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 1,2,4-Triazoles are a distinctive class of nitrogen-

containing heterocycles with a wide variety of 

pharmacological properties.
1
 They are highly recurrent in 

many natural products and commercial drugs.
2
 This scaffold 

has been a key focus in multiple therapeutics, including 

anticancer, antibacterial, antifungal, antimicrobial, antiviral, 

antidepressant, anticonvulsant, anti-inflammatory, and 

central nervous system modulators.
3
 Substituted 1,2,4-

triazoles have also been applied in pesticides, functional 

materials, and as ligands in catalysis.
4
 Based on the high 

importance of this scaffold, the development of methods for 

its synthesis has been a focus in organic chemistry.
5
  Most of 

the available methods entail approaches with low 

efficiencies and harsh reaction conditions.
6
 Recently, 

Nagasawa reported that nitriles and amidines undergo 

oxidative cyclizations to provide the respective triazoles.
7
 A 

more recent report has shown that nitriles and 

hydroxylamine can also form 1,2,4-trilazoles.
8
 These 

contributions are novel, but they still lack generality and 

overall efficiency. Thus, the development of simplified, 

more efficient, and cost effective methods for the synthesis 

of 1,2,4-triazoles remains a goal in the chemistry 

community. 

This laboratory is focused on developing efficient and green 

methods for the synthesis of pharmacologically relevant 

nitrogen-containing heterocycles.
9
 Herein we report the 

direct reaction of substituted hydrazines and imides under 

mild conditions for the efficient synthesis of the proposed 

triazoles. Symmetrical and unsymmetrical imides are easily 

accessible synthons through several synthetic methods.
10

 

Thus, this approach would allow access to a wide variety of 

1,2,4-triazoles with diverse substitution patterns.  

Table 1. Triazole synthesis optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This study began by assessing classical conditions to initiate 

condensation between hydrazines and carbonyl derivatives 

(Table 1). However, most of these required extremely high heat 

or high concentrations of strong acids or bases.
11
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Herein we report the highly efficient, environmentally friendly alumina-promoted synthesis of 

N-aryl-1,2,4-triazoles with a wide variety of substitution patterns from commercially available 

hydrazines with symmetrical and unsymmetrical imides. Aromatic hydrazines with a variety of 

substitution patterns provided the corresponding 1,2,4-triazoles in very high yields. 

Unsymmetrical imides with a wide variety of functional groups also provide the respective 

triazoles with high yield and complete regioselectivities. The high productivity and mild 

conditions allow for the large-scale preparation of 1,2,4-triazoles.     

2009 Elsevier Ltd. All rights reserved.
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The initial concept for this reaction estimated that strong polar 

media and a highly oxophilic additive would efficiently promote 

the desired transformation. Moreover, similar studies have shown 

that rutile (TiO2) can act as a mild and efficient promoter for 

some organic transformations.
12

 The proposed reaction in ethyl 

lactate and TiO2 unfortunately was only able to provide the 

desired triazoles in 26% yield (Entry 1). Other solvents at 

different temperatures were found to provide the expected 

triazole in moderate yields (Entries 2-4). Moreover, Brønsted 

acid media (tartaric acid/DMU mixture) allowed for the isolated 

yield to rise to 66% with almost complete conversion (Entry 5). 

The attention turned to other metal oxides as potential promoters 

for this reaction, unfortunately without improving the formation 

of the desired triazoles.
13

 On the other hand, neutral alumina in 

combination with TiO2 at 40 
o
C provided triazole 1 in 78% yield 

(Entry 6). Moreover, basic alumina in DMF at 60 
o
C with 

hydrazine in excess provided triazole 1 in considerably higher 

yield (88%, entry 7). The results with EtOAc, CHCl3, and 

acetonitrile provided significantly lower yields (Entries 8-10). 

The optimization efforts for the synthesis of triazole 1 showed 

that in DMF at 60 
o
C followed by filtration through Al2O3 yields 

are very high and required no purification.  

Having identified the optimized conditions, we then focused on 

studying the scope of this reaction for aromatic hydrazines. This 

laboratory is dedicated to developing efficient methods for the 

synthesis of nitrogen-containing heterocycles. Thus, this 

approach would allow access to a wide variety of 1,2,4-triazoles 

with diverse substitution patterns (Table 2).  

The scope study initially focused on assessing the effect of 

monosubstituted phenylhydrazines. The results showed that o-

bromo-phenyl hydrazine provided the respective triazole in very 

high yield (Entry 1). Similarly, o-trifluoromethyl and o-methyl 

were successful at producing the expected triazoles (Entries 2 and 

3). Moreover, o-chloro and m-fluoro phenyl hydrazine provided 

the proposed triazoles in equally high yields (Entries 4 and 5). 

Phenylhydrazines with halogens in the para position were also 

suitable substrates for this reaction. Thus, p-chloro and p-fluoro 

phenylhydrazines displayed great conversions and yields for this 

reaction (Entries 6 and 7). There was a concern that para 

activated phenylhydrazines would trigger side reactions and 

eventually require difficult purifications. Successful efforts found 

that p-isopropyl, 2,6-dimethyl, 2,4-dimethyl, and o-ethyl 

provided the respective triazoles in excellent yields without 

traces of side products (Entries 8-11). The focus then turned 

towards highly deactivated phenylhydrazines. It was found that 

3,4-dichloro, 3,5-dichloro phenylhydrazines were successful at 

providing the respective triazoles without any purification step 

(Entries 12 and 13). Moreover, m-nitro, p-fluoro, and p-cyano 

phenylhydrazines were also successful at providing the expected 

product in high yields without evidence of side reactions (Entries 

14-16).  

The large hydrazine scope for this reaction encouraged us to look 

into exploring the efficiency against unsymmetrical imides. 

Several reports have described the synthesis of these molecules. 

However, it was found that only by reacting aromatic nitriles 

with alkyl anhydrides in the presence of PTSA at 80 
o
C the imide 

was formed. These efforts were able to produce a large array of 

unsymmetrical imides in significant yields.
10c

 The interest mostly 

lay in unsymmetrical imides with significantly different 

electronic and steric properties. Thus, we anticipated that N-

acetyl benzamides would react in high regioselectivity for the 

predicted triazole (Table 3). 

Table 2 Reaction scope for hydrazines 
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The scope for unsymmetrical imides began by reacting N-

acetylbenzamide with m-nitro phenylhydrazine under the 

optimized conditions and the results showed that the triazole 

scaffold was successfully isolated as a single isomer (Entry 1). 

Then, it was found that N-acetylthiophene-2-carboxamide and N-

acetylcinnamide reacted with high efficiencies to provide the 

expected triazoles (Entries 2 and 3). 

Table 3 Reaction Scope for Imides 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There was also interest in assessing the effect of substituents on 

the benzamide group. The results showed that deactivated N-acyl 

o-nitrobenzamide reacted with slightly lower yield (Entry 4). 

Despite the lower yield, no other triazole scaffold was isolated. 

On the other hand, activated N-acylpiperonylamide provided the 

triazole in very good yield (Entry 5). Similar high yields were 

found with N-butyryl benzamides (Entries 6 and 7). Complete 

selectivity for the 1,5-regioisomer was observed and the high 

regioselectivity was rationalized due to the hydrazine preference 

for the electrophilic acetyl group on the imide substrate. These 

results were confirmed by NOESY experiments on the resulting 

triazoles (SI).  

This study was also concerned with obtaining a better 

understanding of the reaction mechanism for this 

transformation (Scheme 1). Initial assessment of the effect 

of Al2O3 found that heating the substrates in DMF at 60 
o
C 

in the absence of alumina provided N-acetyl amidrazone as 

the only organic product.
14

 Thus, it was hypothesized that 

upon initial condensation between the hydrazine and the 

imide, the corresponding amidrazone undergoes alumina-

promoted intramolecular cyclization to ultimately provide 

the observed triazole. Metal oxides have been reported to 

promote condensation pathways for the synthesis of 

heterocyclic scaffolds.
15

 This effect can be rationalized due 

to the aluminium oxide (32-63 microns) strong surface 

lattice interactions with the N-acetyl amidrazone 

intermediate; thus promoting the triazole-forming step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1 Proposed 1,2,4-triazole synthesis mechanism 

 

Lastly, the attention shifted towards determining the green 

properties of this method. We were interested in assessing 

the recyclability and scalability of this reaction (Scheme 2). 

The recyclability for the reaction was assessed through five 

consecutive 20 mmol reactions using the same Al2O3 batch, 

which was recovered after each filtration. 
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a. Hydrazine (40 mmol), diacetamide  (20 mmol) in DMF(10 mL) at 

60 oC for 12h, then filtered through Al2O3 (10 g) and then washed

with EtOAc (40 mL). b. Isolated yield after solvent evaporation.
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efficiency, minimal use of organic solvents, recyclability, and 

scalability of this method highlights its potential application in 

large-scale 1,2,4-triazole manufacturing.     

In summary, we have developed a highly efficient alumina-

promoted synthesis of substituted N-aryl-1,2,4-triazoles 

from hydrazines and easily accessible imides. The mild 

reaction conditions allow for this method to tolerate a large 

array of functional groups with diverse electronic and steric 

properties. Additionally, all of the reaction products were 

isolated without the need of complicated purifications. In the 

case of unsymmetrical imides the reaction preceded with 

complete regioselectivity. The proposed mechanism 

logically validates the dramatic effect observed with 

alumina. The reaction can be efficiently scaled-up and the 

promoter can be reused without affecting the reaction yield. 

Future efforts will focus on further understanding this 

reaction for the construction of more structurally diverse 

triazoles and other nitrogen-containing heterocycles. 
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