Phosphine-Dependent Selective Cross-Dimerization between Terminal Alkylacetylene and Silylacetylene by Iridium(I) Guanidinate Complex– Phosphine System

Kenichi Ogata,** Oji Oka,^b Akinori Toyota,^b Noriyuki Suzuki,^c Shin-ichi Fukuzawa**

^a Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

- Fax +81(3)38171916; E-mail: kogata@chem.chuo-u.ac.jp
- ^b Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan

^c RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan Received 17 July 2008

Abstract: The new iridium(I)–guanidinate complex served as an efficient catalyst for phosphine-dependent selective cross-dimerization between silylacetylene and terminal alkyl- or arylacetylene. Especially, in case of cross-dimerization between silylacetylene and alkylacetylene, E/Z selectivity of resulting enynes could be controlled by changing phosphine.

Key words: alkynes, enynes, coupling, dimerizations, iridium

The transition-metal-catalyzed regio- and stereoselective dimerization of alkynes has been received much attentions as a useful method for the synthesis of substituted enynes.¹ Not only homodimerization of terminal alkynes but also cross-dimerization between terminal alkynes and internal alkynes have been reported,² while the cross-dimerization between two different terminal alkynes is scarce.³ A notable success of such a reaction is Ru-^{3c} and Rh-catalyzed^{3d} head-to-head cross-dimerization between terminal acetylene and silylacetylene, and Pd-catalyzed head-to-tail cross-dimerization between terminal alkyl-acetylene and triisopropylsilylacetylene.^{3e}

Our research group has recently demonstrated that an iridium(I)–pyridine-2-thiolate complex $[Ir(SNC_5H_4)(PPh_3)_2]$ catalyzes homodimerization of terminal alkynes in good yield with high *E*-selectivity through activation of a terminal C–H bond of an alkyne.⁴ We anticipated that an iridium(I) complex bearing a highly electron-donating anionic chelate ligand would show high catalytic activity toward dimerization of terminal alkynes.

In this report, we describe the preparation of a new iridium(I) complex with a highly electron-donating guanidinate ligand⁵ and its application to the first phosphinedependent selective cross-dimerization between various silylacetylenes and terminal alkylacetylenes as well as arylacetylenes with high regio- and stereoselectivity.

We prepared an iridium(I)–guanidinate complex through the reaction of $[IrCl(cod)]_2$ with a lithium guanidinate (Scheme 1). Iridium(I)–guanidinate complex **1** was isolated in good yield as an orange solid.⁶ Although many latetranstion-metal guanidinate complex has been reported,⁷ the example of iridium complex bearing a guanidinate ligand is scarce.⁸ Especially, a low valent iridium(I)– guanidinate complex, which might be suitable for metalcatalyzed reactions, has not been prepared. In the ¹H NMR spectrum of **1**, two kinds of methyl protons were obserbed as doublet at $\delta = 0.96$ and 1.23 ppm, respectively. The structure of complex **1** was also confirmed by X-ray analysis.⁹ The complex have square planar geometry around an iridium atom.

To evaluate the catalytic efficiency of complex **1** for dimerization of alkyne, we investigated homodimerization of terminal alkylacetylene and arylacetylene by complex **1** in the presence of phosphine. As shown in Table 1, head-to-head dimerization of 1-octyne (**2a**) proceeded with high *E*-selectivity by **1**–Ph₃P system (entry 1).¹⁰ Straight-chain alkylacetylenes such as 1-octyne (**2a**) hardly dimerize by a previously reported [IrCl(cod)]₂–phosphine catalytic system.^{1a} In the case of the acetylacetonato complex catalytic system {[Ir(acac)(cod)]–Ph₃P} which bears a less electron-donating anionic ligand than the guanidinate ligand, the dimerization of 1-octyne (**2a**) resulted in low yield (38%, *E/Z* = 80:20). From this result, the catalytic reactivity for dimerization of 1-octyne by **1**–Ph₃P system probably derived from electron-donating

Scheme 1

SYNLETT 2008, No. 17, pp 2663–2666 Advanced online publication: 01.10.2008 DOI: 10.1055/s-0028-1083514; Art ID: U07608ST © Georg Thieme Verlag Stuttgart · New York ability of guanidinate ligand. The selectivity of resulting enynes were highly dependent on using phosphine. After screening various phosphines, we found that a Z-selective dimerization of **2a** was achieved by the use of diethylphenylphosphine (Et_2PhP) in good yield with high selectivity (entry 2). The dimerization of **2a** catalyzed by **1** with trialkylphosphine such as a triethylphosphine (Et_3P) or tri-*n*propylphosphine (*n*-Pr₃P) resulted in low Z-selectivity.¹¹ Not only alkylacetylene but also arylacetylene such as phenylacetylene (**2b**) gave head-to-head dimers **3b** in high yields with excellent selectivities (entries 3 and 4).

 Table 1
 Dimerization of Terminal Alkyne 2 Catalyzed by 1–Phosphine System

н— — 2	<u></u> R ─ 2	3 mo 1/Pho tolu 80	l% osphine ene °C		-H H R	→→ (<i>Z</i>)-3
Entry	2 (R)		Phosphine	Time (h)	Yield of 3 (%) ^a E/Z ^b
1	2a (<i>n</i> -C ₆ H ₁₃)	Ph ₃ P	6	3a (71)	85:15
2	2a (<i>n</i> -C ₆ H ₁₃)	Et ₂ PhP	24	3a (77)	7:93
3	2b (Ph)		Ph ₃ P	6	3b (94)	>99:1
4	2b (Ph)		Et ₂ PhP	24	3b (92)	0:100

^a Isolated yield.

^b Determined by ¹H NMR.

The catalyst system $1-Ph_3P$ also catalyzed dimerization of trimethylsilylacetylene (**2c**) leading to enyne in good yield with complete *E*-selectivity (Scheme 2).¹⁰ On the other hand, the reaction of **2c** by $1-Et_2PhP$ system afforded a *Z*-butatriene **4c** in a moderate yield. The *Z*-enyne was obtained by $1-n-Pr_3P$ system in a good yield with complete *Z*-selectivity. Reaction mechanism for homodimerization of alkyne have been demonstrated in various research groups.^{1,12} It is known that phosphine ligand containing high electron-donating property such as alky-lphosphine favors the formation of *Z*-enyne and *Z*-butatriene rather than that of *E*-enyne because of a formation of vinylidene intermediate.^{1f} In our catalytic system, the dimerization reaction probably proceeded with similar reaction mechanism.

We next examined the cross-dimerization between trimethylsilylacetylene (2c) and 1-octyne (2a) in the presence of a 1–Ph₃P catalyst. After screening the reaction conditions, we found that cross-dimerization between 2c and excess 2a (2 equiv) proceeded to give the corresponding cross-dimer 5a with complete *E*-selectivity (Table 2, entry 1).¹³ Although the homo-dimer (*E*)-3a also formed in this reaction,¹⁴ the resulting cross-dimer 5a could be isolated by silica gel column chromatography in high yield. It should be noted that *Z*-type cross-dimerization between 2c and 2a proceeded by 1–*n*-Pr₃P catalytic system in high yield with complete selectivity (entry 2). It is the first example for phosphine-controlled cross-dimerization reac-

Scheme 2

tion of terminal alkyne. The reaction by 1-Et₂PhP system resulted in low Z-selectivity compared with that by 1-n-Pr₃P system.¹⁵ The cross-dimerization involving branchchain alkylacetylene 2d by $1-Ph_3P$ or $1-n-Pr_3P$ also proceeded in good yield with complete E- or Z-selectivity, respectively (entries 3 and 4). The cross-dimer between 2c and benzylacetylene (2e) also obtained in good yield with excellent or high selectivity (entries 5 and 6). Cyclohexylacetylene (2f) also reacted with 2c to give the corresponding cross-dimer 5f in good yield with complete Eand high Z-selectivity, respectively (entries 7 and 8). Not only alkylacetylene but also arylacetylene such as phenylacetylene (2b) could participate in the *E*-selective crossdimerization with good yield and good selectivity (entry 9), however, Z-selective dimerization by $1-i-Pr_3P$ system could not achieved (entry 10). Concerning E-selective cross-dimerization between 2c and other terminal arylacetylene, cross-dimerization between 2c and 4-tolylacetylene (2g) or 4-methoxyphenylacetylene (2h) were also achieved in good yield with good to high E-selectivity (entries 11 and 12).

In the presence of the $1-Ph_3P$ or $1-n-Pr_3P$, other silylacetylenes such as triisopropylacetylene and *tert*-butyldimethylsilylacetylene were also reacted with alkylacetylene (Scheme 3).¹³ The cross-dimerization between triisopropylsilylacetylene (**2i**) and 1-octyne (**2a**) proceeded to give the corresponding cross-dimer (*E*)-**5i** or (*Z*)-**5i** in high yield with complete stereoselectivity. *tert*-Butyldimethylsilylacetylene (**2j**) also reacted with **2a** to give the corresponding cross-dimer **5j** though yields and selectivities of resulting cross-dimers **5j** are lower than that of **5i**.

In summary, we demonstrated that an iridium(I)–guanidinate complex–phosphine system is a versatile new catalyst for regio- and stereoselective cross-dimerization between two different terminal alkynes. Especially, in the case of cross-dimerization between silylacetylenes and alkylacetylenes, the E/Z selectivity of resulting enynes could be controlled by changing phosphines. Table 2Cross-Dimerization between Trimethylsilylacetylene (2c)and Alkyl- or Arylacetylene 2a,b,d-h Catalyzed by 1-Phosphine System

H 2c (1) H 2a,b,d	<u>-</u> SiMe; .0 mmol) + <u>-</u> R d−h (2 mr	5 mol% 1/Phosphine toluene 80 °C, 6 h	Me ₃ Si H	=	H (<i>Z</i>)-5
Entry	2 (R)		Phosphine	Yield of 5	$(\%)^{\mathrm{a}} E/Z^{\mathrm{b}}$
1	2a (n-0	C_6H_{13})	Ph ₃ P	5a (80)	100:0
2	2a (<i>n</i> -C ₆ H ₁₃)		<i>n</i> -Pr ₃ P	5a (90)	0:100
3	2d [Me	$e_2 CH(CH_2)_2]$	Ph ₃ P	5d (78)	100:0

		-		
4	$2d [Me_2CH(CH_2)_2]$	<i>n</i> -Pr ₃ P	5d (87)	0:100
5	2e (PhCH ₂)	Ph ₃ P	5e (72)	100:0
6	2e (PhCH ₂)	<i>n</i> -Pr ₃ P	5e (70)	10:90
7	2f (Cy)	Ph ₃ P	5f (72)	100:0
8	2f (Cy)	<i>n</i> -Pr ₃ P	5f (92)	4:96
9	2b (Ph)	Ph ₃ P	5b (72)	88:12
10	2b (Ph)	<i>n</i> -Pr ₃ P	5b (60)	87:13
11	2g (4-MeC ₆ H ₄)	Ph ₃ P	5g (76)	91:9
12	2h (4-MeOC ₆ H ₄)	Ph ₃ P	5h (81)	91:9

^a Isolated yield.

^b Determined by ¹H NMR.

Scheme 3

Acknowledgment

The authors are grateful to Ms. Keiko Yamada (RIKEN) for the assistance in elemental analyses. Dr. Yayoi Hongo (RIKEN) is acknowledged for assistance in high-resolution mass spectrometry analysis. We thank Dr. Daisuke Hashizume (RIKEN) for his help in X-ray crystallographic analysis.

References and Notes

(1) For recent example of transition-metal-catalyzed homodimerization of alkynes, see: (a) Ohmura, T.;

Yorozuya, S.; Yamamoto, Y.; Miyaura, N. Organometallics
2000, 19, 365. (b) Yang, C.; Nolan, S. P. J. Org. Chem.
2002, 67, 591. (c) Melis, K.; Vos, D. D.; Jacobs, P.;
Verpoort, F. J. Organomet. Chem. 2002, 659, 159.
(d) Ogoshi, S.; Ueta, M.; Oka, M.; Kurosawa, H. Chem.
Commun. 2004, 2732. (e) Chen, X.; Xue, P.; Sung, H. H. Y.;
Williams, I. D.; Peruzzini, M.; Bianchini, C.; Jia, G.
Organometallics 2005, 24, 4330. (f) Lee, C.-C.; Lin, Y.-C.;
Liu, Y.-H.; Wang, Y. Organometallics 2005, 24, 136.
(g) Weng, W.; Guo, C.; Celenligil-Cetin, R.; Foxman, B. M.;
Ozerov, O. V. Chem. Commun. 2006, 197.

- (2) (a) Trost, B. M.; McIntoshi, M. C. J. Am. Chem. Soc. 1995, 117, 7255. (b) Trost, B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.; Rhter, G. J. Am. Chem. Soc. 1997, 119, 698. (c) Yi, C. S.; Liu, N. Organometallics 1998, 17, 3158. (d) Trost, B. M.; Frontier, A. J. J. Am. Chem. Soc. 2000, 122, 11727. (e) Chen, L.; Li, C. Tetrahedron Lett. 2004, 45, 2771. (f) Hirabayashi, T.; Sakaguchi, S.; Ishii, Y. Adv. Synth. Catal. 2005, 347, 872. (g) Nishimura, T.; Guo, X.-X.; Ohnishi, K.; Hayashi, T. Adv. Synth. Catal. 2007, 349, 2669. (h) Katagiri, T.; Tsurugi, H.; Funayama, A.; Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 830.
- (3) (a) Akita, M.; Yasuda, H.; Nakamura, A. Bull. Chem. Soc. Jpn. 1984, 57, 480. (b) Wang, J.; Kapon, M.; Berthet, J. C.; Ephritikhine, M.; Eisen, M. S. Inorg. Chim. Acta 2002, 334, 183. (c) Katayama, H.; Yari, H.; Tanaka, M.; Ozawa, F. Chem. Commun. 2005, 4336. (d) Katagiri, T.; Tsurugi, H.; Satoh, T.; Miura, M. Chem. Commun. 2008, 3405. (e) Tsukada, N.; Ninomiya, S.; Aoyama, Y.; Inoue, Y. Org. Lett. 2007, 9, 2919.
- (4) Ogata, K.; Toyota, A. J. Organomet. Chem. 2007, 692, 4139.
- (5) Baiely, P. J.; Pace, S. *Coord. Chem. Rev.* **2001**, *214*, 91; and references therein.
- Synthesis of {Ir[(N₂(*i*-Pr)₂CN(*i*-Pr)₂](cod)} (1) (6)A solution of [IrCl(cod)]₂ (281 mg, 0.42 mmol) in THF (5 mL) was cooled to -78 °C, and then a THF solution of $Li[(N_2(i-Pr)_2CN(i-Pr)_2]]$, which was prepared by the reaction of the DIC (0.13 mL, 0.84 mmol) with LDA solution (1.8 M in heptane-THF-ethylbenzene solution, 0.48 mL, 0.86 mmol) at -78 °C, was added. The mixture was allowed to warm to r.t. After 4 h, the volatiles were removed under reduced pressure. The residual solid was extracted with toluene and the filtrate was evaporated off under high vacuum to give orange complex 1 (278 mg, 0.53 mmol, 63%). ¹H NMR (400 MHz, C_6D_6): $\delta = 0.96$ (d, J = 6.4 Hz, 12 H, *i*-PrCH₃), 1.23 (d, *J* = 6.9 Hz, 12 H, *i*-PrCH₃), 1.39 (d, J = 7.8 Hz, 4 H, cod), 2.20 (br, 4 H, cod), 3.43 (sept, J = 6.9Hz, 2 H, *i*-PrCH), 3.80 (sept, *J* = 6.4 Hz, 2 H, *i*-PrCH), 4.09 (br, 4 H, cod). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): $\delta = 22.8$, 25.0, 32.5, 47.1, 48.6, 58.9 (cod, i-Pr), 128.5 (cod), 179.7 (NCN). Anal. Calcd for C₂₁H₄₀IrN₃: C, 47.88; H, 7.65; N, 7.98. Found: C, 47.82; H, 7.60; N, 8.00.
- (7) (a) Jenke, T.; Stoeckli-Evans, H.; Bodensieck, U.; Suess-Fink, G. J. Organomet. Chem. 1991, 401, 347. (b) Yip, H.-K.; Che, C.-M.; Zhou, Z.-Y.; Mak, T. C. W. J. Chem. Soc., Chem. Commun. 1992, 1369. (c) Bailey, P. J.; Mitchell, L. A.; Parson, S. J. Chem. Soc., Dalton Trans. 1996, 2839. (d) Dinger, M. B.; Henderson, W. Chem. Commun. 1996, 211. (e) Holman, K. T.; Robinson, S. D.; Sahajpal, A.; Steed, J. W. J. Chem. Soc., Dalton Trans. 1999, 15. (f) Foley, S. R.; Yap, G. P. A.; Richeson, D. S. Chem. Commun. 2000, 1515. (g) Bailey, P. J.; Grant, K. J.; Mitchell, L. A.; Pace, S.; Parkin, A.; Parsons, S. J. Chem. Soc., Dalton Trans. 2000, 1887. (h) Berry, J. F.; Cotton, F. A.; Huang, P.; Murillo, C. A.; Wang, X. Dalton Trans. 2005, 3713.

- (8) (a) Robinson, S. D.; Sahajal, A. J. Chem. Soc., Dalton Trans. 1997, 3349. (b) Robinson, S. D.; Sahajpal, A.; Steed, J. Inorg. Chim. Acta 2000, 303, 265. (c) Holland, A. W.; Bergman, R. G. J. Am. Chem. Soc. 2002, 124, 9010.
- (9) **Crystal Data for 1** $C_{21}H_{40}IrN_3$, MW = 526.79, monoclinic, $P2_1/n$, a = 20.5195(4) Å, b = 15.5067 (4) Å, c = 27.6890 (4) Å, $\beta = 102.4145$ (16)°, V = 8604.4 (3) Å₃, Z = 16, $D_{calc} = 1.626$ g/cm³, μ (Mo K α) = 62.328 cm⁻¹, 84841 measured reflections, 24677 independent ($R_{int} = 0.063$), 13318 observed [I > 2 σ (I)]. R1 = 0.0353, wR2 = 0.0903 (all data). Atomic coordinates, thermal parameters, bond distances, and angles have been deposited at the Cambridge Crystallographic Data Center. CCDC number: 668977.
- (10) General Procedure for Homodimerization of Terminal Alkynes (Table 1 and Scheme 2) The mixture of 1 (16 mg, 0.03 mmol), toluene (3 mL), phosphine (16 mg, 0.06 mmol), and terminal alkyne (1.0 mmol) was charged in a sealed tube under argon atmosphere. After stirring for 6 h at 80 °C, the solvent was removed, and the residue was chromatographed on SiO₂, using hexane or Et₂O–hexane (1:3) as eluent. The solvent was removed to give dimeric product 3 or 4.
- (11) Results of dimerization of 1-octyne(2a) catalyzed by 1-trialkylphosphine system; 1-Et₃P: yield 60%, *E/Z* = 42:58; 1-*n*-Pr₃P: yield 79%, *E/Z* = 40:60
- (12) (a) Bianchini, C.; Peruzzini, M.; Zanobini, F.; Frediani, P.; Albinati, A. J. Am. Chem. Soc. 1991, 113, 5453.
 (b) Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Satoh, T.; Satoh, J. Y. J. Am. Chem. Soc. 1991, 113, 9604.
 (c) Bianchini, C.; Frediani, P.; Masi, D.; Peruzzini, M.; Zanobini, F. Organometallics 1994, 13, 4616.
- (13) General Procedure for Cross-Dimerization of Silylacetylene with Terminal Alkynes (Table 2 and Scheme 3)

The mixture of **1** (25 mg, 0.05 mmol), toluene (3 mL), phosphine (26 mg, 0.10 mmol), silylacetylene (1.0 mmol), and terminal alkyne (2.0 mmol) was charged in sealed tube under argon atmosphere. After stirring for 6 h at 80 °C, the solvent was removed, and the residue was chromatographed on SiO₂, using hexane as eluent. Homo-dimer was eluted first. Then the eluate containing cross-dimer **5** was obtained. The solvent was removed to give cross-dimer **5** as colorless or pale-yellow oil.

Spectral Data for New Compounds

Product (*E*)-**5d**: ¹H NMR (400 MHz, CDCl₃): δ = 0.18 (s, 9 H, SiMe₃), 0.87 (d, J = 7.0 Hz, 6 H, CH₃), 1.20–1.30 (m, 2 H, CH₂), 1.50–1.60 (m, 1 H, CH), 2.00–2.20 (m, 2 H, CH₂), 5.50 (dt, J = 15.8, 1.8 Hz, 1 H, CH=CH), 6.21 (dt, J = 15.8, J)7.0 Hz, 1 H, CH=CH). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 0.0$ (s, SiMe₃), 22.4, 27.3, 30.9, 37.6 (s, C₆H₁₃), 92.4, 104.2 (s, C=C), 109.4, 146.5 (C=C). HRMS (EI): m/z [M -Me]⁺ calcd for C₁₁H₁₉Si: 179.1256; found: 179.1259 Product (*Z*)-**5d**: ¹H NMR (400 MHz, CDCl₃): $\delta = 0.19$ (s, 9 H, SiMe₃), 0.90 (d, J = 6.4 Hz, 6 H, CH₃), 1.20–1.30 (m, 2 H, CH₂), 1.50–1.60 (m, 1 H, CH), 2.30–2.40 (m, 2 H, CH₂), 5.46 (d, J = 10.5 Hz, 1 H, CH=CH), 5.95 (dt, J = 10.5, 7.6 Hz, 1 H, CH=CH). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): $\delta =$ 0.0 (s, SiMe₃), 22.4, 27.3, 30.9, 37.6 (s, C₆H₁₃), 88.7, 92.4 (s, C=C), 109.4, 146.5 (C=C). HRMS (EI): m/z [M-Me]+ calcd for C₁₁H₁₉Si: 179.1256; found: 179.1213. Product (*E*)-**5e**: ¹H NMR (400 MHz, CDCl₃): $\delta = 0.17$ (s, 9 H, SiMe₃), 3.43 (d, J = 6.9 Hz, 2 H, CH₂), 5.53 (dt,

J = 15.6, 1.8 Hz, 1 H, CH=CH), 6.35 (dt, *J* = 15.6, 6.9 Hz,

1 H, CH=CH), 7.10-7.40 (m, 5 H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = -0.1$ (s, SiMe₃), 39.3 (s, CH₂Ph), 93.5, 103.7 (s, C=C), 111.0, 126.4, 128.5, 128.7, 138.6, 144.2 (S, C=C, Ph). HRMS (EI): m/z [M]⁺calcd for C₁₄H₁₈Si: 214.1178; found: 214.1169. Product (*Z*)-**5e**: ¹H NMR (400 MHz, CDCl₃): $\delta = 0.22$ (s, 9 H, SiMe₃), 3.67 (d, J = 7.3 Hz, 2 H, CH₂), 5.60 (d, J = 11.0Hz, 1 H, CH=CH), 6.10 (dt, J = 10.6, 7.3 Hz, 1 H, CH=CH), 7.10–7.40 (m, 5 H, Ph). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = -0.02$ (s, SiMe₃), 36.5 (s, CH₂Ph), 99.0, 101.8 (s, C=C), 109.9, 126.2, 128.5, 128.5, 139.7, 143.2 (S, C=C, Ph). HRMS (EI): *m/z* [M]⁺ calcd for C₁₄H₁₈Si: 214.1178; found: 214.1158. Product (*E*)-**5g**: ¹H NMR (400 MHz, CDCl₃): δ = 0.22 (s, 9 H, SiMe₃), 2.34 (s, 3 H, CH₃), 6.12 (d, J = 16.5 Hz, 1 H, CH=CH), 6.98 (d, J = 16.5 Hz, 1 H, CH=CH), 7.10-7.30 (m, 16.5 Hz, 16.5 Hz4 H, Ar). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 0.0$ (s, SiMe₃), 21.5 (s, CH₃), 96.4, 104.6 (s, C=C), 106.9, 126.2, 129.0, 129.4, 138.9, 142.4 (s, C=C, Ph). HRMS (EI): m/z $[M]^+$ calcd for $C_{14}H_{18}Si: 214.1178$; found: 214.1171. Product (*E*)-**5h**: ¹H NMR (400 MHz, CDCl₃): δ = 0.11 (s, 9 H, SiMe₃), 3.81 (s, 3 H, CH₃, 6.16 (d, *J* = 19.2 Hz, 1 H, CH=CH), 6.48 (d, J = 19.2 Hz, 1 H, CH=CH), 6.84 (d, J = 9.2 Hz, 2 H, Ar), 7.37 (d, J = 9.2 Hz, 2 H, Ar). ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = -1.6$ (s, SiMe₃), 55.2 (s, OCH₃), 88.4, 89.9 (s, C=C), 113.9, 128.4, 132.1, 133.0, 144.7, 159.6 (s, C=C, Ph). HRMS (EI): m/z [M]+ calcd for C₁₄H₁₈OSi: 230.1127; found: 230.1133. Product (*E*)-**5i**: ¹H NMR (400 MHz, CDCl₃): $\delta = 0.80-2.20$ (m, 16 H, C₆H₁₃, *i*-PrCH), 1.07 (br d, 18 H, *i*-PrCH₃), 5.52 (dt, J = 16.0, 1.4 Hz, 1 H, CH=CH), 6.20 (dt, J = 16.0, 6.9 Hz, 1 H, CH=CH). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): $\delta =$ 11.3, 14.1, 22.6, 28.6, 28.9, 31.7, 33.1 (s, C₆H₁₃, *i*-PrCH), 18.6 (s, *i*-PrCH₃), 88.5, 106.1 (s, C=C), 109.8, 145.8 (s, CH=CH). HRMS (EI): m/z [M]⁺ calcd for C₁₉H₃₆Si: 292.2586; found: 292.2583. Product (*Z*)-**5i**: ¹H NMR (400 MHz, CDCl₃): $\delta = 0.80-2.40$ (m, 16 H, C₆H₁₃, *i*-PrCH), 1.09 (br d, 18 H, *i*-PrCH₃), 5.50 (d, J = 10.5 Hz, 1 H, CH=CH), 6.0 (m, 1 H, CH=CH). $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃): $\delta = 11.3, 14.1, 22.6, 28.8,$ 29.0, 30.4, 31.7 (s, C₆H₁₃, *i*-PrCH), 18.6 (s, *i*-PrCH₃), 94.6, 103.9 (s, C=C), 109.6, 145.2 (s, CH=CH). HRMS (EI): m/z [M]⁺ calcd for C₁₉H₃₆Si: 292.2586; found: 292.2587. Product (*E*)-**5j**: ¹H NMR (400 MHz, CDCl₃): δ = 0.11 (s, 6 H, SiMe₂), 0.80–2.20 (m, 13 H, C₆H₁₃), 0.94 (s, 9 H, *t*-Bu), 5.50 (d, J = 15.8 Hz, 1 H, CH=CH), 6.21 (dt, J = 15.8, 7.0 Hz, 1 H, CH=CH). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): $\delta =$ -4.6 (s, SiMe₂), 14.1, 16.6, 22.6, 28.6, 28.8, 31.6, 33.1 [s, C₆H₁₃, C(CH₃)₃], 26.1 [s, C(CH₃)₃], 90.6, 104.8 (s, C=C), 109.6, 146.2 (s, CH=CH). HRMS (EI): m/z [M]+ calcd for C₁₆H₃₀Si: 250.2117; found: 250.2116. Product (Z)-5j: ¹H NMR (400 MHz, CDCl₃): $\delta = 0.13$ (s, 6 H, SiMe₂), 0.80–2.40 (m, 13 H, C₆H₁₃), 0.96 (s, 9 H, t-Bu), 5.48 (d, J = 10.8 Hz, 1 H, CH=CH), 5.96 (dt, J = 10.8, 7.4 Hz, 1 H, CH=CH). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): $\delta =$ -4.6 (s, SiMe₂), 14.1, 16.6, 22.6, 28.7, 28.9, 30.3, 31.6 [s, C₆H₁₃, C(CH₃)₃], 26.1 [s, C(CH₃)₃], 96.6, 102.8 (s, C=C), 109.2, 145.6 (s, CH=CH). HRMS (EI): m/z [M]+ calcd for C₁₆H₃₀Si: 250.2117; found: 250.2108.

- (14) Formation ratio of (E)-**5a**/(E)-**3a** = 77:23 (determined by ¹H NMR).
- (15) Result of cross-dimerization between 2c and 2a catalyzed by $1-Et_2PhP$ system: yield 88%, E/Z = 9:91.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.