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Abstract This research is focused on the rational approach
to design and synthesis of a novel series of triazole linked
pyrrole derivatives through a sequential Paal–Knorr reac-
tion and Click chemistry. These new molecules were
screened against Mycobacterium tuberculosis H37Rv and
found to display promising anti-mycobacterial activity.
Among various compounds, 7g and 7l were identified as
leads with minimum inhibitory concentration value 0.78
(μg/mL), which are more effective than standard drugs such
as pyrazinamide, ethambutol, and ciprofloxacin and less
active than isoniazid and rifampicin. These molecules
(minimum inhibitory concentration values <12.5 μg/mL)
were also screened against HEK-293T cancer cell lines.
Most of these molecules are less toxic but possess higher

selectivity index, which indicates the suitability of these
compounds for further evaluation.

Keywords Antitubercular activity ● Stetter reaction ●
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Introduction

Tuberculosis (TB) is a chronic infectious disease caused by
pathogenic Gram positive bacteria called Mycobacterium
tuberculosis (MTB). TB frequently attacks the lungs, but it
also affect other parts of the body (Rogoza et al. 2010). The
symptoms of pulmonary TB include chronic cough, weight
loss, intermittent fever, night sweats, and coughing blood.
The World Health Organization (WHO) estimates that one-
third of the population is infected with (MTB) annually,
there are approximately 8 million new infections and 3
million deaths are attributed to M. tuberculosis (Naresh et al.
2010; Marriner et al. 2011). Although TB can be treated and
even cured by chemotherapy, the treatment requires
6–9 months of time period that is too long, and is accom-
panied by a significant toxicity. More than 20 drugs are
currently used for the treatment of TB and most of them
were developed 50 years ago (Thomas et al. 2014). There-
fore, there is an urgent necessity to develop a more powerful
and faster acting anti-TB drugs with new mode of action to
overcome drug resistance, lengthy treatment duration and
toxicity, that enforce the researchers across the globe.

Pyrrole is an important nitrogen containing heterocyclic
compound, which is frequently present in a wide range of
natural products including pyrrolomycins, pyoluteorin,
pyrrolnitrin, chlorophyll, vitamins B12, and bilirubine
(Walsh et al. 2006). The biological activity of pyrrole
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derivatives has been evaluated by various research groups
(Shrinivas et al. 2014; La Regina et al. 2014). TB activity of
substituted pyrrole (BM212) was first reported by Deidda
et al. (1998), and its analogs were prepared by Biava et al.
(2008). Another pyrrole derivative, LL-3858 was also found
to be active against TB, which was reported by Lupin
Limited in 2004. Currently it is in phase II clinical trials
(Sandeep et al. 2011). The copper-catalyzed a 1,3-dipolar
cycloaddition of alkynes and azides to form 1,2,3-triazoles
is the most popular reaction in Click chemistry (Krystian
et al. 2014). 1,2,3-Triazoles are mainly used as bioisosteres
and linkers for the synthesis of bioactive compounds such
as anti-tuberculosis (Deepak et al. 2014; Boechat et al.
2011), anti-cancer (Jabeena et al. 2014) and antibacterial
(Kavitha et al. 2014) antivirus and antifungal (Ramachan-
drana et al. 2011). They were considered to be the most
useful components for the construction of complex mole-
cules (Antonino et al. 2014) such as pharmaceutical drugs
like tazobactam, carboxyamidotriazole, and cefatriazine
(Fig. 1). Thus, the Click chemistry has attracted widespread
interest from virtually all areas of drug discovery. Inspired
by inherent anti-TB activity of pyrrole derivatives (Gholap
2016) (Fig. 2) and potential use of 1,2,3-triazole ring
(Rangappa et al. 2015) (Fig. 3) as bioisostere, we were
interested in the design and synthesis of triazole linked
pyrrole derivatives as new anti-TB agents

Results and discussions

Chemistry

Our synthetic strategy for the triazole linked pyrrole deri-
vatives (7a–x) is outlined in Scheme 1. Accordingly,
treatment of aldehyde with chalcone (1a–c) under Stetter
conditions (Reddy et al. 2012; Biava et al. 2005) provided
the corresponding 1,4-diketone (2a–d). Thus formed 1,4-
diketone (2a–d) was then treated with 1-(4-aminophenyl)
ethanone under Paal-Knorr conditions (Nicolaou and
Demopoulos 2003) to afford the corresponding 1-(4-(2,3,5-
trisubstituted-1H-pyrrol-1-yl)phenyl)ethanone (3a–d). These
compounds (3a–d) were further subjected to reduction

using NaBH4 (Kamal et al. 2013) to give the respective
alcohols (4a–d). Bromination of the alcohols (4a–d) fol-
lowed by the treatment of bromides (5a–d) with NaN3

gave the desired azides (6a–d). 1,3-Dipolar cycloaddition
(Ackermann and Potukuchi 2010) of azides (6a–d) with
terminal alkynes afforded the desired 1,2,3-triazole linked
pyrrole derivatives (7a–x) in good yields.

Biology

Antibacterial activity

All synthesized compounds were evaluated for their
anti-tubercular activity against M. tuberculosis H37Rv
(ATCC27294) by agar dilution method (Franzblau et al. 1998).
Isoniazid, rifampicin, ethambutol and ciprofloxacin were used
as standard drugs. The minimum inhibitory concentration
(MIC) values demonstrated as µg/mL, were determined for
each compound against test mycobacteria. Newly synthesized
compounds having MIC ≤ 12.5 µg/mL were further scrutinized
for cytotoxicity (Gerlier and Thomasset 1986) by 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay
(MTT) against HEK cell line at 50 µM concentration.

The anti-mycobacterial activity data of all tested com-
pounds were depicted in Table 1. MTB activity of these
compounds was shown in MIC values ranging from 0.78 to
>25 µg/mL. Among them, triazole linked pyrrole con-
jugates 7b, 7c, 7f, 7g, 7j, 7l, 7n, 7q, 7r, 7u, and 7v, dis-
played MIC values below 6.25 µg/mL. Remarkably, 7g and
7l exhibited potent anti-TB activity (0.78 µg/mL), and in
particular, 7j showed MIC value 1.56 µg/mL and another
four compounds 7b, 7q, 7u, and 7v showed MIC value
3.125 µg/mL. When compared to first-line TB drugs for
example ethambutol (MIC 3.13 µg/mL), seven compounds
7b, 7g, 7j, 7l, 7q, 7u, and 7v were found to be more potent,
albeit they were less effective than other TB drugs including
isoniazid and rifampicin (Table 1).

The structure–activity relationship of newly synthesized
triazole linked pyrrole conjugates has been investigated
with respect to standard TB drugs (isoniazid, rifampicin,
ethambutol, and ciprofloxacin). Among them, 7a–f contain R,
R2= phenyl, R1= p-chlorophenyl groups, and R3= pyridine,
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Fig. 1 1,2,3-Triazole containing
pharmaceutical agents
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7b exhibited good activity (MIC= 3.125 µg/mL). If the
pyridine (R3) is replaced by –CH2CH2CH2CH2OH (7a) or
by p-tolyl (7d), the molecules displayed moderate activity
(MIC= 12.5 µg/mL). The presence of CH2CH2OH (7c) or
n-pentylbenzene (7f), the molecules showed improved
activity by two folds (MIC= 6.25 µg/mL). If R3 is hexyl
(7e), the molecule displayed lower activity. Compounds
7g–m contain R1, R2= phenyl, R= p-tolyl groups, and R3

= –CH2OH (7g) or p-tolyl (7l) exhibited potent activity
(MIC= 0.78 µg/mL). If R3= –CH2CH2OH (7j), the mole-
cule displayed excellent activity (MIC= 1.56 µg/mL), if R3

= –CH2CH2CH2CH2OH (7k), or n-pentylbenzene (7m),
the molecules showed moderate activity (MIC= 12.5 µg/
mL), if R3= pyridine (7h) or phenyl (7i) has less effect on
the TB activity. Compounds 7n–s contain R, R2= p-tolyl,

R= phenyl groups, and R3=CH2CH2OH, 7q exhibited the
reasonable activity (MIC= 3.125 µg/mL), and R3

= –CH2CH2CH2CH2OH (7n) or p-tolyl (7r) displayed
moderate activity (MIC= 6.25 µg/mL). If R3= pyridine
(7o), or phenyl (7p) or pentylbenzene (7s) showed low
activity (MIC= 12.5 µg/mL). Compounds 7t–x contain R,
R1, R2= phenyl, and R3= phenyl (7u) or
–CH2CH2CH2CH2OH (7v) exhibited good activity (MIC=
3.125 µg/mL). If R3= n-pentylbenzene (7x) showed low
activity (MIC= 12.5 µg/mL), and R3= pyridine (7t) or
hexyl (7w) groups displayed least activity. The above study
indicates that the position of the substituent on pyrrole and
triazole plays a crucial role in the observed activity and the
triazole linked pyrrole derivatives were found to exhibit
promising anti-tuberculosis agents.

3

Fig. 2 TB active pyrrole
derivatives

2

Fig. 3 1,2,3-Triazole containing
anti-tubercular agents
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The active compounds were further subjected to in vitro
cytotoxicity studies against HEK-293T cell line at 50 µg/mL
concentration (Fig. 4). Selectivity index (SI) ratio between
IC50 and MIC; if the SI> 25, the compounds were con-
sidered as nontoxic. The percentage of growth inhibition,
IC50 and selectivity index (SI) values presented in Table 2.
Compounds 7g, and 7l showed 8.954% and 18.956 inhi-
bition respectively at 50 µg/mL with selectivity index of>
64. These results imply the suitability of these compounds
in drug development for tuberculosis.

Conclusion

In summary, we have synthesized a novel series of triazole
linked pyrrole conjugates employing Paal–Knorr reaction
followed by Click chemistry. These molecules were

screened for anti-tubercular activity against M. tuberculosis
H37Rv pathogens. Most of these compounds display
moderate to excellent anti-mycobacterial activity (25–0.78
μg/mL). Among them, two compounds (7g and 7l) display
potent anti-tubercular activity (0.78 μg/mL) with low cyto-
toxicity and high selective index. The results reported in this
study would be useful in guiding future efforts to discover
new compounds with increased tuberculosis activity.

Experimental section

Chemistry protocols

All chemicals (Alfa Aesar and Sigma Aldrich) used possess
a purity of>95%. Yield refers to pure products after

Scheme 1 Synthesis of triazole
linked pyrrole derivatives (7a–x)
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Table 1 Synthesis and antimicrobial activity of 7a–x

Entry R R1 R2 R3 MIC (µg/mL) MTB H37Rv Entry R R1 R2 R3 MIC (µg/mL)
MTB H37Rv

7a 12.5 7m 12.5

7b 3.125 7n 6.25

7c 6.25 7o 12.5

7d 12.5 7p 12.5
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Table 1 continued

Entry R R1 R2 R3 MIC (µg/mL) MTB H37Rv Entry R R1 R2 R3 MIC (µg/mL)
MTB H37Rv

7e 25 7q 3.125

7f 6.25 7r 6.25

7g 0.78 7s 12.5

7h 25 7t 25
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Table 1 continued

Entry R R1 R2 R3 MIC (µg/mL) MTB H37Rv Entry R R1 R2 R3 MIC (µg/mL)
MTB H37Rv

7i 25 7u 3.125

7j 1.56 7v 3.125

7k 12.5 7w 25

7l 0.78 7x 12.5

Rifampicin 0.24 Rifampicin 0.24

Isoniazid 0.72 Isoniazid 0.72

Ethambutol 7.64 Ethambutol 7.64

Ciprofloxacin 4.71 Ciprofloxacin 4.71
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purification and are unoptimized. Melting points were
determined in open capillaries on Gallenkamp apparatus
and are uncorrected. IR spectra were recorded on a Buck
Scientific IR M-500 spectrophotometer in KBr pellets, 1H
and 13C nuclear magnetic resonance (NMR) spectra for
analytical purpose were recorded in CDCl3, on a Bruker
instrument at 300 and 75MHz, respectively; chemical shifts
are expressed in δ-scale downfield from TMS as an internal
standard. High-resolution mass spectra were obtained by
using ESI-QTOF mass spectrometry. Silica gel 60 (230–400
mesh) was used for the column chromatography. Thin-layer
chromatography (TLC) plates (Silica Gel 60 F254) were
used for TLC.

General procedure for synthesis of 2a–d

To a stirred solution of the bis-thiazolium salts (0.2 mmol)
in 3 mL of ethanol were added 0.2 mL of Et3N (2.0 mmol)
and an aldehyde (1.0 mmol). The mixture was allowed to
stir for 10 min at room temperature and then chalcone (1
mmol) was added. The resulting mixture was kept under
reflux for 15 h at 70 °C.The progress of the reaction was
monitored by TLC. The mixture was quenched with water
and extracted with ethyl acetate (2× 15 mL). Removal of
the solvent followed by purification on silica gel column
chromatography furnished the pure 1,4-diketone.

2-(4-Chlorophenyl)-1,4-diphenylbutane-1,4-dione (2a)

Colorless oil; yield: 84%; 1H NMR: δ 7.93 (t, 6H, J= 3.7
Hz, Ar–H), 7.51 (t, 1H, J= 7.1 Hz, Ar–H), 7.41 (t, 2H, J=
7.5 Hz, Ar–H), 7.34 (d, 1H, J= 8.3 Hz, Ar–H), 7.19–7.31
(m, 4H, Ar–H), 5.20 (dd, 1H, J= 3.0, 9.8 Hz, Ar–CH–C=
O), 4.15 (dd, 1H, J= 10.5, 17.9 Hz, O=C –CH2–CH–),
3.22 (dd, 1H, J= 3.0, 17.9 Hz, O=C –CH2–CH–);

13C
NMR: δ 43.8 (–CH2–), 48.7 (–CH–), 127.5 (Ar–C), 128.1
(Ar–C), 128.6 (Ar–C), 128.8 (Ar–C), 129.3 (Ar–C), 130.3
(Ar–C), 133.3 (Ar–C), 134.8 (Ar–C), 135.7 (Ar–C), 136.3
(Ar–C), 138.2 (Ar–C), 139.3 (Ar–C), 197.7 (C=O), 198.0
(C=O).

1,2,4-Triphenylbutane-1,4-dione (2d)

Yellow oil; yield: 89%; 1H NMR: δ 7.98 (t, 4H, J= 7.5 Hz,
Ar–H), 7.14–7.54 (m, 10H, Ar–H), 7.19 (d, 1H, J= 5.2 Hz,
Ar–H), 5.28 (dd, 1H, J= 6.7, 18.2 Hz, Ar–CH–C=O),
4.17 (dd, 1H, J= 9.8, 17.9 Hz, O= C –CH2–CH–), 3.24
(dd, 1H, J= 3.5, 17.9 Hz, O= C –CH2–CH–);

13C NMR: δ
41.8 (–CH2–), 53.4 (–CH–), 113.6 (Ar–C), 120.7 (Ar–C),
127.4 (Ar–C), 127.4 (Ar–C), 127.8 (Ar–C), 128.0 (Ar–C),
128.1 (Ar–C), 128.7 (Ar–C), 128.8 (Ar–C), 129.4 (Ar–C),
129.7 (Ar–C), 132.9 (Ar–C), 133.2 (Ar–C), 134.4 (Ar–C),

136.0 (Ar–C), 137.5 (Ar–C), 137.8 (Ar–C), 138.8 (Ar–C),
197.7 (C=O), 206.9 (C=O).

General procedure for the preparation of 1,2,3,5-
tetrasubstituted pyrrolyl phenyl ethanone 3a–d

Paal-Knorr conditions: To a solution of 1,4-diketone (1
equiv) in EtOH (10 v for 1 g), was added p-TSA (1.1 equiv)
followed by 4-amino acetophenone (2 equiv). The resulting
mixture was stirred at 75 oC for 16 h. The progress of the
reaction was monitored by TLC. After completion, the
mixture was cooled to room temperature and then con-
centrated in vacuo to get the crude compound. It was
extracted twice with EtOAc and the combined organic
layers were washed twice with water and once with brine
solution, dried over anhydrous Na2SO4, filtered, and the
solvent was removed in vacuo. The resulting material was
purified by column chromatography to afford the desired
product.

1-(4-(3-(4-Chlorophenyl)-2,5-diphenyl-1H-pyrrol-1-yl)
phenyl)ethanone (3a)

Off white solid; yield: 92%; 1H NMR: δ 7.82 (d, 2H, J=
8.3 Hz, Ar–H), 7.34 (d, 3H, J= 7.3 Hz, Ar–H), 7.29 (t, 2H,
J= 7.4 Hz, Ar–H), 7.24–7.11 (m, 10H, Ar–H), 6.71 (s, 1H,
pyrrole–CH), 2.56 (s, 3H, O=C–CH3);

13C NMR: δ 26.5
(–CH3), 110.8 (pyrrole–CH), 122.0 (Ar–C), 126.2 (Ar–C),
126.9 (Ar–C), 127.4 (Ar–C), 127.6 (Ar–C), 128.1 (Ar–C),
128.2 (Ar–C), 128.2 (Ar–C), 128.3 (Ar–C), 128.5 (Ar–C),
128.5 (Ar–C), 128.6 (Ar–C), 128.9 (Ar–C), 132.1 (Ar–C),
133.0 (Ar–C), 133.2 (Ar–C), 135.1 (Ar–C), 135.5 (Ar–C),
136.0 (Ar–C), 136.3 (Ar–C), 138.2 (Ar–C), 142.5 (Ar–C),
142.9 (Ar–C), 197.1 (C=O).

1-(4-(2,3-Diphenyl-5-(p-tolyl)-1H-pyrrol-1-yl)phenyl)
ethanone (3b)

White solid; yield: 84%; 1H NMR: δ 7.75 (d, 2H, J= 8.5
Hz, Ar–H), 7.24–7.07 (m, 10H, Ar–H), 7.03 (d, 2H, J= 8.6
Hz, Ar–H), 6.96 (d, 2H, J= 8.0 Hz, Ar–H), 6.90 (d, 2H, J
= 8.3 Hz, Ar–H), 6.71 (s, 1H, pyrrole–CH), 2.54 (s, 3H,
O=C–CH3), 2.28 (s, 3H, Ar–CH3);

13C NMR: δ 21.2
(Ar–CH3), 26.5 (O=C–CH3), 110.7 (pyrrole–CH), 123.8
(Ar–C), 125.5 (Ar–C), 126.5 (Ar–C), 128.1 (Ar–C), 128.5
(Ar–C), 128.6 (Ar–C), 128.8 (Ar–C), 129.0 (Ar–C), 129.1
(Ar–C), 131.1 (Ar–C), 132.0 (Ar–C), 132.5 (Ar–C), 134.5
(Ar–C), 135.1 (Ar–C), 135.8 (Ar–C), 136.9 (Ar–C), 143.0
(Ar–C), 197.2 (C=O).
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1-(4-(3-Phenyl-2,5-di-p-tolyl-1H-pyrrol-1-yl)phenyl)
ethanone (3c)

White solid; yield: 84%; 1H NMR: δ 7.75 (d, 2H, J= 8.5
Hz, Ar–H), 7.20–7.06 (m, 9H, Ar–H), 7.02 (d, 2H, J= 8.6
Hz, Ar–H), 6.95 (d, 2H, J= 8.0 Hz, Ar–H), 6.90 (d, 2H, J
= 8.1 Hz, Ar–H), 6.68 (s, 1H, pyrrole–CH), 2.54 (s, 3H,
O=C–CH3), 2.30 (s, 3H, Ar–CH3), 2.28 (s, 3H, Ar–CH3);
13C NMR: δ 21.0 (Ar–CH3), 21.2 (Ar–CH3), 26.5
(O=C–CH3), 110.7 (pyrrole–CH), 123.7 (Ar–C), 126.5
(Ar–C), 127.9 (Ar–C), 128.0 (Ar–C), 128.5 (Ar–C), 128.6
(Ar–C), 128.7 (Ar–C), 128.8 (Ar–C), 129.0 (Ar–C), 129.2
(Ar–C), 131.2 (Ar–C), 131.7 (Ar–C), 132.6 (Ar–C), 132.8
(Ar–C), 133.4 (Ar–C), 135.1 (Ar–C), 136.8 (Ar–C), 143.1
(Ar–C), 197.2 (C=O).

General procedure for the preparation of 1,2,3,5-
tetrasubstituted pyrrolyl phenyl ethanol 4a–d

To a solution of 1,2,3,5-tetrasubstituted pyrrolylpheny-
lethanone (1 equiv) in MeOH and DCM (1:1), was added
NaBH4 (0.4 equiv) slowly at 0 °C. The resulting reaction
mixture was stirred at rt for 12 h. The reaction mixture was
quenched with aq. ammonium chloride and concentrated in
vacuo. The solvent was removed in vacuo, and the residue
was dissolved in EtOAc. The organic phase was washed
twice with water and once with brine solution. The organic
phase was dried over anhydrous Na2SO4 and filtered. The
solvent was removed in vacuo and the resulting compound
was purified by column chromatography to afford the
desired product.

General procedure for the preparation of 1-(4-(1-
bromoethyl)phenyl)-2,3,5-trisubstituted-1H-pyrrole
5a–d

To a solution of 1,2,3,5-tetrasubstituted pyrrolylpheny-
lethanol (1 equiv) in ether (10 v for 1 g) was added PBr3
(0.3 equiv) slowly at 0 °C. The resulting mixture was stirred
at rt for 1 h. The reaction was quenched with aq. KBr and
extracted with ethyl acetate. The organic phase was washed
twice with water, once with brine solution. The organic
phase was dried over anhydrous Na2SO4 and filtered. The
solvent was removed in vacuo to get crude, which was
directly used in the next step.

General procedure for the preparation of 1-(4-(1-
azidoethyl)phenyl)-2,3,5-trisubstituted-1H-pyrrole 6a–d

To a solution of 1-(4-(1-bromoethyl)phenyl)-2,3,5-trisub-
stituted-1H-pyrrole (1 equiv) in DCM:water (1:1), was
added sodium azide (1.5 equiv) followed by a catalytic
amount of TBAB (0.1eq.). The resulting reaction mixture

was stirred at rt for 12 h, the residue was dissolved in DCM,
the organic phase was washed twice with water, once with
brine. The combined organic layer was dried over anhy-
drous Na2SO4 and concentrated in vacuo. The crude com-
pound was directly used in next step.

General procedure for the preparation of triazole
substituted pyrroles 7a–x

To a solution of 1-(4-(1-azidoethyl)phenyl)-2,3,5-trisub-
stituted-1H-pyrrole (1 equiv) in THF:H2O (3:2) were added
CuSO4 (0.1 equiv), sodium ascorbate (0.05 equiv), and
alkyne derivative (1.1 equiv). The reaction mixture was
stirred at rt for 2 h. The reaction mixture was diluted with
ethyl acetate, the organic phase was washed twice with
water, once with brine. The organic phase was dried over
anhydrous Na2SO4 and filtered. The solvent was removed in
vacuo, The crude compound was purified by column
chromatography to afford the desired product with good
yield.

4-(1-(1-(4-(3-(4-chlorophenyl)-2,5-diphenyl-1H-pyrrol-1-
yl)phenyl)ethyl)-1H-1,2,3-triazol-4-yl)butan-1-ol (7a)

White solid, mp: 137–138 °C; yield: 83%; 1H NMR: δ
7.27–7.21 (m, 4H, Ar–H), 7.20–7.15 (m, 4H, Ar–H),
7.12–7.04 (m, 7H, Ar–H), 6.99–6.90 (m, 4H, Ar–H), 6.61
(s, 1H, pyrrole-H), 5.77 (qt, 1H, –CH), 3.68 (t, J= 6.4 Hz,
2H, –CH2OH) 2.74 (t, J= 7.6 Hz, 2H, –CH2–), 1.91 (d, J
= 7.0 Hz, 3H, –CH3), 1.76 (qt, 2H, –CH), 1.65 (qt, 2H,
–CH); 13C NMR: δ 21.1 (CH3–), 25.2 (–CH2–), 25.4
(–CH2–), 32.0 (C–CH2–), 59.2 (–CH2–OH), 62.2 (–CH–),
110.3 (Pyrrole-CH), 119.1 (Ar–C), 124.1 (Ar–C), 125.7
(Ar–C), 126.6 (Ar–C), 126.7 (Ar–C), 127.9 (Ar–C), 128.1
(Ar–C), 128.5 (Ar–C), 129.4 (Ar–C), 130.4 (Ar–C)), 130.8
(Ar–C), 132.4 (Ar–C), 132.5 (Ar–C),132.9 (Ar–C), 135.1
(Ar–C), 135.5 (Ar–C), 138.6 (Ar–C), 139.0 (Ar–C), 148.0
(Ar–C); IR (KBr): υ 758, 1092, 1211, 1483, 1600, 2934,
3063 cm−1; Electrospray Ionization Mass Spectrometry
(ESI-MS): m/z: 559 [M+H].

3-(1-(1-(4-(3-(4-chlorophenyl)-2,5-diphenyl-1H-pyrrol-1-
yl)phenyl)ethyl)-1H-1,2,3-triazol-4-yl)pyridine (7b)

White solid, m.p. 220–222 °C; yield: 89%; 1H NMR: δ 8.60
(d, J= 4.7, 1H, Pyridine-H), 8.19 (d, J= 7.9 Hz, 1H, pyr-
idine-H), 7.97 (s, 1H, pyridine-H), 7.78 (t, J= 5.9 Hz, 1H,
pyridine-H), 7.26–7.11 (m, 13H, Ar–H), 7.08–7.05 (m, 2H,
Ar–H), 6.99–6.96 (m, 2H, Ar–H), 6.92–6.89 (m, 2 H), 6.69
(s, 1H, pyrrole–H), 5.88 (qt, 1H, –CH–), 1.98 (d, J= 7.1,
3H, –CH3);

13C NMR: δ 21.1 (CH3–), 59.5 (–CH–), 110.3
(Pyrrole-CH), 118.0 (Ar–C), 124.1 (Ar–C), 125.5 (Ar–C),
125.7 (Ar–C), 126.6 (Ar–C), 126.8 (Ar–C), 127.9 (Ar–C),
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128.1 (Ar–C), 128.2 (Ar–C), 128.5 (Ar–C), 128.9 (Ar–C),
129.5 (Ar–C), 130.4 (Ar–C), 130.4 (Ar–C), 130.8 (Ar–C),
132.4 (Ar–C), 132.5 (Ar–C), 133.0 (Ar–C), 135.1 (Ar–C),
135.5 (Ar–C), 138.8 (Ar–C), 147.7(Ar–C); IR (KBr): υ 758,
1091, 1179, 1484, 1601, 2921, 3057 cm−1; ESI-MS: m/z:
578 [M+H].

2-(1-(1-(4-(3-(4-Chlorophenyl)-2,5-diphenyl-1H-pyrrol-1-
yl)phenyl)ethyl)-1H-1,2,3-triazol-4-yl)ethanol (7c)

White solid, m.p. 209–211 °C; yield: 87%; 1H NMR:
δ7.25–7.20 (m, 4H, Ar–H), 7.19–7.15 (m, 5H, Ar–H),
7.12–7.05 (m, 6H, Ar–H), 6.98 (s, 1H, triazole–H), 6.93 (t,
J= 8.3 Hz, 3H, Ar–H) 6.67 (s, 1H, pyrrole– H), 5.77 (qt, J,
1H, –CH), 3.95 (t, J= 5.2 Hz, 2H, –CH2OH), 2.94 (t, J=
5.2 Hz, 2H, –CH2–), 1.92 (d, J= 6.7 Hz, 3H, –CH3);

13C
NMR: δ 21.1 (CH3–), 28.6 (–CH2–), 59.4 (–CH2–OH), 61.5
(–CH–), 110.3 (pyrrole-CH), 120.0 (Ar–C), 124.1 (Ar–C),
125.8 (Ar–C), 126.6 (Ar–C), 126.7 (Ar–C), 127.9 (Ar–C),
128.1 (Ar–C), 128.1 (Ar–C), 128.2 (Ar–C), 128.5 (Ar–C),
129.5 (Ar–C), 130.4 (Ar–C), 130.9 (Ar–C), 132.4 (Ar–C),
132.5 (Ar–C), 132.9 (Ar–C), 135.1 (Ar–C), 135.5 (Ar–C),
138.7 (Ar–C), 138.8 (Ar–C); IR (KBr): υ 759, 1046, 1207,
1484, 1602, 2929, 3057 cm−1; ESI-MS: m/z: 545 [M+H].

1-(1-(4-(3-(4-Chlorophenyl)-2,5-diphenyl-1H-pyrrol-1-yl)
phenyl)ethyl)-4-p-tolyl-1H-1,2,3-triazole (7d)

White solid, m.p. 185–187 °C; yield: 95%; 1H NMR: δ
7.76–7.52 (m, 4H, Ar–H), 7.51–7.04 (m, 19H, Ar–H), 6.69
(s, 1H, pyrrole–H), 5.87 (qt, 1H, –CH), 2.37 (s 3H, –CH3),
2.02 (d, J= 7.0 Hz, 3H, –CH3);

13C NMR: δ 21.2
(CH3–CH–), 21.3 (Ar–CH3), 59.6 (–CH–), 109.1 (pyrrole-
CH), 117.8 (Ar–C), 120.6 (Ar–C), 125.1 (Ar–C), 125.5
(Ar–C), 125.8 (Ar–C), 125.9 (Ar–C), 126.7 (Ar–C), 127.2
(Ar–C), 127.6 (Ar–C), 127.6 (Ar–C), 128.0 (Ar–C), 128.1
(Ar–C), 128.3, (Ar–C), 128.6 (Ar–C), 128.9 (Ar–C), 129.4
(Ar–C), 132.4 (Ar–C), 134.7 (Ar–C), 134.9 (Ar–C), 138.0
(Ar–C), 138.3 (Ar–C), 140.3 (Ar–C), 142.4 (Ar–C), 147.9
(Ar–C); IR (KBr): υ 759, 1074, 1226, 1451, 1603, 2922,
3030 cm−1; ESI-MS: m/z: 591 [M+H].

1-(1-(4-(3-(4-Chlorophenyl)-2,5-diphenyl-1H-pyrrol-1-yl)
phenyl)ethyl)-4-hexyl-1H-1,2,3-triazole (7e)

White solid, m.p. 180–181 °C; yield: 90%; 1H NMR: δ
7.29–7.01 (m, 16H, Ar–H, triazole-H), 6.94 (t, J= 10.7 Hz,
3H, Ar–H), 6.67 (s, 1H, pyrrole-H), 5.76 (qt, 1H, –CH),
2.70 (t, J= 6.9 Hz, 2H, –CH2), 1.91 (d, J= 6.6 Hz, 3H,
–CH3), 1.72–1.59 (m, 2H, –CH2–), 1.43–1.19 (m, 6H,
–CH2–), 0.88 (t, J= 6.9 Hz, 3H, –CH3);

13C NMR: δ 14.1
(CH3–CH2–), 21.2 (CH3–CH–), 22.5 (–CH2–), 25.8
(–CH2–), 29.0 (–CH2–), 29.4 (–CH2–), 31.5(–CH2–), 59.2

(–CH–), 110.2 (pyrrole-CH), 119.0 (Ar–C), 123.4 (Ar–C),
125.5 (Ar–C), 126.4 (Ar–C), 126.6 (Ar–C), 127.9 (Ar–C),
128.1 (Ar–C), 128.6 (Ar–C), 128.6 (Ar–C), 129.3 (Ar–C),
129.5 (Ar–C), 131.2 (Ar–C), 132.7 (Ar–C), 134.6 (Ar–C),
136.0 (Ar–C), 136.7 (Ar–C), 138.7(Ar–C), 139.0(Ar–C); IR
(KBr): υ 758, 1039, 1207, 1484, 1601, 2925, 3058 cm−1;
ESI-MS: m/z: 585 [M+H]+; High-resolution mass spectra
(HRMS) (ESI) calcd for C38H38N4Cl, 585.27895 [M+
H]+, found 585.27900.

1-(1-(4-(3-(4-Chlorophenyl)-2,5-diphenyl-1H-pyrrol-1-yl)
phenyl)ethyl)-4-(4-pentylphenyl)-1H-1,2,3-triazole (7f)

White solid, m.p. 196–198 °C; yield: 92%; 1H NMR: δ 7.71
(d, J= 7.9 Hz, 2H, Ar–H), 7.48 (s, 1H, triazole-H),
7.28–7.20 (m, 6H, Ar–H), 7.19–7.14 (m, 5H, Ar–H),
7.13–7.06 (m, 5H, Ar–H), 6.90 (d, J= 8.3 Hz, 2H, Ar–H),
6.89 (d, J= 8.3 Hz, 2H, Ar–H), 6.67 (s, 1H, pyrrole-H),
5.84 (qt, 1H, –CH), 2.63 (t, J= 7.5 Hz, 2H, –CH2–), 1.97
(d, J= 6.9 Hz, 3H, –CH3), 1.67–1.57 (m, 4H, –CH2–),
1.37–1.28 (m, 2H, –CH), 0.89 (t, J= 6.6 Hz, 3H, –CH3);
13C NMR: δ 14.0 (CH3–CH2–), 21.1 (CH3–CH–), 22.5
(–CH2–), 31.0 (–CH2–), 31.4 (–CH2–), 35.6 (–CH2–), 59.4
(–CH–), 110.3 (pyrrole-CH), 117.7 (Ar–C), 124.1 (Ar–C),
125.5 (Ar–C), 125.7 (Ar–C), 126.6 (Ar–C), 126.8 (Ar–C),
127.8 (Ar–C), 128.0 (Ar–C), 128.2 (Ar–C), 128.6 (Ar–C),
128.8 (Ar–C), 129.5 (Ar–C), 130.5 (Ar–C), 130.8 (Ar–C),
132.4 (Ar–C), 132.5 (Ar–C), 133.0(Ar–C), 135.2(Ar–C),
135.5 (Ar–C), 138.7 (Ar–C), 138.9 (Ar–C), 143.1(Ar–C),
147.9 (Ar–C); IR (KBr): υ 758, 1092, 1224, 1483, 1601,
2926, 3026 cm−1; ESI-MS: m/z: 647 [M+H].

(1-(1-(4-(2,3-Diphenyl-5-p-tolyl-1H-pyrrol-1-yl)phenyl)
ethyl)-1H-1,2,3-triazol-4-yl)methanol (7g)

White solid, m.p. 93–95 °C; yield: 87%; 1H NMR: δ 7.29
(s, 1H, triazole-H), 7.26–7.11 (m, 8H, Ar–H), 7.09–7.04 (m,
4H, Ar–H), 6.98 (d, J= 8.3 Hz 2H, Ar–H), 6.94(d, J= 7.9
Hz, 2H, Ar–H), 6.88 (d, J= 8.0, 2 H), 6.69 (s, 1H, pyrrole-
H), 5.78 (qt, 1H, –OH), 4.77 (s, 2H, –CH2–), 2.28 (s, 3H,
–CH3), 1.91 (d, J= 7.1 Hz, 3H, –CH3); 13C NMR: δ 21.2
(CH3–CH–), 21.2 (CH3–Ar), 56.4 (–CH2–OH), 59.6
(–CH–), 110.1 (pyrrole-CH), 120.2 (Ar–C), 123.4 (Ar–C),
125.4 (Ar–C), 126.4 (Ar–C), 126.6 (Ar–C), 127.9 (Ar–C),
128.0 (Ar–C), 128.5 (Ar–C), 128.6 (Ar–C), 129.2 (Ar–C),
129.5 (Ar–C), 131.1 (Ar–C), 132.0 (Ar–C), 132.6
(Ar–C),134.5 (Ar–C), 135.9 (Ar–C), 136.7 (Ar–C), 138.1
(Ar–C), 139.1 (Ar–C), 147.5 (Ar–C); IR (KBr): υ 759,
1031, 1211, 1486, 1601, 2921, 3030 cm−1; ESI-MS: m/z:
510 [M+H]+; HRMS (ESI) calcd for C34H31ON4,
511.24924 [M+H]+, found: 511.24870.

Med Chem Res



3-(1-(1-(4-(2,3-Diphenyl-5-p-tolyl-1H-pyrrol-1-yl)phenyl)
ethyl)-1H-1,2,3-triazol-4-yl)pyridine (7h)

White solid, m.p. 176–178 °C; yield: 90%; 1H NMR: δ 8.59
(s, 1H, pyridine-H), 8.19 (d, J= 2.2 Hz, 1H, pyridine-H),
7.95 (s, 1H, pyridine-H), 7.79(t, J= 6.8 Hz, 1H, pyridine-
H), 7.27–7.17 (m, 8H, Ar–H), 7.15–7.07 (m, 5H, Ar–H),
6.99–6.93 (m, 4H, Ar–H), 6.87 (d, J= 7.7 Hz, 2 H), 6.69 (s,
1H, pyrrole-H), 5.87 (qt, 1H, –CH–), 2.22 (s, 3H, –CH3),
1.97(d, J= 6.7 Hz, 3 H); 13C NMR: δ 21.1 (CH3–CH–),
21.2 (CH3–Ar), 59.5 (–CH–), 110.1 (pyrrole–CH), 117.7
(Ar–C), 123.4 (Ar–C), 125.4 (Ar–C), 126.4 (Ar–C), 126.7
(Ar–C), 127.7 (Ar–C), 127.9 (Ar–C), 128.0 (Ar–C), 128.5
(Ar–C), 128.6 (Ar–C), 129.3 (Ar–C), 129.4 (Ar–C), 129.6
(Ar–C), 131.2 (Ar–C), 132.1(Ar–C), 132.7 (Ar–C), 134.6
(Ar–C), 135.9 (Ar–C), 136.7 (Ar–C), 137.9 (Ar–C), 138.3
(Ar–C), 139.1 (Ar–C), 147.7 (Ar–C); IR (KBr): υ 758,

1078, 1202, 1485, 1599, 2987, 3027 cm−1; ESI-MS: m/z:
558 [M+H]+; HRMS (ESI) calcd for C38H32N5,
558.26550 [M+H]+, found: 558.26564.

1-(1-(4-(2,3-Diphenyl-5-p-tolyl-1H-pyrrol-1-yl)phenyl)
ethyl)-4-phenyl-1H-1,2,3--triazole (7i)

White solid, m.p. 150–152 °C; yield: 92%; 1H NMR: δ7.79
(d, 2H, J= 7.7 Hz, Ar–H), 7.47 (s, 1H, triazole-H), 7.42 (t,
J= 7.6 Hz, 2H, Ar–H), 7.33 (t, J= 7.1 Hz, 1H, Ar–H),
7.26–7.07 (m, 12H, Ar–H), 7.00 (d, 2H, J= 8.2 Hz, Ar–H),
6.90 (qt, 4H, Ar–H), 6.69 (s, 1H, pyrrole-H), 5.82 (qt, J=
1H, –CH), 2.23 (s, 3H, –CH3) 1.96 (d, J= 7.0 Hz, 3H,
–CH3;

13C NMR: δ 21.1 (CH3–CH–), 21.1 (CH3–Ar), 59.5
(–CH–), 110.1 (pyrrole-CH), 118.0(Ar–C), 123.3 (Ar–C),
125.4 (Ar–C), 125.5 (Ar–C), 126.4 (Ar–C), 126.7 (Ar–C),
127.9 (Ar–C), 128.5 (Ar–C), 18.6(Ar–C), 128.7 (Ar–C),
129.3 (Ar–C), 129.6 (Ar–C), 130.5 (Ar–C), 131.1 (Ar–C),
132.1 (Ar–C), 132.7 (Ar–C), 134.5 (Ar–C), 135.9 (Ar–C),
136.7 (Ar–C), 138.2 (Ar–C), 139.1 (Ar–C), 147.6 (Ar–C);
IR (KBr): υ 760, 1077, 1202, 1485, 1600, 2920, 3030 cm−1;
ESI-MS: m/z: 579 [M+Na]+; HRMS (ESI) calcd for
C41H31N4, 579.25256 [M+H]+, found: 557.27041.

2-(1-(1-(4-(2,3-Diphenyl-5-p-tolyl-1H-pyrrol-1-yl)phenyl)
ethyl)-1H-1,2,3-triazol-4-yl)ethanol (7j)

White solid, m.p. 99–101 °C; yield: 85%; 1H NMR: δ
7.29–7.11 (m, 9H, Ar–H), 7.10–7.01 (m, 3H, Ar–H),
7.00–6.85 (m, 7H, Ar–H), 6.68 (s, 1H, pyrrole-H), 5.75 (qt,
1H, –CH), 4.12–3.77 (m, 2H, –CH2OH) 2.89 (t, J= 10.1
Hz, 2H, –CH2–), 2.27 (s, 3H, –CH3), 1.90 (d, J= 6.7 Hz,
3H, –CH3); 13C NMR: δ 21.1 (CH3–CH–), 21.2 (CH3–Ar),
28.6 (–CH2–), 59.5 (–CH–), 61.4 (–CH2–OH), 110.1 (pyr-
role-CH), 123.4 (Ar–C), 125.4 (Ar–C), 126.3 (Ar–C), 126.5
(Ar–C), 127.9 (Ar–C), 128.0 (Ar–C), 128.6 (Ar–C), 129.2
(Ar–C), 129.5 (Ar–C), 131.1 (Ar–C), 132.0 (Ar–C), 132.6
(Ar–C),134.5 (Ar–C), 135.9 (Ar–C), 136.7 (Ar–C), 138.3
(Ar–C), 139.0 (Ar–C); IR (KBr): υ 759, 1047, 1213, 1485,
1600, 2921, 3348 cm−1; ESI-MS: m/z: 525 [M+H];
HRMS (ESI) calcd for C34H38ON2Cl, 525.26672 [M+
H]+, found: 525.26429.

4-(1-(1-(4-(2,3-diphenyl-5-p-tolyl-1H-pyrrol-1-yl)phenyl)
ethyl)-1H-1,2,3-triazol-4-yl)butan-1-ol (7k)

White solid, m.p. 90–93 °C; Yield: 79%; 1H NMR: δ
7.27–7.11 (m, 8H, Ar–H), 7.10–7.01 (m, 4H, Ar–H),
7.00–6.86 (m, 6H, Ar–H), 6.68 (s, 1H, triazole-H), 5.77 (qt,
1H, –CH), 3.68 (t, J= 6.1 Hz, 2H, –CH2OH), 2.73 (t, J=
7.4 Hz, 2H, –CH2–), 2.28 (s, 3H, –CH3), 1.89 (d, J= 7.0
Hz, 3H, –CH3), 1.75 (qt, 2H, –CH2), 1.63 (qt, 2H, –CH2);
13C NMR: δ 21.1 (CH3–CH–), 21.2 (CH3–Ar), 25.2

A = rifampicin, B = isoniazid, C = ethambutol, D = ciprofloxacin

Fig. 4 Graphical representation of anti-tubercular activity (MIC<
12.5 µg/mL) and cytotoxicity A= rifampicin, B= isoniazid, C=
ethambutol, and D= ciprofloxacin

Table 2 Percentage (%) of cell inhibition and selectivity index (SI)
values of triazole linked pyrrole derivatives (7a–x) against HEK-
293Tcell line

No MIC (µg/mL) % inh IC50 approximation SI index

7b 3.125 29.654 >50 ~ 16

7c 6.25 28.658 >50 ~ 8

7f 6.25 3.254 >>50 ~ 8

7g 0.78 8.954 >>50 ~ 64.1

7j 1.56 28.569 >50 ~ 32

7l 0.78 18.956 >50 ~ 64.1

7n 6.25 6.589 >>50 ~ 8

7q 3.125 26.584 >>50 ~ 16

7r 6.25 2.564 >>50 ~ 8

7u 3.125 25.463 >50 ~ 16

7v 3.125 13.568 13.568 ~ 16

% inh: Percentage (%) of cell inhibition
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(–CH2–), 25.5 (–CH2–), 32.1 (–CH2–), 59.3 (–CH–), 62.2
(–CH2–OH), 110.1 (pyrrole-CH), 123.4 (Ar–C), 125.4
(Ar–C), 126.3 (Ar–C), 126.5 (Ar–C), 127.9 (Ar–C), 128.0
(Ar–C), 128.5 (Ar–C), 128.5(Ar–C), 129.3(Ar–C), 129.5
(Ar–C), 131.1 (Ar–C), 132.0 (Ar–C), 132.7 (Ar–C), 134.5
(Ar–C), 135.9 (Ar–C), 136.7 (Ar–C), 138.6 (Ar–C), 138.9
(Ar–C); IR (KBr): υ 759, 1041, 1212, 1485, 1600, 2935,
3052 cm−1; ESI-MS: m/z: 553 [M+H]+; HRMS (ESI)
calcd for C37H37ON4, 553.29655 [M+H]+, found:
553.29666.

1-(1-(4-(2,3-Diphenyl-5-p-tolyl-1H-pyrrol-1-yl)phenyl)
ethyl)-4-p-tolyl-1H-1,2,3-triazole (7l)

White solid, m.p. 185–187 °C; yield: 93%; 1H NMR: δ 7.68
(d, J= 7.5 Hz, 2H, Ar–H), 7.43 (s, 1H, triazole-H),
7.27–7.20 (m, 6H, Ar–H), 7.19–7.06 (m, 8H, Ar–H), 6.99
(d, J= 8.3 Hz, 2H, Ar–H), 6.91 (qt, 4H, Ar–H), 6.69 (s, 1H,
pyrrole-H), 5.83 (qt, 1H, –CH), 2.38 (s 3H, –CH3), 2.24 (s,
3H, –CH3), 1.96 (d, J= 6.7 Hz, 3H, –CH3), 1.92 (d, J=
6.7 Hz, 2H, –CH3);

13C NMR: δ 21.0 (CH3–CH–), 21.1
(CH3–Ar), 21.2 (CH3–Ar), 59.5 (–CH–), 110.1(pyrrole-
CH), 117.7 (Ar–C), 123.3 (Ar–C), 125.4 (Ar–C), 126.3
(Ar–C), 126.7 (Ar–C), 127.9 (Ar–C), 128.5 (Ar–C), 128.5
(Ar–C), 128.8 (Ar–C), 129.4 (Ar–C), 129.6 (Ar–C), 131.1
(Ar–C), 131.8 (Ar–C), 132.7 (Ar–C), 132.9 (Ar–C), 134.4
(Ar–C), 134.9 (Ar–C), 136.6 (Ar–C), 137.9 (Ar–C), 138.2
(Ar–C), 139.2 (Ar–C), 147.7 (Ar–C); IR (KBr): υ 757,
1077, 1225, 1485, 1601, 2921, 3028 cm−1; ESI-MS: m/z:
593 [M+Na]+; HRMS (ESI) calcd for C42 H33 N4Na,
593.26874 [M+Na]+, found: 593.26866.

1-(1-(4-(2,3-Diphenyl-5-p-tolyl-1H-pyrrol-1-yl)phenyl)
ethyl)-4-(4-pentylphenyl)-1H-1,2,3-triazole (7m)

White solid, mp: 128–131 °C; yield: 90%; 1H NMR: δ 7.69
(d, J= 8.3 Hz, 2H, Ar–H), 7.43 (s, 1H, triazole-H)
7.28–7.06 (m, 14H, Ar–H), 6.98 (d, J= 8.4 Hz, 2H, Ar–H),
6.95–6.86 (m, 4H, Ar–H), 6.69 (s, 1H, Pyrrole- H), 5.81 (qt,
1H, –CH), 2.63 (t, J= 7.7 Hz, 2H, –CH2–), 2.24 (s 3H,
–CH3), 1.96 (d, J= 6.9 Hz, 3H, –CH3), 1.69–1.58 (m, 2H,
–CH2–),1.37–1.24 (m, 4H, –CH2–), 0.89 (t, J= 6.7 Hz, 3H,
–CH3);

13C NMR: δ 13.9 (CH3–CH–), 21.0 (CH3–CH–),
21.1 (CH3–Ar), 22.4 (–CH2–), 31.0 (–CH2–), 31.3 (–CH2–),
35.6 (–CH2–), 59.5 (–CH–), 110.1 (pyrrole-CH), 117.7
(Ar–C), 123.4 (Ar–C), 125.4 (Ar–C), 126.4 (Ar–C), 126.6
(Ar–C), 127.9 (Ar–C), 128.0 (Ar–C), 128.5 (Ar–C), 128.6
(Ar–C), 129.3 (Ar–C), 129.6 (Ar–C), 131.1 (Ar–C), 132.1
(Ar–C), 132.7, (Ar–C), 134.6 (Ar–C), 134.6 (Ar–C), 135.9
(Ar–C), 136.7 (Ar–C), 138.4 (Ar–C), 139.1 (Ar–C), 143.0
(Ar–C), 147.7 (Ar–C); IR (KBr): υ 757, 1074, 1215, 1485,
1600, 2853, 2924 cm−1; ESI-MS: m/z: 627 [M+H];

HRMS (ESI) calcd for C44 H43 N4, 627.34822 [M+H],
found: 627.34851.

4-(1-(1-(4-(3-phenyl-2,5-di-p-tolyl-1H-pyrrol-1-yl)phenyl)
ethyl)-1H-1,2,3-triazol-4-yl)butan-1-ol (7n)

White solid, m.p. 92–94 °C; yield: 88%; 1H NMR: δ
7.23–6.85 (m, 18H, Ar–H), 6.66 (s, 1H, pyrrole- H), 5.74
(qt, 1H, –CH), 3.68 (t, J= 5.9 Hz, 2H, –CH2OH), 2.73 (t, J
= 6.2 Hz, 2H, –CH2–), 2.29 (s, 3H, –CH3), 2.28 (s, 3H,
–CH3) 1.89 (d, J= 5.7 Hz, 3H, –CH3), 1.76 (qt, 2H,
–CH2–), 1.64 (qt, 2H, –CH2);

13C NMR: δ 21.0
(CH3–CH–), 21.1 (CH3–Ar–), 21.1 (CH3–Ar), 25.2
(–CH2–), 25.4 (–CH2–), 32.0 (–CH2–), 59.2 (–CH–),
62.1 (–CH2–OH–), 110.1 (pyrrole-CH), 119.1 (Ar–C),
123.3 (Ar–C), 126.2 (Ar–C), 126.5 (Ar–C), 127.8 (Ar–C),
128.4 (Ar–C), 128.5 (Ar–C), 128.7 (Ar–C), 129.4 (Ar–C),
131.1 (Ar–C), 131.8 (Ar–C), 132.7 (Ar–C), 132.9 (Ar–C),
134.4 (Ar–C), 134.9 (Ar–C), 136.5 (Ar–C), 138.5 (Ar–C),
139.0 (Ar–C), 147.9 (Ar–C); IR (KBr): υ 762, 1077, 1263,
1491, 1599, 2919, 3031 cm−1; ESI-MS: m/z: 567
[M+H]+.

3-(1-(1-(4-(3-Phenyl-2,5-di-p-tolyl-1H-pyrrol-1-yl)phenyl)
ethyl)-1H-1,2,3-triazol-4-yl)pyridine (7o)

White solid, mp: 179–181 °C; yield: 91%; 1H NMR: δ 8.59
(d, J= 4.5 Hz, 1H, Pyridine-H), 8.19 (d, J= 7.5 Hz 1H,
Pyridine-H), 7.96 (s, 1H, Pyridine-H), 7.79(t, J= 14.4 Hz,
1H, Pyridine-H), 7.28–6.84 (m, 18H, Ar–H), 6.67 (s, 1H,
Pyrrole-H), 5.87 (qt, 1H, –CH–), 2.30 (s, 3H, –CH3), 2.22
(s, 3H, –CH3), 1.96(d, J= 7.5, 3 H); 13C NMR: δ 21.0
(CH3–CH–), 21.1 (CH3–Ar), 21.1 (CH3–Ar), 59.6 (–CH–),
110.1 (pyrrole-CH), 120.1 (Ar–C),120.6 (Ar–C), 122.8
(Ar–C), 123.3 (Ar–C), 126.3 (Ar–C), 126.6 (Ar–C), 127.9
(Ar–C), 128.0 (Ar–C), 128.5 (Ar–C), 128.8 (Ar–C), 129.3
(Ar–C), 129.5 (Ar–C), 131.1 (Ar–C), 131.8 (Ar–C), 132.6
(Ar–C), 133.0 (Ar–C), 134.4 (Ar–C), 134.9 (Ar–C), 136.6
(Ar–C), 136.9 (Ar–C), 138.0 (Ar–C), 139.2 (Ar–C), 148.2
(Ar–C), 149.2(Ar–C), 150.1 (Ar–C); IR (KBr): υ 760, 1080,
1213, 1491, 1516, 2919, 3050 cm−1; ESI-MS: m/z: 572
[M+H]+; HRMS (ESI) calcd for C39 H34 N5, 572.28174
[M+H]+, found: 572.28183.

4-Phenyl-1-(1-(4-(3-phenyl-2,5-di-p-tolyl-1H-pyrrol-1-yl)
phenyl)ethyl)-1H-1,2,3-triazole (7p)

White solid, m.p. 180–182 °C; yield: 94%; 1H NMR: δ7.71
(d, J= 7.3 Hz, 2H, Ar–H), 7.39 (s, 1H, triazole-H), 7.34 (t,
J= 7.5 Hz, 1H, Ar–H), 7.26 (d, J= 7.1 Hz, 1 H), 7.08–6.98
(m, 10H, Ar–H), 6.92(t, J= 8.1 Hz, 4H, Ar–H), 6.85–6.79
(m, 4H, Ar–H), 6.59 (s, 1H, pyrrole- H), 5.74 (qt, 1H,
–CH), 2.21 (s, 3H, –CH3), 2.16 (s, 3H, –CH3), 1.88 (d, J=
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6.9 Hz, 3H, –CH3;
13C NMR: δ 21.1(CH3–CH–), 21.1

(CH3–Ar), 59.5 (–CH–), 110.1 (pyrrole-CH), 118.0 (Ar–C),
123.4 (Ar–C), 125.4 (Ar–C), 125.5 (Ar–C), 126.4 (Ar–C),
126.7 (Ar–C), 127.9 (Ar–C), 128.0 (Ar–C), 128.1 (Ar–C),
128.5 (Ar–C), 128.6 (Ar–C), 128.7 (Ar–C), 129.3 (Ar–C),
129.6 (Ar–C), 130.5 (Ar–C), 131.1 (Ar–C), 132.1 (Ar–C),
132.7 (Ar–C), 134.5 (Ar–C), 135.9 (Ar–C), 136.7 (Ar–C),
138.2 (Ar–C), 139.1 (Ar–C), 147.6 (Ar–C); IR (KBr): υ
762, 1077, 1273, 1599, 1657, 2986, 3031 cm−1; ESI-MS:
m/z: 571 [M+H]; HRMS (ESI) calcd for C40H35N4,
571.28623 [M+H], found: 571.28620.

2-(1-(1-(4-(3-Phenyl-2,5-di-p-tolyl-1H-pyrrol-1-yl)phenyl)
ethyl)-1H-1,2,3-triazol-4-yl)ethanol (7q)

White solid, m.p. 90–92 °C; yield: 83%; 1H NMR: δ
7.62–6.75 (m, 18H, Ar–H), 6.67 (s, 1H, pyrrole- H), 5.76
(qt, 1H, –CH), 4.24–3.72(m, 1H, CH2OH), 2.91 (t, J= 3.9
Hz, 2H, –CH2) 2.27, (s, 6H, –CH3), 1.91 (d, J= 6.2 Hz, 3H,
–CH3);

13C NMR: δ 21.0 (CH3–CH–), 21.1 (CH3–Ar), 21.2
(CH3–Ar), 29.6 (–CH2–), 59.7 (–CH–), 61.4 (–CH2–OH),
110.1 (pyrrole-CH), 123.3 (Ar–C), 126.3 (Ar–C), 126.5
(Ar–C), 127.8 (Ar–C), 128.5 (Ar–C), 128.5 (Ar–C), 128.8
(Ar–C), 129.3 (Ar–C), 129.5 (Ar–C), 131.1 (Ar–C), 131.8
(Ar–C), 132.7 (Ar–C), 132.9 (Ar–C), 134.4 (Ar–C), 134.9
(Ar–C), 136.6 (Ar–C), 138.2 (Ar–C), 139.1 (Ar–C); IR
(KBr): υ 760, 1069, 1239, 1484, 1657, 2987, 3048 cm−1;
ESI-MS: m/z: 538 [M+H]; HRMS (ESI) calcd for C36

H35ON4, 539.28054 [M+H], found: 539.28002.

1-(1-(4-(3-Phenyl-2,5-di-p-tolyl-1H-pyrrol-1-yl)phenyl)
ethyl)-4-p-tolyl-1H-1,2,3-triazole (7r)

White solid, m.p. 203–205 °C; yield: 92%; 1H NMR: δ 7.60
(d, J= 8.1 Hz, 2H, Ar–H), 7.36 (s, 1H, triazole-H) 7.16 (d,
J= 9.0 Hz, 2H, Ar–H), 7.08–6.98 (m, 10H, Ar–H),
6.97–6.89 (m, 3H, Ar–H), 6.85–6.81 (m, 4H, Ar–H), 6.59
(s, 1H, pyrrole-H), 5.74 (qt, 1H, –CH), 2.30, (s, 3H, –CH3),
2.22 (s, 3H, –CH3), 2.17 (s, 3H, –CH3), 1.88 (d, J= 6.9 Hz,
3H, –CH3); 13C NMR: δ 21.0 (CH3–CH–), 21.1 (CH3–Ar),
21.1 (CH3–Ar), 21.2 (CH3–Ar), 59.5 (–CH–), 110.1 (pyr-
role-CH), 117.7 (Ar–C), 123.3 (Ar–C), 125.4 (Ar–C), 126.3
(Ar–C), 126.7 (Ar–C), 127.7 (Ar–C), 127.9 (Ar–C), 128.5
(Ar–C), 128.5 (Ar–C), 128.8 (Ar–C), 129.4 (Ar–C), 129.6
(Ar–C), 131.1 (Ar–C), 131.8 (Ar–C), 132.7 (Ar–C), 132.9
(Ar–C), 134.4 (Ar–C), 134.9 (Ar–C), 136.6 (Ar–C), 137.9
(Ar–C), 138.2 (Ar–C), 139.2 (Ar–C), 147.7 (Ar–C); IR
(KBr): υ 695, 1076, 1224, 1491, 1599, 2919, 3023 cm−1;
ESI-MS: m/z: 585 [M+H]; HRMS (ESI) calcd for C41
H37 N4, 585.30127 [M+H], found: 585.30227.

4-(4-Pentylphenyl)-1-(1-(4-(3-phenyl-2,5-di-p-tolyl-1H-
pyrrol-1-yl)phenyl)ethyl)-1H-1,2,3-triazole (7s)

White solid, mp: 137–139 °C; yield: 89%; 1H NMR: δ 7.70
(d, J= 8.3 Hz, 2H, Ar–H), 7.43 (s, 1H, triazole-H), 7.24 (d,
J= 8.3 Hz, 2H, Ar–H), 7.19–7.06 (m, 10H, Ar–H),
7.05–6.96 (m, 3H, Ar–H), 6.90 (qt, 4H, Ar–H), 6.67 (s, 1H,
Pyrrole- H), 5.82 (qt, 1H, –CH), 2.63, (t, 2H, –CH2), 2.30
(s, 3H, –CH3), 2.24 (s, 3H, –CH3), 1.96 (d, J= 7.5 Hz, 3H,
–CH3), 1.70–1.55 (m, 4H, –CH2–), 1.41–1.28 (m, 2H,
–CH2–), 0.89(s, 3H, –CH3);

13C NMR: δ 13.9
(CH3–CH2–), 21.0 (CH3–CH–), 21.0 (CH3–Ar), 21.1
(CH3–Ar), 22.4 (–CH2–), 31.0 (–CH2–), 31.3 (–CH2–), 35.6
(–CH2–), 59.4 (CH3–CH–), 110.1 (pyrrole-CH), 117.7
(Ar–C), 123.3 (Ar–C), 125.4 (Ar–C), 126.3 (Ar–C), 126.6
(Ar–C), 127.9 (Ar–C), 128.5 (Ar–C), 128.8 (Ar–C), 129.4
(Ar–C), 129.6 (Ar–C), 131.1 (Ar–C), 131.8 (Ar–C), 132.7
(Ar–C), 132.9 (Ar–C), 134.4 (Ar–C), 134.9 (Ar–C), 136.6
(Ar–C), 138.2 (Ar–C), 139.1(Ar–C), 143.0 (Ar–C), 147.7
(Ar–C); IR (KBr): υ 760, 1080, 1213, 1490, 1598, 2919,
3048 cm−1; ESI-MS: m/z: 641 [M+H]; HRMS (ESI) calcd
for C45 H45 N4, 641.36558 [M+H], found: 641.36568.

3-(1-(1-(4-(2,3,5-Triphenyl-1H-pyrrol-1-yl)phenyl)ethyl)-
1H-1,2,3-triazol-4-yl)pyridine (7t)

White solid, m.p. 130–132 °C; yield: 88%; 1H NMR: δ 8.58
(d, J= 4.5 Hz, 1H, pyridine-H), 8.18 (d, J= 7.1 Hz, 1H,
pyridine-H), 7.95 (s, 1H, pyridine-H), 7.77 (t, 1H, pyridine-
H), 7.28–7.05 (m, 17H, Ar–H), 7.04–6.95 (m, 3H, Ar–H),
6.70 (s, 1H, pyrrole- H), 5.86 (qt, 1H, –CH), 1.96 (d, J=
6.7 Hz, 3H, –CH3);

13C NMR: δ 21.1 (CH3–CH–), 59.6
(–CH–), 110.1 (pyrrole-CH), 120.1 (Ar–C), 120.6 (Ar–C),
122.8 (Ar–C), 123.6 (Ar–C), 125.5 (Ar–C), 126.5 (Ar–C),
126.6 (Ar–C), 127.1 (Ar–C), 127.9 (Ar–C), 128.0 (Ar–C),
128.0 (Ar–C), 128.5 (Ar–C), 129.5 (Ar–C), 131.3 (Ar–C),
132.0 (Ar–C), 132.3 (Ar–C), 132.5 (Ar–C), 134.7(Ar–C),
135.8 (Ar–C), 136.9 (Ar–C), 138.2 (Ar–C), 139.0 (Ar–C),
148.2 (Ar–C), 149.2 (Ar–C), 150.1 (Ar–C); IR (KBr): υ
758, 1078, 1180, 1483, 1600, 2924, 3051 cm−1; ESI-MS:
m/z: 544 [M+H].

4-Phenyl-1-(1-(4-(2,3,5-triphenyl-1H-pyrrol-1-yl)phenyl)
ethyl)-1H-1,2,3-triazole (7u)

White solid, m.p. 161–164 °C; yield: 92%; 1H NMR: δ 7.79
(d, J= 7.1 Hz,2H, Ar–H), 7.46 (s, 1H, triazole-H) 7.43 (t, J
= 7.7 Hz, 2H, Ar–H), 7.34 (t, J= 7.4 Hz, 1H, Ar–H),
7.26–7.09 (m, 15H, Ar–H), 7.08–6.99 (m, 4H, Ar–H), 6.70
(s, 1H, pyrrole-H), 5.82 (qt, 1H, –CH), 1.97 (d, J= 7.0 Hz,
3H, –CH3);

13C NMR: δ 21.1 (CH3–CH–), 59.5 (–CH–),
110.1 (pyrrole-CH), 118.1 (Ar–C), 123.6 (Ar–C), 125.5
(Ar–C), 126.5 (Ar–C), 126.7 (Ar–C), 127.1 (Ar–C), 127.8
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(Ar–C), 127.9 (Ar–C), 128.0 (Ar–C), 128.1 (Ar–C), 128.5
(Ar–C), 128.7 (Ar–C), 129.6 (Ar–C), 130.5 (Ar–C), 131.4
(Ar–C), 132.0 (Ar–C), 132.4 (Ar–C), 132.6 (Ar–C), 134.7
(Ar–C), 135.8 (Ar–C), 138.4 (Ar–C), 139.1 (Ar–C), 147.6
(Ar–C); IR (KBr): υ 758, 1029, 1207, 1484, 1598, 2936,
3051 cm−1; ESI-MS: m/z: 543 [M+H].

4-(1-(1-(4-(2,3,5-triphenyl-1H-pyrrol-1-yl)phenyl)ethyl)-
1H-1,2,3-triazol-4-yl)butan-1-ol (7v)

White solid, m.p. 94–96 °C; yield: 82%; 1H NMR: δ
7.29–7.06 (m, 14H, Ar–H), 7.04–6.94 (m, 6H, Ar–H), 6.70
(s, 1H, pyrrole- H), 5.73 (qt, J= 6.9 Hz, 1H, –CH), 3.68 (t,
J= 5.9 Hz, 2H, –CH2OH), 2.73 (t, J= 7.3 Hz, 2H, –CH2–),
1.88 (d, J= 6.7 Hz, 3H, –CH3), 1.74 (qt, 2H, –CH), 1.64,
(qt, 2H,–CH); 13C NMR: δ 21.1 (CH3–CH–), 25.2 (–CH2–),
25.4 (–CH2–), 32.0 (–CH2–), 59.2 (–CH–), 62.2
(–CH2–OH), 110.1 (pyrrole-CH), 119.1 (Ar–C), 123.0
(Ar–C), 125.5 (Ar–C), 126.4 (Ar–C), 126.5 (Ar–C), 127.0
(Ar–C), 127.8 (Ar–C), 127.9 (Ar–C), 128.0 (Ar–C), 128.5
(Ar–C), 129.4 (Ar–C), 131.3 (Ar–C), 132.0 (Ar–C), 132.3
(Ar–C), 132.6 (Ar–C), 134.7 (Ar–C), 135.7 (Ar–C), 138.6
(Ar–C), 138.8 (Ar–C), 147.9 (Ar–C); IR (KBr): υ 758,
1040, 1212, 1484, 1600, 2935, 3054 cm−1; ESI-MS: m/z:
525 [M+H].

4-Hexyl-1-(1-(4-(2,3,5-triphenyl-1H-pyrrol-1-yl)phenyl)
ethyl)-1H-1,2,3-triazole (7w)

White solid, m.p. 115–117 °C; yield: 88%; 1H NMR: δ 7.23
(t, J= 6.7 Hz, 2H, Ar–H), 7.19–7.09 (m, 10H, Ar–H),
7.06–6.93 (m, 8H, Ar–H), 6.70 (s, 1H, pyrrole- H), 5.75 (qt,
1H, –CH), 2.68 (t, J= 7.5 Hz, 2H, –CH2–), 1.88 (d, J= 7.5
Hz, 3H, –CH3), 1.63 (t, J= 7. 5 Hz, 2H, –CH2–),1.41–1.24
(m, 6H, –CH2), 0.87 (t, J= 13.4 Hz, 3H, –CH3);

13C NMR:
(75MHz, CDCl3): δ 14.0 (CH3–CH2–), 21.1 (CH3–CH–),
22.5 (–CH2–), 25.7 (–CH2–), 28.9 (–CH2–), 29.3 (–CH2–),
31.5 (–CH2–), 59.2 (–CH–), 110.1 (pyrrole-CH), 118.9
(Ar–C), 123.6 (Ar–C), 125.5 (Ar–C), 126.4 (Ar–C), 126.5
(Ar–C), 127.8 (Ar–C), 127.9 (Ar–C), 128.0 (Ar–C), 128.5
(Ar–C), 129.4 (Ar–C), 131.3 (Ar–C), 132.0 (Ar–C), 132.4
(Ar–C), 132.6 (Ar–C), 134.7 (Ar–C), 135.8 (Ar–C), 138.8
(Ar–C), 138.8 (Ar–C), 148.4 (Ar–C); IR (KBr): υ 757,
1068, 1212, 1484, 1599, 2926, 3053 cm−1; ESI-MS: m/z:
551 [M+H]+; HRMS (ESI) calcd for C38H39N4,
551.31733 [M+H]+, found: 551.31692.

4-(4-Pentylphenyl)-1-(1-(4-(2,3,5-triphenyl-1H-pyrrol-1-yl)
phenyl)ethyl)-1H-1,2,3-triazole (7x)

White solid, m.p. 193–195 °C; yield: 87%; 1H NMR: δ 7.69
(d, J= 8.0 Hz, 2H, Ar–H), 7.42 (s, 1H, triazole-
H),7.26–7.08 (m, 17H, Ar–H), 7.04–6.98 (m, 4H, Ar–H),

6.70 (s, 1H, pyrrole-H), 5.80 (qt, 1H,–CH), 2.63 (t, J= 7.6
Hz, 2H, –CH2–), 1.95 (d, J= 7.1 Hz, 3H, –CH3), 1.74–1.59
(m, 2H, –CH2–), 1.37–1.26 (m, 4H, –CH2–CH2–), 0.89 (t,
J= 6.7 Hz, 3H, CH3);

13C NMR: δ 14.0 (CH3–CH2–), 21.1
(CH3–CH–), 22.4 (–CH2–), 31.0 (–CH2–), 31.4 (–CH2–),
35.6 (–CH2–), 59.4 (–CH–), 110.1 (pyrrole-CH), 117.7
(Ar–C), 123.6 (Ar–C), 125.4 (Ar–C), 125.5 (Ar–C), 126.4
(Ar–C), 126.6 (Ar–C), 127.0 (Ar–C), 127.8 (Ar–C), 127.9
(Ar–C), 128.0 (Ar–C), 128.5 (Ar–C), 128.8 (Ar–C), 129.5
(Ar–C), 131.4(Ar–C), 132.0 (Ar–C), 132.4 (Ar–C), 132.6
(Ar–C), 134.7 (Ar–C), 135.8 (Ar–C), 139.0 (Ar–C), 143.0
(Ar–C), 147.7 (Ar–C); IR (KBr): υ 758, 1076, 1225, 1484,
1599, 2925, 3051 cm−1; ESI-MS: m/z: 613 [M+H].
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