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Abstract: The new iridium(I)–guanidinate complex served as an
efficient catalyst for phosphine-dependent selective cross-dimeriza-
tion between silylacetylene and terminal alkyl- or arylacetylene. Es-
pecially, in case of cross-dimerization between silylacetylene and
alkylacetylene, E/Z selectivity of resulting enynes could be con-
trolled by changing phosphine.
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The transition-metal-catalyzed regio- and stereoselective
dimerization of alkynes has been received much atten-
tions as a useful method for the synthesis of substituted
enynes.1 Not only homodimerization of terminal alkynes
but also cross-dimerization between terminal alkynes and
internal alkynes have been reported,2 while the cross-
dimerization between two different terminal alkynes is
scarce.3 A notable success of such a reaction is Ru-3c and
Rh-catalyzed3d head-to-head cross-dimerization between
terminal acetylene and silylacetylene, and Pd-catalyzed
head-to-tail cross-dimerization between terminal alkyl-
acetylene and triisopropylsilylacetylene.3e

Our research group has recently demonstrated that an iri-
dium(I)–pyridine-2-thiolate complex [Ir(SNC5H4)(PPh3)2]
catalyzes homodimerization of terminal alkynes in good
yield with high E-selectivity through activation of a termi-
nal C–H bond of an alkyne.4 We anticipated that an iridi-
um(I) complex bearing a highly electron-donating anionic
chelate ligand would show high catalytic activity toward
dimerization of terminal alkynes.

In this report, we describe the preparation of a new iridi-
um(I) complex with a highly electron-donating guanidi-
nate ligand5 and its application to the first phosphine-

dependent selective cross-dimerization between various
silylacetylenes and terminal alkylacetylenes as well as
arylacetylenes with high regio- and stereoselectivity.

We prepared an iridium(I)–guanidinate complex through
the reaction of [IrCl(cod)]2 with a lithium guanidinate
(Scheme 1). Iridium(I)–guanidinate complex 1 was isolat-
ed in good yield as an orange solid.6 Although many late-
transtion-metal guanidinate complex has been reported,7

the example of iridium complex bearing a guanidinate
ligand is scarce.8 Especially, a low valent iridium(I)–
guanidinate complex, which might be suitable for metal-
catalyzed reactions, has not been prepared. In the 1H NMR
spectrum of 1, two kinds of methyl protons were obserbed
as doublet at d = 0.96 and 1.23 ppm, respectively. The
structure of complex 1 was also confirmed by X-ray anal-
ysis.9 The complex have square planar geometry around
an iridium atom.

To evaluate the catalytic efficiency of complex 1 for
dimerization of alkyne, we investigated homodimeriza-
tion of terminal alkylacetylene and arylacetylene by com-
plex 1 in the presence of phosphine. As shown in Table 1,
head-to-head dimerization of 1-octyne (2a) proceeded
with high E-selectivity by 1–Ph3P system (entry 1).10

Straight-chain alkylacetylenes such as 1-octyne (2a) hard-
ly dimerize by a previously reported [IrCl(cod)]2–phos-
phine catalytic system.1a In the case of the acetylacetonato
complex catalytic system {[Ir(acac)(cod)]–Ph3P} which
bears a less electron-donating anionic ligand than the
guanidinate ligand, the dimerization of 1-octyne (2a) re-
sulted in low yield (38%, E/Z = 80:20). From this result,
the catalytic reactivity for dimerization of 1-octyne by 1–
Ph3P system probably derived from electron-donating
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ability of guanidinate ligand. The selectivity of resulting
enynes were highly dependent on using phosphine. After
screening various phosphines, we found that a Z-selective
dimerization of 2a was achieved by the use of diethylphe-
nylphosphine (Et2PhP) in good yield with high selectivity
(entry 2). The dimerization of 2a catalyzed by 1 with tri-
alkylphosphine such as a triethylphosphine (Et3P) or tri-n-
propylphosphine (n-Pr3P) resulted in low Z-selectivity.11

Not only alkylacetylene but also arylacetylene such as
phenylacetylene (2b) gave head-to-head dimers 3b in
high yields with excellent selectivities (entries 3 and 4).

The catalyst system 1–Ph3P also catalyzed dimerization of
trimethylsilylacetylene (2c) leading to enyne in good
yield with complete E-selectivity (Scheme 2).10 On the
other hand, the reaction of 2c by 1–Et2PhP system afford-
ed a Z-butatriene 4c in a moderate yield. The Z-enyne was
obtained by 1–n-Pr3P system in a good yield with com-
plete Z-selectivity. Reaction mechanism for homodimer-
ization of alkyne have been demonstrated in various
research groups.1,12 It is known that phosphine ligand con-
taining high electron-donating property such as alky-
lphosphine favors the formation of Z-enyne and Z-
butatriene rather than that of E-enyne because of a forma-
tion of vinylidene intermediate.1f In our catalytic system,
the dimerization reaction probably proceeded with similar
reaction mechanism.

We next examined the cross-dimerization between trime-
thylsilylacetylene (2c) and 1-octyne (2a) in the presence
of a 1–Ph3P catalyst. After screening the reaction condi-
tions, we found that cross-dimerization between 2c and
excess 2a (2 equiv) proceeded to give the corresponding
cross-dimer 5a with complete E-selectivity (Table 2, en-
try 1).13 Although the homo-dimer (E)-3a also formed in
this reaction,14 the resulting cross-dimer 5a could be iso-
lated by silica gel column chromatography in high yield.
It should be noted that Z-type cross-dimerization between
2c and 2a proceeded by 1–n-Pr3P catalytic system in high
yield with complete selectivity (entry 2). It is the first ex-
ample for phosphine-controlled cross-dimerization reac-

tion of terminal alkyne. The reaction by 1–Et2PhP system
resulted in low Z-selectivity compared with that by 1–n-
Pr3P system.15 The cross-dimerization involving branch-
chain alkylacetylene 2d by 1–Ph3P or 1–n-Pr3P also pro-
ceeded in good yield with complete E- or Z-selectivity, re-
spectively (entries 3 and 4). The cross-dimer between 2c
and benzylacetylene (2e) also obtained in good yield with
excellent or high selectivity (entries 5 and 6). Cyclohexy-
lacetylene (2f) also reacted with 2c to give the corre-
sponding cross-dimer 5f in good yield with complete E-
and high Z-selectivity, respectively (entries 7 and 8). Not
only alkylacetylene but also arylacetylene such as pheny-
lacetylene (2b) could participate in the E-selective cross-
dimerization with good yield and good selectivity (entry
9), however, Z-selective dimerization by 1–i-Pr3P system
could not achieved (entry 10). Concerning E-selective
cross-dimerization between 2c and other terminal aryl-
acetylene, cross-dimerization between 2c and 4-tolyl-
acetylene (2g) or 4-methoxyphenylacetylene (2h) were
also achieved in good yield with good to high E-selectiv-
ity (entries 11 and 12).

In the presence of the 1–Ph3P or 1–n-Pr3P, other silylacet-
ylenes such as triisopropylacetylene and tert-butyl-
dimethylsilylacetylene were also reacted with alkyl-
acetylene (Scheme 3).13 The cross-dimerization between
triisopropylsilylacetylene (2i) and 1-octyne (2a) proceed-
ed to give the corresponding cross-dimer (E)-5i or (Z)-5i
in high yield with complete stereoselectivity. tert-Bu-
tyldimethylsilylacetylene (2j) also reacted with 2a to give
the corresponding cross-dimer 5j though yields and selec-
tivities of resulting cross-dimers 5j are lower than that of
5i.

In summary, we demonstrated that an iridium(I)–guanidi-
nate complex–phosphine system is a versatile new cata-
lyst for regio- and stereoselective cross-dimerization
between two different terminal alkynes. Especially, in the
case of cross-dimerization between silylacetylenes and
alkylacetylenes, the E/Z selectivity of resulting enynes
could be controlled by changing phosphines.

Table 1 Dimerization of Terminal Alkyne 2 Catalyzed by 1–Phos-
phine System

Entry 2 (R) Phosphine Time (h) Yield of 3 (%)a E/Zb

1 2a (n-C6H13) Ph3P 6 3a (71) 85:15

2 2a (n-C6H13) Et2PhP 24 3a (77) 7:93

3 2b (Ph) Ph3P 6 3b (94) >99:1

4 2b (Ph) Et2PhP 24 3b (92) 0:100

a Isolated yield.
b Determined by 1H NMR.
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Product (Z)-5e: 1H NMR (400 MHz, CDCl3): d = 0.22 (s, 
9 H, SiMe3), 3.67 (d, J = 7.3 Hz, 2 H, CH2), 5.60 (d, J = 11.0 
Hz, 1 H, CH=CH), 6.10 (dt, J = 10.6, 7.3 Hz, 1 H, CH=CH), 
7.10–7.40 (m, 5 H, Ph). 13C{1H} NMR (100 MHz, CDCl3): 
d = –0.02 (s, SiMe3), 36.5 (s, CH2Ph), 99.0, 101.8 (s, C=C), 
109.9, 126.2, 128.5, 128.5, 139.7, 143.2 (S, C=C, Ph). 
HRMS (EI): m/z [M]+ calcd for C14H18Si: 214.1178; found: 
214.1158.
Product (E)-5g: 1H NMR (400 MHz, CDCl3): d = 0.22 (s, 
9 H, SiMe3), 2.34 (s, 3 H, CH3), 6.12 (d, J = 16.5 Hz, 1 H, 
CH=CH), 6.98 (d, J = 16.5 Hz, 1 H, CH=CH), 7.10–7.30 (m, 
4 H, Ar). 13C{1H} NMR (100 MHz, CDCl3): d = 0.0 (s, 
SiMe3), 21.5 (s, CH3), 96.4, 104.6 (s, C=C), 106.9, 126.2, 
129.0, 129.4, 138.9, 142.4 (s, C=C, Ph). HRMS (EI): m/z 
[M]+ calcd for C14H18Si: 214.1178; found: 214.1171.
Product (E)-5h: 1H NMR (400 MHz, CDCl3): d = 0.11 (s, 
9 H, SiMe3), 3.81 (s, 3 H, CH3, 6.16 (d, J = 19.2 Hz, 1 H, 
CH=CH), 6.48 (d, J = 19.2 Hz, 1 H, CH=CH), 6.84 (d, 
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(dt, J = 16.0, 1.4 Hz, 1 H, CH=CH), 6.20 (dt, J = 16.0, 6.9 
Hz, 1 H, CH=CH). 13C{1H} NMR (100 MHz, CDCl3): d = 
11.3, 14.1, 22.6, 28.6, 28.9, 31.7, 33.1 (s, C6H13, i-PrCH), 
18.6 (s, i-PrCH3), 88.5, 106.1 (s, C=C), 109.8, 145.8 (s, 
CH=CH). HRMS (EI): m/z [M]+ calcd for C19H36Si: 
292.2586; found: 292.2583.
Product (Z)-5i: 1H NMR (400 MHz, CDCl3): d = 0.80–2.40 
(m, 16 H, C6H13, i-PrCH), 1.09 (br d, 18 H, i-PrCH3), 5.50 
(d, J = 10.5 Hz, 1 H, CH=CH), 6.0 (m, 1 H, CH=CH). 
13C{1H} NMR (100 MHz, CDCl3): d = 11.3, 14.1, 22.6, 28.8, 
29.0, 30.4, 31.7 (s, C6H13, i-PrCH), 18.6 (s, i-PrCH3), 94.6, 
103.9 (s, C=C), 109.6, 145.2 (s, CH=CH). HRMS (EI): m/z 
[M]+ calcd for C19H36Si: 292.2586; found: 292.2587.
Product (E)-5j: 1H NMR (400 MHz, CDCl3): d = 0.11 (s, 
6 H, SiMe2), 0.80–2.20 (m, 13 H, C6H13), 0.94 (s, 9 H, t-Bu), 
5.50 (d, J = 15.8 Hz, 1 H, CH=CH), 6.21 (dt, J = 15.8, 7.0 
Hz, 1 H, CH=CH). 13C{1H} NMR (100 MHz, CDCl3): d = 
–4.6 (s, SiMe2), 14.1, 16.6, 22.6, 28.6, 28.8, 31.6, 33.1 [s, 
C6H13, C(CH3)3], 26.1 [s, C(CH3)3], 90.6, 104.8 (s, C=C), 
109.6, 146.2 (s, CH=CH). HRMS (EI): m/z [M]+ calcd for 
C16H30Si: 250.2117; found: 250.2116.
Product (Z)-5j: 1H NMR (400 MHz, CDCl3): d = 0.13 (s, 
6 H, SiMe2), 0.80–2.40 (m, 13 H, C6H13), 0.96 (s, 9 H, t-Bu), 
5.48 (d, J = 10.8 Hz, 1 H, CH=CH), 5.96 (dt, J = 10.8, 7.4 
Hz, 1 H, CH=CH). 13C{1H} NMR (100 MHz, CDCl3): d = 
–4.6 (s, SiMe2), 14.1, 16.6, 22.6, 28.7, 28.9, 30.3, 31.6 [s, 
C6H13, C(CH3)3], 26.1 [s, C(CH3)3], 96.6, 102.8 (s, C=C), 
109.2, 145.6 (s, CH=CH). HRMS (EI): m/z [M]+ calcd for 
C16H30Si: 250.2117; found: 250.2108.

(14) Formation ratio of (E)-5a/(E)-3a = 77:23 (determined by 1H 
NMR).

(15) Result of cross-dimerization between 2c and 2a catalyzed by 
1–Et2PhP system: yield 88%, E/Z = 9:91.
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