1276 $(M+H)^+$; **R**_f (*n*-heptane/ethyl acetate 2:1): 0.48; Specific rotation $[\alpha]_{D}^{23.6} = -244.5$ (c = 1.82; CHCl₃).

(1aS,7S,7aS)-7-Hydroxy-1a-(3-methylbut-2-enyl)-7,7a-dihydronaphtho[2,3-b]oxiren-2-one (4). To a solution of 35 (0.046 g, 0.160 mmol, 1.00 eq.) in THF/H₂O (5:1, 6.0 mL/1.2 mL) LiOH \cdot H₂O (0.014 g, 0.32 mmol, 2.00 eq.) was added. The TLC showed a complete conversion after 1.5 h reaction time.

Saturated aqueous NaHCO₃ (20 mL) was added. The mixture was extracted with ethyl acetate (2 x 30 mL) and the combined organic layers were washed with saturated aqueous NaCl (20 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (0–30% ethyl acetate in *n*-heptane) to give **4** (0.036 g, 0.150 mmol, 90%) as a colorless solid. For analytical data see aforementioned synthetic procedure of **4**.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

45

46

47

48

49

50

51

52

56

57 58 59

60

[(1aS,7R,7aS)-1a-(3-methylbut-2-enyl)-2-oxo-7,7a-dihydronaphtho[2,3-b]oxiren-7-vl] acetate (36). Alcohol 4 (0.036 g, 0.150 mmol, 1.00 eq.) was dissolved in anhydrous THF (8 mL). PPh₃ (0.115 g, 0.440 mmol, 3.00 eq.) and HOAc (0.050 mL, 0.880 mmol, 6.00 eq.) were added. Then DIAD (0.086 mL, 0.440 mmol, 3.00 eq.) was added at 0 °C. The reaction solution was allowed to stir at room temperature. Since TLC showed incomplete conversion after 2 h, the addition of the same portions of the reagents was repeated three times after 1 h each and one time the next day. 1 h after the last addition of reagents, the reaction mixture was loaded on silica and purified via flash column chromatography (0-50% ethyl acetate in nheptane) to give 36 (0.031 g, 0.110 mmol, 73%) as colorless oil and recovered starting material 4 (0.006 g, 0.020 mmol, 16%) as colorless solid.³¹ ¹H-NMR (CDCl₃, 400 MHz): 7.95 (dd, 1H, J = 7.7, 1.2 Hz, aryl-H), 7.59 (td, 1H, J = 7.5, 1.5 Hz, aryl-H), 7.50 (dt, 1H, J = 7.6, 1.2 Hz, aryl-H), 7.46 (d, br, 1H, J = 7.6Hz, aryl-H), 6.46 (d, 1H, J = 2.4 Hz, CH-OAc), 5.12 (m, 1H, Me₂C=CH,), 3.75 (d, 1H, J = 2.4 Hz, epoxy-CH), 2.91 (dd, 1H, J = 15.5, 7.7 Hz, Me₂C=CH-CH₂), 2.70 (dd, 1H, J = 15.5, 6.8Hz, Me₂C=CH-CH₂), 2.05 (s, 3H, CO-CH₃), 1.73 (s, 3H, E-CH₃), 1.68 (s, 3H, Z-CH₃); ¹³C-NMR (CDCl₃, 100 MHz): 194.3 (C=O), 170.2 (CO-CH₃), 136.4 (C_qMe₂), 135.5 (C_q-CHOAc), 134.1 (Ar-CH), 131.0 (epoxy-Cq-CO-Cq), 130.6 (Ar-CH), 130.1 (Ar-CH), 127.6 (Ar-CH), 116.5 (CH=CMe₂), 67.8 (CH-OAc), 60.4 (epoxy-C_q), 57.1 (epoxy-CH), 26.4 (Me₂C=CH-CH₂), 26.0 (E-CH₃), 21.1 (CO-CH₃), 18.1 (Z-CH₃); HRMS (ESI) m/z calcd. for C₁₇H₁₉O₄: (M+H)⁺, 287.1278; found: 287.1280 (M+H)⁺; R_f (*n*-heptane/ethyl acetate 2:1): 0.53; Specific rotation $[\alpha]_D^{22.8} = -239.3$ (c = 1.00; CHCl₃).

(1aS,7R,7aS)-7-Hydroxy-1a-(3-methylbut-2-enyl)-7,7a-dihydronaphtho[2,3-b]oxiren-2-one (23). To a solution of 36 (0.031 g, 0.110 mmol, 1.00 eq.) in THF/H₂O (5:1, 4.0 mL/0.8 mL) LiOH \cdot H₂O (0.009 g, 0.21 mmol, 2.00 eq.) was added. The TLC showed a complete conversion after 1 h reaction time. Saturated aqueous NaHCO₃ (20 mL) was added. The mixture was extracted with ethyl acetate (2 x 30 mL) and the combined organic layers were washed with saturated aqueous NaCl (20 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (0–50% ethyl acetate in *n*-heptane) to give **23** (0.024 g, 0.100 mmol, 93%) as a colorless oil. For analytical data see aforementioned synthetic procedure of **23**.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at http://pubs.acs.org. Detailed experimental procedures including spectroscopic data and crystallographic data as well as determination of enantiomeric excess (PDF).

AUTHOR INFORMATION

Corresponding Author

* Email: christoph.poeverlein@sanofi.com; soeren.schuler@evotec.com

ORCID

Christoph Pöverlein: 0000-0003-1264-181X

Sören M. M. Schuler: 0000-0003-1089-88737

ACKNOWLEDGMENT

This study was financially supported by the Hessen State Ministry of Higher Education, Research, and the Arts (HMWK) *via* generous grand for the LOEWE Research Center Insect Biotechnology and Bioresources. Sanofi and Evotec International contributed in the framework of Sanofi-Fraunhofer Natural Product Center of Excellence/Fraunhofer Evotec Natural Products Excellence Center. We thank Prof. Dr. Andreas Vilcinskas for general support, Prof. Dr. Till Schäberle, Dr. Michael Kurz, Dr. Cédric Couturier, Dr. Frédéric Jeannot, and Dr. Eric Bacqué for valuable discussions, the NMR department of the Justus Liebig University Giessen, Stefan Bernhardt for chiral HPLC analysis, and Christoph Hartwig for technical assistance.

REFERENCES

¹ For a recent review, see: Mehta, G.; Sengupta, S. Progress in the Total Synthesis of Epoxyquinone Natural Products: An Update. *Tetrahedron* **2017**, *73*, 6223–6247.

² (a) Li, J. Y.; Harper, J. K.; Grand, D. M.; Tombe, B. O.; Bashyal, B.; Hess, W. M.; Strobel, G. A. Ambuic Acid, a Highly Functionalized Cyclohexenone with Antifungal Activity from *Pestalotiopsis* spp. and *Monochaetia* sp. *Phytochemistry* **2001**, *56*, 463–468. (b) Li, C.; Johnson, R. P.; Porco, Jr., J. A. Total Synthesis of the Quinone Epoxide Dimer (+)-Torreyanic Acid: Application of a Biomimetic Oxidation/Electrocyclization/Diels-Alder Dimerization Cascade. J. Am. *Chem. Soc.* **2003**, *125*, 5095–5106.

³.Ding, G.; Li, Y.; Fu, S.; Liu, S.; Wie, J.; Che, Y., Ambuic Acid and Torreyanic Acid Derivatives from the Endolichenic Fungus *Pestalotiopsis* sp. *J. Nat. Prod.* 2009, 72, 182–186.

⁴ (a) Li, J. Y.; Strobel, G. A. Jesterone and Hydroxy-Jesterone Antioomycete Cyclohexenone Epoxides from the Endophytic Fungus *Pestalotiopsis jesteri*. *Phytochemistry* **2001**, *57*, 261–265. (b) Hu, Y.; Li, C.; Kulkarni, B. A.; Strobel, G.; Lobkovsky, E.; Torczynski, R. M.; Porco, Jr., J. A. Exploring Chemical Diversity of Epoxyquinoid Natural Products: Synthesis and Biological Activity of Jesterone and Related Molecules. Org. Lett. **2001**, *3*, 1649–1652.

⁵ (a) Gehrt, A.; Erkel, G., Anke, H.; Anke, T.; Sterner, O. New Hexaketide Inhibitors of Eukaryotic Signal Transduction. *Nat. Prod. Lett.* **1997**, *9*, 259–264. (b) Li, C.; Pace, E. A.; Liang, M.-C.; Lobkovsky, E.; Gilmore, T. D.; Porco, Jr., J. A. Total Synthesis of the NF-κB Inhibitor (-)-Cycloepoxydon: Utilization of Tartrate-Mediated Nucleophilic Epoxydation. *J. Am. Chem. Soc.* **2001**, *123*, 11308–11309. (c) Mehta,

2	
2	
3	
л	
4	
5	
6	
0	
7	
0	
ð	
9	
-	
1	(
1	1
1	-
1	4
1	3
1	2
1	5
1	-
I	C
1	7
	,
1	ξ
1	c
	-
2	(
2	1
2	
2	2
-	-
2	-
2	2
2	
2	5
2	f
-	2
2	1
2	ç
~	C
2	ç
2	r
З	Ľ
3	1
2	-
3	4
3	3
2	,
3	2
3	Ę
~	2
3	t
3	7
2	2
3	ξ
R	c
5	Ĩ
4	(
Λ	1
+	
4	2
л	-
4	-
4	2

54 55 56

51 52 53

56 57

60

58

59

G.; Islam, K. Total Synthesis of the Novel NF-κB Inhibitor (-)-Cycloepoxydon. Org. Lett. **2004**, *6*, 807–810.

⁶ For reviews about the role of total synthesis in the structure elucidation/revision of NPs, see: (a) Nicolaou, K. C.; Snyder, S. A. Chasing Molecules That Were Never There: Misassigned Natural Products and the Role of Chemical Synthesis in Modern Structure Elucidation. Angew. Chem. Int. Ed. 2005, 44, 1012–1044. (b) Maier, M. E. Structural revisions of natural products by total synthesis. Nat.Prod.Rep. 2009, 26, 1105–1124. (c) Suyama, T. L.; Gerwick, W. H.; McPhail, K. L. Survey of marine natural product structure revisions: A synergy of spectroscopy and chemical synthesis. Bioorg. Med. Chem. 2011, 19, 6675–6701.

 ⁷ Han, L.; Huang, X.; Dahse, H.-M.; Moellmann, U.; Fu, H.; Grabley,
 S.; Sattler, I.; Lin, W. Unusual Naphthoquinone Derivatives from the Twigs of *Avicennia marina*. J. Nat. Prod. 2007, 70, 923–927.

⁶ ⁸ Yu, B.; Jiang, T.; Quan, W.; Li, J.; Pan, X.; She, X. An Efficient Method for Construction of the Angulary Fused 6,3,5-Tricyclic Skeleton of Mycorrhizin A and Its Analogs. *Org. Lett.* 2009, *11*, 629–632.

9 ⁹ (a) Muratake, H.; Natsume, M.; Nakai, H. Palladium-Catalyzed Intramolecular α-Arylation of Aliphatic Ketone, Formyl and Nitro Groups. *Tetrahedron* 2004, 60, 11783–11803. (b) Muratake, H.; Nakai, H. Intramolecular Cyclization Using Palladium-Catalyzed Arylation toward Formyl and Nitro Groups. *Tetrahedron Lett.* 1999, 40, 2355–2358.

¹⁰ Larossa, I.; Da Silva, M. I.; Gómez, P. M.; Hannen, P.; Ko, E.;
Lenger, S. R.; Linke, S. R.; White, A. J. P.; Wilton, D.; Barrett, A. G.
M. Highly Convergent Three Component Benzyne Coupling: The Total Synthesis of *ent*-Clavilactone B. *J. Am. Chem. Soc.* 2006, *128*, 14042–14043.

¹¹ (a) Bartolo, N. D.; Woerpel, K. A. Mechanistic Insight into Additions of Allyl Grignard Reagents to Carbonyl Compounds. *J. Org. Chem.* **2018**, *83*, 10197–10206. (b) Mazerolles, P.; Boussaguet, P.; Huc, V. 6-Chloro-1-Hexene and 8-Chloro-1-Octene. Org. Synth. **1999**, *76*, 221–223.

¹² (a) Katsuki, T.; Sharpless, K. B. The First Practical Method for Asymmetric Epoxidation. *J. Am. Chem.* Soc. **1980**, *102*, 5976–5978.
(b) Hanson, R. M.; Sharpless, K. B. Procedure for the catalytic asymmetric epoxidation of allylic alcohols in the presence of molecular sieves. *J. Org. Chem.* **1986**, *51*, 1922–1925.

¹³ Krasovskiy, A.; Knochel, P. A LiCl-Mediated Br/Mg Exchange Reaction for the Preparation of Functionalized Aryl- and Heteroaryl Magnesium Compounds from Organic Bromides. *Angew. Chem. Int. Ed.* **2004**, *43*, 3333–3336.

¹⁴ Frichert, A.; Jones, P. G.; Lindel, T. Enantioselective Total Synthesis of Terreumols A and C from the Mushroom *Tricholoma terreum*. *Angew. Chem. Int. Ed.* **2016**, *55*, 2916–2919.

¹⁵ Isolated yields and characterization of the diols see Supporting Information.

¹⁶ Products **21** and **22** were contaminated with approx. 16–20% inseparable isomerization side products, which were characterized after deprotection to **4** and **23** (see experimental section).

¹⁷ Examples for formation of different ring sizes: (a) Paul, S.; Samanta,
S.; Ray, J. K. Palladium-Catalyzed One-Pot Suzuki Coupling Followed
by Arylpalladium Addition to Aldehyde: A Convenient Route to Fluoren-9-one Derivatives. *Tetrahedron Lett.* 2010, *51*, 5604–5608. (b)
Flores-Gaspar, A.; Gutiérrez-Bonet, Á.; Martin, R. N-Heterocyclic
Carbene Dichotomy in Pd-Catalyzed Acylation of Aryl Chlorides via
C-H Bond Functionalization. *Org. Lett.* 2012, *14*, 5234–5237. (c) Ál-

verez-Bercedo, P.; Flores-Gaspar, A.; Correa, A.; Martin, R. Pd-Catalyzed Intramolecular Acylation of Aryl Bromides via C-H Bond Functionalization: A Highly Efficient Synthesis of Benzocyclobutenones. *J. Am. Chem. Soc.* **2010**, *132*, 466–467.

¹⁸ Ruan, J.; Saidi, O.; Iggo, J. A.; Xiao, J. Direct Acylation of Aryl Bromides with Aldehydes by Palladium Catalysis. *J. Am. Chem. Soc.* **2008**, *130*, 10510–10511.

 19 The isomerization side products have been characterized after deprotection to **4** and **23**, data and spectra can be found in the Supporting Information.

²⁰ **24a** is most likely a secondary product of **21** and **22**, respectively, since it occurred after prolonged heating. A hypothesis for a potential reaction mechanism is provided in the Supporting Information.

²¹ Sumthong, P.; Romero-González, R. R.; Verpoorte, R. Identification of Anti-Wood Rot Compounds in Teak (*Tectona grandis* L.f.) Sawdust Extract. *Wood. Chem. Tech.* **2008**, *28*, 247–260. TIPS deprotection of **24a** to yield **24b** was not performed.

²² The DBU treatment resulted in *ent-***27** and *ent-***31**, which are both accompanied by <10% *ent-***26** and *ent-***30**. The minor regioisomer was removed after the saponification.

²³ Thermal ellipsoid plot of the molecular structure of *ent-32* see Supporting Information.

²⁴ Xue, C.-B.; Chen, L.; Cao, G.; Zhang, K.; Wang, A.; Meloni, D.; Glenn, J.; Anand, R.; Xia, M.; Kong, L.; Huang, T.; Feng, H.; Zheng, C.; Li, M.; Galya, L.; Zhou, J.; Shin, N.; Baribaud, F.; Solomon, K.; Scherle, P.; Zhao, B.; Diamond, S.; Emm, T.; Keller, D.; Contel, N.; Yeleswaram, S.; Vaddi, K.; Hollis, G.; Newton, R.; Friedman, S.; Metcalf, B. Discovery of INCB941, a Potent, Selective, and Orally Bioavailable CCR5 Anatognist with Potent Anti-HIV-1 Activity. ACS Med. Chem. Lett. **2010**, *1*, 483–487.

²⁵ (a) Ollero, L.; Castedo, L.; Domínguez, D. Enantiospecific synthesis of (+)-ribasine. *Tetrahedron* **1999**, *55*, 4445–4456. (b) Paleo, M. R.; Castedo, L.; Domínguez, D. Synthesis of 2-[N-(9-phenylfluoren-9-yl)amino]-1-indanones by Anionic Cyclization of Phenylalanine-Derived Oxazolidinones. *J. Org. Chem.* **1993**, *58*, 2763–2767.

²⁶ (a) Kaluza, N. M.; Schollmeyer, D.; Nubbemeyer, U. Total Synthesis of (-)-C/D-*cis*-Dehydro-3-O-methyl-estradiols. *Eur. J. Org. Chem.* **2016**, 357–366. (b) Kopach, M. E.; Fray, A. H.; Meyers, A. I. An Asymmetric Route to the Conanine BCDE Ring System. A Formal Total Synthesis of (+)-Conessine. *J. Am. Chem. Soc.* **1996**, *118*, 9876–9883.

²⁷ Vatéte, J.-M. One-Pot Oxidative Conversion of Alcohols into Nitriles by Using a TEMPO/PhI(OAc)₂/NH₄OAc System. *SYNLETT* **2014**, 1275–1278.

 $^{\rm 28}$ For detailed product ratios and structure elucidation see Supporting Information.

²⁹ Love, B. E.; Jones, E. G. The Use of Salicylaldehyde Phenylhydrazone as an Indicator for the Titration of Organometallic Reagents. *J. Org. Chem.* **1999**, *64*, 3755–3756.

 30 A 2.5 M solution of *n*-BuLi in hexane from a commercially supplier was diluted by a factor of four at -78 °C with anhydrous THF for a better handling. For the -100 °C cooling bath a mixture of ethanol and liquid N₂ was used.

 31 No traces of diastereomer **35** were detected, which indicates a full inversion of stereochemistry. The reaction time of the Mitsunobu inversion of **4** to **36** was significantly slower than the conversion of **23** to **35** and required more reagents. After 24 h the reaction was stopped even though traces of starting material were detected *via* TLC.