1789

A Total Synthesis of Yellowish Aphid Pigment Furanaphin through Fries Rearrangement Assisted by Boron Trifluoride-Acetic Acid Complex

Taichi Nishimura, Takeki Iwata, Hironori Maegawa, Takeshi Nishii, Masami Matsugasako, Hiroto Kaku, Mitsuyo Horikawa, Makoto Inai, Tetsuto Tsunoda*

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan Fax +81(88)6553051; E-mail: tsunoda@ph.bunri-u.ac.jp

Received: 23.04.2012; Accepted after revision: 22.05.2012

Abstract: The yellowish aphid pigment furanaphin, isolated from *Aphis spiraecola* and possessing cytotoxicity against HL-60 (human promyelocytic leukemia-60) cells, was synthesized by utilizing the Fries rearrangement assisted with a BF₃·2AcOH complex as a key step. It was confirmed that the complex effectively mediated the reaction even though the compounds had an electron-withdrawing substituent.

Key words: dyes, pigments, Fries rearrangement, total synthesis, natural products

Aphids produce novel polyketide pigments such as protoaphins (yellow pigments),^{1–7} uroleuconaphines (yellow and red pigments),^{8,9} viridaphin A₁ glucoside (green pigment),¹⁰ furanaphin (1; yellow pigment having fluorescence),¹¹ and megouraphin glucosides (yellow pigments having fluorescence).¹² The presence of pigments is important for expressing aphid body color and, presumably, subtle differences in body coloration (color polymorphism) affect predator–prey interactions.¹³ Currently, aphid coloration has generated interest from the perspectives of host–endosymbiont and evolutionary–coevolutionary relationships.^{14,15} Furthermore, based on their cytotoxic and antibacterial activities, aphid pigments have been proposed to protect aphids from invasive species such as viruses, bacteria, and fungi.¹⁰

Furanaphin (1; Scheme 1) was isolated from *Aphis spirae-cola* (max. 1.5 mm long) as a yellowish hydrophobic compound having a unique naphthofuran ring system, which was found to be active (IC₅₀ 25 μ M) against HL-60 cells.¹¹ To continue our investigations into the biological activities of **1**, including antiviral, antibacterial, and antifungal activities, an adequate supply of **1** was required. Herein, we report the total synthesis of **1** by utilizing the Fries rearrangement as a key step.

Our retrosynthetic analysis of 1 is illustrated in Scheme 1. Methyl ketone 3 would be used as a key intermediate in the synthesis of 1. After selective reduction of the ethoxycarbonyl group of 3, the resulting product 2 was expected to undergo spontaneous cyclization upon acidic treatment to generate the dihydrofuran ring. Fries rearrangement of acetate 4, which could be afforded by Horner–

SYNLETT 2012, 23, 1789–1792 Advanced online publication: 29.06.2012 DOI: 10.1055/s-0031-1290429; Art ID: ST-2012-U0349-L © Georg Thieme Verlag Stuttgart · New York Wadsworth–Emmons reaction of aldehyde 5 with 6 followed by intramolecular cyclization, would be used to prepare methyl ketone 3.

Scheme 1 Retrosynthesis of 1

For the preparation of rearrangement precursor **4** (Scheme 2), according to the method of Rizzacasa,¹⁶ we chose 3,5dimethoxybenzaldehyde (**5**) as a starting material and converted it into unsaturated ester **7** with *E* geometry at the double bond by the Horner–Wadsworth–Emmons reaction with **6** (61% yield). The *tert*-butyl group of ester **7** was removed by treatment with trifluoroacetic acid (TFA)

Scheme 2 Preparation of rearrangement precursor 4

to give carboxylic acid 8, without purification, which underwent cyclization to afford naphthalene derivative 4 through a mixed acid anhydride, in 96% yield (two steps).

With the desired precursor 4 in hand, we tried the Fries rearrangement¹⁷ of acetate **4** using 10 equiv of BF₃·OEt₂ in 1,2-dichloroethane heated to reflux for 30 min (Scheme 3). Although the desired product 3 was produced, the yield was only 42%, with 49% of hydrolyzed compound 9.

A previous study reported that the efficiency of the Fries rearrangement was decreased by the presence of an electron-withdrawing group.¹⁸ In the course of our studies to refine the yield of the rearrangement, we found that the BF₃·2AcOH complex¹⁹ assisted the reaction significantly. To confirm the generality and usefulness of this complex for the Fries rearrangement, we tested several compounds 4 and 10–13. The results, shown in Table 1, compare the outcome of the reaction using this complex to those achieved with BF₃·OEt₂.

Scheme 3 Fries rearrangement of acetate 4

When BF_3 ·OEt₂ was employed, we confirmed that the presence of electron-withdrawing groups retarded the efficiency of acyl migration dramatically (compare Table 1, entry 3 vs. entry 5 and entry 7 vs. entry 9), and the yields of the desired reaction products were low to moderate in all cases (entries 1, 3, 5, 7 and 9). In contrast, use of the

 Table 1
 Optimization of the Fries Rearrangement; Scope of Substrates and Comparison of BF₃ Complexes

ОН

ОН

$ \begin{array}{c} OAc \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $					
Entry	Compounds	Conditions Boron (equiv)	Time (h)	Yield (%) A B	
1 2	OAc 10	$BF_{3} \cdot OEt_{2} (10)$ BF_{3} \cdot 2AcOH (5)	24 3	34 92	27
3	OAc	BF ₃ ·OEt ₂ (10)	15	50	44
4	11	BF ₃ ·2AcOH (5)	2	98	_
5	CO ₂ Et	BF ₃ ·OEt ₂ (10)	24	15	68
6		BF ₃ ·2AcOH (10)	12	74	2
7	MeO OAc	BF ₃ ·OEt ₂ (10)	0.5	63	32
8ª	MeO 13	BF ₃ ·2AcOH (10)	1	89	11
9	MeO OAc	BF ₃ ·OEt ₂ (10)	0.5	42	49
10 ^a	MeO CO ₂ Et	BF ₃ ·2AcOH (10)	0.5	91	8

^a In CH₂Cl₂ at reflux.

Synlett 2012, 23, 1789-1792

© Georg Thieme Verlag Stuttgart · New York

Scheme 4 Synthesis of furanaphin (1)

 BF_3 ·2AcOH complex made a remarkable difference (entries 2, 4, 6, 8 and 10), even for the reactions with substrates having an electron-withdrawing group (entries 6 and 10).

With the desired product **3** obtained in 91% yield (Table 1, entry 10),²⁰ the hydroxyl and acetyl groups of **3** were protected as a silyl ether and a silyl enol ether (TBSOTf, 2,6-lutidine in CH_2Cl_2), respectively (Scheme 4). Reduction of **14** with LiAlH₄ at 0 °C gave alcohol **15** in quantitative yield; subsequent treatment of **15** with BBr₃ cleaved the methyl and silyl ethers and induced spontaneous cyclization under acidic reaction conditions to give furanaphin (**1**) in 18% yield.

As an alternative route, selective cleavage of the methyl ether of **3** was carried out with BCl₃ to give **16**, which was silylated with TBSOTf (5 equiv) in the presence of 2,6-lutidine in CH₂Cl₂ to afford silyl enol ether **17** in quantitative yield. After reduction of **17**, the resulting alcohol **18** was subjected to cleavage of the ether linkages with BBr₃ to give **1**²¹ in 50% yield. All spectroscopic data (¹H, ¹³C NMR, IR, and HRMS) for the synthetic furanaphin (**1**) agreed with those reported previously in the literature.¹¹

In summary, we have achieved the total synthesis of furanaphin (1) by utilizing the Fries rearrangement as a key step and found that the BF₃·2AcOH complex satisfactorily provided the desired product. Further applications of this reaction and biological activities of 1 are under investigation in our laboratory and will be reported in due course.

Acknowledgment

This work was supported partially by a Grant-in-Aid for Scientific Research (C) from MEXT (the Ministry of Education, Culture, Sports, Science and Technology of Japan). We are also thankful to MEXT-Senryaku, 2008-2012.

References and Notes

 Duewell, H.; Human, J. P. E.; Johnson, A. W.; MacDonald, S. F.; Todd, A. R. *Nature* **1948**, *162*, 759.

- (2) Brown, B. R.; Ekstrand, T.; Johnson, A. W.; MacDonald, S. F.; Todd, A. R. J. Chem. Soc. 1952, 4925.
- (3) Cameron, D. W.; Cromartie, R. I. T.; Kingston, D. G. I.; Todd, L. J. Chem. Soc. 1964, 51.
- (4) Cameron, D. W.; Chan, H. W.-S.; Kingston, D. G. I. J. Chem. Soc. 1965, 4363.
- (5) Cameron, D. W.; Chan, H. W.-S. J. Chem. Soc. C 1966, 1825.
- (6) Bowie, J. H.; Cameron, D. W.; Findlay, J. A.; Quartey, J. A. K. *Nature* 1966, *210*, 395.
- (7) Banks, H. J.; Cameron, D. W. Aust. J. Chem. 1972, 25, 2199.
- (8) Horikawa, M.; Hashimoto, T.; Asakawa, Y.; Takaoka, S.; Tanaka, M.; Kaku, H.; Nishii, T.; Yamaguchi, K.; Masu, H.; Kawase, M.; Suzuki, S.; Sato, M.; Tsunoda, T. *Tetrahedron* 2006, *62*, 9072.
- (9) Horikawa, M.; Tanaka, M.; Kaku, H.; Nishii, T.; Tsunoda, T. *Tetrahedron* **2008**, *64*, 5515.
- (10) Horikawa, M.; Hoshiyama, T.; Matsuzawa, M.; Shugyo, T.; Tanaka, M.; Suzuki, S.; Sato, M.; Ito, T.; Asakawa, Y.; Kaku, H.; Nishii, T.; Inai, M.; Takahashi, S.; Tsunoda, T. *J. Nat. Prod.* **2011**, *74*, 1812.
- Horikawa, M.; Noguchi, T.; Takaoka, S.; Kawase, M.; Sato, M.; Tsunoda, T. *Tetrahedron* **2004**, *60*, 1229.
- (12) Horikawa, M.; Kikuchi, D.; Imai, T.; Tanaka, M.; Kaku, H.; Nishii, T.; Inai, M.; Takahashi, S.; Tsunoda, T. *Heterocycles* 2012, *85*, 95.
- (13) Losey, J. E.; Ives, A. R.; Harmon, J.; Ballantyne, F.; Brown, C. *Nature* 1997, *388*, 269.
- (14) Tsuchida, T.; Koga, R.; Horikawa, M.; Tsunoda, T.; Maoka, T.; Matsumoto, S.; Simon, J.; Fukatsu, T. *Science* 2010, *330*, 1102.
- (15) Moran, N. A.; Jarvik, T. Science 2010, 328, 624.
- (16) (a) Rizzacasa, M. A.; Sargent, M. V. *Aust. J. Chem.* 1987, *40*, 1737. (b) For an alternative synthetic route to 4, see: Hauser, F. M.; Sengupta, D.; Corlett, S. A. *J. Org. Chem.* 1994, *59*, 1967.
- (17) (a) Rizzacasa, M. A.; Sargent, M. V. Aust. J. Chem. 1988, 41, 1087. (b) Singh, S. B.; Graham, P. L.; Reamer, R. A.; Cordingley, M. G. Bioorg. Med. Chem. Lett. 2001, 11, 3143.
- (18) Blatt, A. H. Org. React. 1942, 1, 342.
- (19) The Fries rearrangement using the BF₃·2CH₃CO₂H complex was reported. The complex acts as an acyl donor, but the rearrangement of reactants having electron-withdrawing groups was not investigated, see: Davies, J. S. H.; McCrea, P. A.; Norris, W. L.; Ramage, G. R. J. Chem. Soc. 1950, 3206.
- (20) Fries Rearrangement of 4: To a solution of acetate 4 (104.1 mg, 0.327 mmol) in CH₂Cl₂ (0.5 mL) was added

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.

BF₃·2AcOH (440 µL, 3.16 mmol) under an Ar atmosphere, and the resulting mixture was heated at reflux for 30 min. After addition of H₂O (3 mL) at 0 °C, the resulting mixture was extracted with CH_2Cl_2 (3 × 5 mL), and the combined organic extracts were washed with brine (10 mL), dried over MgSO₄, filtered, and concentrated. The residue was purified by silica gel column chromatography (*n*-hexane–EtOAc, 8:1) to give ethyl 3-acetyl-4-hydroxy-5,7-dimethoxy-2naphthoate (**3**) in 91% yield as colorless crystals; mp 100– 101 °C (EtOAc). ¹H NMR (400 MHz, CDCl₃): δ = 9.64 (s, 1 H), 7.75 (d, *J* = 0.4 Hz, 1 H), 6.77 (d, *J* = 2.0 Hz, 1 H), 6.57 (d, *J* = 2.0 Hz, 1 H), 4.35 (q, *J* = 7.2 Hz, 2 H), 4.04 (s, 3 H), 3.90 (s, 3 H), 2.65 (s, 3 H), 1.38 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 203.7, 166.7, 159.0, 157.7, 152.2, 136.5, 128.4, 122.0, 120.7, 111.9, 100.5, 100.2, 61.5, 56.4, 55.5, 31.8, 14.0. IR (ATR): 3329, 1708, 1624, 1578, 1364, 1250, 1198, 1153, 1111, 1045 cm⁻¹. MS (EI): m/z (%)= 318 [M]⁺, 303, 275 (100). HRMS (EI): m/z calcd for C₁₇H₁₈O₆: 318.1103; found: 318.1128.

(21) **Furanaphin (1)**: Orange-yellow needles (MeOH); mp 218– 219 °C (MeOH) {Lit¹¹ 211–214 °C (dec)}. ¹H NMR (400 MHz, acetone- d_6): δ = 14.28 (s, 1 H), 9.17 (s, 1 H), 6.40 (dd, J = 2.4, 2.4 Hz, 1 H), 6.35 (d, J = 2.4 Hz, 1 H), 6.17 (d, J = 2.4 Hz, 1 H), 5.51 (d, J = 2.4 Hz, 2 H), 2.67 (s, 3 H). ¹³C NMR (100 MHz, acetone- d_6): δ = 184.8, 184.3, 167.4, 164.7, 143.9, 143.5, 115.2, 111.7, 107.4, 104.7, 100.5, 77.6, 16.1. IR (ATR): 3333, 1650, 1569, 1382, 1170, 1153, 1130, 1085, 985, 887, 823 cm⁻¹. MS (EI): m/z (%) = 231 [M+H]⁺, 230 (100) [M]⁺. HRMS (EI): m/z calcd for C₁₃H₁₀O₄: 230.0579; found: 230.0575. Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.