Synthesis and some properties of 4-alkyl-5-cyano-6-mercapto-3,4-dihydropyridin-2(1*H*)-ones

V. D. Dyachenko,^{a*} S. G. Krivokolysko,^a and V. P. Litvinov^b

^aT. G. Shevchenko Lugansk State Pedagogical Institute, 348011 Lugansk, Ukraine ^bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: 007 (095) 135 5328

Condensation of propionic (or acetic) aldehyde, cyanothioacetamide, Meldrum's acid, and N-methylmorpholine occurs via the intermediate formation of the corresponding Michael adducts and yields 4-alkyl-5-cyano-6-mercapto-3,4-dihydropyridin-2(1H)-ones. The oxidation of the reaction products with DMSO and their alkylation were studied.

Key words: condensation, aliphatic aldehydes, Meldrum's acid, Michael adducts, cyclization, oxidation, alkylation.

Meldrum's acid and its derivatives have been used successfully for the synthesis of hetaryl-substituted piperidin-2(1*H*)-ones,¹ 4-aryl-3,4-dihydropyridin-2(1*H*)ones,² and hexahydroquinolin-2-one derivatives³. Recently⁴ we have shown that the adducts resulting from the addition of Meldrum's acid to arylmethylenecyanothioacetamides can be cyclized to 4-aryl-5-cyano-6-mercapto-3,4-dihydropyridin-2(1*H*)-ones. However, 4-alkyl-3-cyano-3,4-dihydropyridin-2(1*H*)-ones, which would certainly be promising synthons for the synthesis of biologically active compounds,⁵ have not yet been obtained.

In this work, we studied the condensation of aliphatic aldehydes (1), cyanothioacetamide (2), and Meldrum's acid (3) in ethanol at 20 °C in the presence of excess *N*-methylmorpholine (Scheme 1). It was found that this reaction yields Michael adducts, which were isolated as *N*-methylmorpholinium salts (4). Their structures are in agreement with the data of spectroscopic studies (see Experimental). Up to now, adducts of this type have been known only for R = Ar, Het.⁶

Refluxing compound 4a in ethanol gives *N*-methylmorpholinium 3-cyano-4-ethyl-6-oxo-1,4,5,6-tetrahydropyridine-2-thiolate (5) (method *A*); this product can also be obtained by refluxing equimolar amounts of propionic aldehyde (1a), cyanothioacetamide (2), Meldrum's acid (3), and an excess of *N*-methylmorpholine in ethanol for 3 h (method *B*).

Treatment of compound 5 with dilute hydrochloric acid yields 5-cyano-4-ethyl-6-mercapto-3,4-dihydropyridin-2(1H)-one (6a) (method C). Compounds 6a,c, which exist in DMSO solutions as mixtures of prototropic tautomers 6A and 6B as indicated by the data of ¹H NMR spectroscopy (see Experimental), can also be obtained without isolation of the intermediate products (method D). The reaction of aldehyde 1b with cyano-thioacetamide 2 and Meldrum's acid 3 under similar conditions affords a complex mixture of products; we were not able to isolate compound 6b from this mixture.

To confirm the structures of compounds 6a,c, 5-cyano-6-mercapto-4-methyl-3,4-dihydropyridin-2(1*H*)-one (6c) was oxidized by heating in DMSO to substituted pyridone 7, which we have obtained previously by the reaction of ethyl acetoacetate enamine with cyanothioacetamide.⁷

Alkylation of salts 5 with halides 8 gave sulfides 10 (method E); these compounds were also synthesized by the reaction of mercaptans 6 with halides 8 in a basic medium (method F). The alkylation of pyridones 7 with halides 9 in DMF in the presence of an aqueous solution of KOH also occurs at the sulfur atom, despite the presence of other nucleophilic centers (C=O, NH) in the molecule of 7. The use of an excess of the base in this reaction results in the formation of substituted thieno[2,3-b]pyridines 12, whose structure is not at variance with the results of physicochemical and spectral studies (Tables 1 and 2).

Experimental

¹H NMR spectra were recorded on a Bruker-WP-100 SY spectrometer (100 MHz) in DMSO-d₆ using tetramethylsilane as the standard. IR spectra were obtained on an IKS-29 spectrophotometer in Vaseline oil. The individuality of the compounds was checked by TLC on Silufol UV-254 plates using the acetone—heptane system (3 : 5).

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2016-2019, November, 1997.

1066-5285/97/4611-1912 \$18.00 © 1997 Plenum Publishing Corporation

N-Methylmorpholininm 2,2-dimethyl-6-oxo-5-(1-cyano-1-thiocarbamoylbut-2-yl)-1,3-dioxacyclohex-4-en-4-olate (4a). *N*-Methylmorpholine (12 mmol) was added with stirring at 20 °C to a suspension of propionic aldehyde (1a) (10 mmol), cyanothioacetamide (2) (10 mmol), and Meldrum's acid (3) (10 mmol) in 15 mL of ethanol. After 3 h, the precipitate was filtered off and washed with acetone. Yield 3.2 g (83%), mp. 133-135 °C. Found (%): C, 53.13; H, 6.91; N, 10.77; S, 8.15. C₁₇H₂₇N₃O₅S. Calculated (%): C, 52.97; H, 7.06; N, 10.90; S, 8.32. IR, v/cm⁻¹: 3180-3300 (NH₂), 2248 (CN), 1670 (C=O). ¹H NMR, δ : 9.75 (br.s, 2 H, NH₂); 4.58 (d, 1 H, CHCN, ${}^{3}J_{H(2)-H(1)} = 11$ Hz); 3.79 (m, 4 H, CH₂OCH₂); 3.30 (m, 1 H, H(1)); 2.77 (s, 3 H, NCH₃); 1.50 (s, 6 H, (CH₃)₂); 1.42 (m, 2 H, CH₂); 0.70 (t, 3 H, CH₃).

N-Methylmorpholininm 5-(1-cyano-3-methyl-1-thiocarbamoylbut-2-yl)-2,2-dimethyl-6-oxo-1,3-dioxacyclohex-4-en-4-olate (4b) was prepared similarly to compound 4a using the corresponding aldehyde, isobutanal (1b). Yield 3.0 g (75%), m.p. $127-129 \circ C$. Found (%): C, 54.00; H, 7.50; N, 10.30; S, 7.88. C₁₈H₂₉N₃O₅S. Calculated (%): C, 54.12; H, 7.32; N, 10.52; S, 8.03. IR, v/cm⁻¹: 3150, 3300 (NH₂); 2250 (CN); 1652 (C=O). ¹H NMR, δ : 9.78 (br.s, 2 H, NH₂); 5.05 (d, 1 H, CHCN, $J_{H(2)-H(1)} = 12$ Hz); 3.78 (m, 4 H, CH₂OCH₂); 3.47 (dd, 1 H, H(1)); 3.11 (m, 4 H, CH₂NCH₂); 2.75 (s, 3 H, NCH₃); 1.51 (s, 6 H, (CH₃)₂); 1.15 (m, 1 H, <u>CH</u>(CH₃)₂); 0.78 (m, 6 H, CH(<u>CH₃)₂).</u> *N*-Methylmorpholinium 3-cyano-4-ethyl-6-oxo-1,4,5,6tetrahydropyridine-2-thiolate (5). Method *A*. A suspension of adduct 4a (10 mmol) and *N*-methylmorpholine (2 mmol) in 15 mL of ethanol was refluxed for 3 h and allowed to stand for 12 h at 0 °C. The resulting precipitate was filtered off and washed with acetone. Yield 2.1 g (73%), m.p. 108–110 °C. Found (%): C, 55.00; H, 7.60; N, 14.72; S, 11.19. $C_{13}H_{21}N_{3}O_5S$. Calculated (%): C, 55.10; H, 7.47; N, 14.83; S, 11.31. IR, ν/cm^{-1} : 3200 (NH): 2172 (CN); 1678 (CONH). ¹H NMR, δ : 8.46 (br.s, 1 H, NH); 3.77 (m, 4 H, CH₂OCH₂); 3.20 (m, 4 H, CH₂NCH₂); 2.80 (s, 3 H, NCH₃); 2.30 (m, 2 H, CH₂(3)); 1.33 (m, 3 H, H(4) and CH₂); 0.84 (t, 3 H, CH₃).

Method B. A suspension of propionic aldehyde (1a) (10 mmol), cyanothioacetamide (2) (10 mmol), Meldrum's acid (3) (10 mmol), and N-methylmorpholine (12 mmol) in 15 mL of ethanol was refluxed for 3 h and allowed to stand for 12 h at 0 °C. The precipitate was filtered off and washed with acetone. The yield of salt 5 was 1.7 g (61%) and its melting point and TLC characteristics were identical to those of the sample obtained by method A.

5-Cyano-4-ethyl-6-mercapto-3,4-dihydropyridin-2(1*H*)-one (6a). Method C. A suspension of salt 5 (10 mmol) in 15 mL of ethanol was diluted by a 10% aqueous solution of HCl to pH 5, and the mixture was filtered. After 12 h, the precipitate was filtered off and washed with ethanol. Yield 1.15 g (63%), m.p. 130-132 °C (ethanol). Found (%): C, 52.64; H, 5.38; N,

Com- pound	IR, v/cm^{-1}				¹ Η NMR, δ			
	NH	C≡N	NHCO, C=O	NH	H(3)	R, CH ₃ (4)	SCH ₂ , NH ₂	H(4), Z
10a	3224	2212	1677	10.33	2.70 m	1.06 d	2.45 s	2.25 (m, 1 H, H(4))
105	3210	2192	1685	10.36	2.20-2.75 m	1.44 m*; 0.88 t	2.46 s	1.44 (m, 1 H, H(4))*
10c	3185	2220	1710	10.38	2.20—2.75 m	1.44 m*; 0.89 t	2.99 q	1.19 (t, 3 H, CH ₃); 1.44 (m, 1 H, H(4))*
10d	3190	2200	1682, 1724	10.45	2.25 dd; 2.70 dd ${}^{3}J = 18$ Hz	1.45 m*; 0.88 t	3.92 s	4.09 (q, 2 H, OCH ₂); 1.19 (t, 3 H, <u>CH</u> ₃ CH ₂ O); 1.45 (m, 1 H, H(4))*
10e	3250	2203	1660, 1710	10.43	2.10-2.95 m*	3.51 m	4.80 s	2.08 μ 7.87 (both d, 2 H, C ₆ H ₄); 7.35–7.70 (m, 5 H, Ph); 2.25 (m, 1 H, H(4))*
11a	3200	2220	1690	12.05	6.42 s	2.33 s	4.23 s	7.33 (s, 5 H, C ₆ H ₅); 5.15 (s, 2 H, OCH ₂)
115	3222	2224	1690	11.96	6.41 s	2.33 s	4.15 s	3.66 (s, 3 H, OCH ₃)
11c	3211	2220	1682	12.06	6.40 s	2.30 s	4.49 s	5.20-5.55 (m, 5 H, Ph)
11d	3209	2222	1675	11.99	6.41 s	2.33 s	4.15 s	10.30 (s, 1 H, NHCO); 5.52 (s, 4 H, C ₆ H ₄)
11e	3275	2218	1695	11.87	6.38 s	2.33 s	4.49 s	7.35 - 8.20 (m, 4 H, C ₆ H ₄)
12e	3385, 3464	-	1650	12.33	6.18 s	2.57 s	7.97 br.s	7.55 (m. 4 H, C_6H_4)
12f	3240, 3415		1680, 1700	12.66 br.s	6.21 s	2.57 s	8.40 br.s	7.60–8.15 (m, 4 H, C_6H_4)
12g	3270, 3485		1665	12.25 br.s	6.18 s	2.57 s	7.99 br.s	5.50-7.82 (m, 3 H, C ₆ H ₃)
12b	3200		1666, 1720	11.89 br.s	6.31 s	2.19 s	8.15 s	8.41 (d, 1 H); 7.30-7.85 (m, 4 H)

Table 1. Spectral characteristics of compounds 10a-e, 11a-e, and 12e-h

* The signals overlap.

Table 2. Yields, me	elting points, and	data of elemental	analysis for compounds	10a-e, 11a-e, and	12e-h
---------------------	--------------------	-------------------	------------------------	-------------------	-------

Com- pound	Yield (%) (method)	M.p./°C (solvent for	<u>Found</u> (%) Calculated				Molecular formula
		crystallization)	C	H	N	S	
102	66 (E)	149-151	52.63	5.38	15.45	17.68	C ₈ H ₁₀ N ₂ OS
		(ethanol)	52.72	5.53	15.37	17.59	
10b	77 (E)	176-178	54.90	6.12	14.06	16.52	C ₉ H ₁₂ N ₂ OS
	63 (F)	(ethanol)	55.08	6.11	14.27	16.34	
10c	64(E)	136-138	<u>56.95</u>	<u>6.60</u>	<u>13.10</u>	15.37	$C_{10}H_{14}N_2OS$
	71 (F)	(1 : 1 aqueous ethanol)	57.11	6.71	13.32	15.25	
10d	68 (E)	8385	<u>53.84</u>	<u>5.87</u>	<u>10.50</u>	12.12	$C_{12}H_{16}N_2O_3S$
	78 (F)	(1 : 1 aqueous ethanol)	53.71	6.01	10.44	11.95	
10e	77	153—155	<u>69.42</u>	<u>4.88</u>	<u>7.55</u>	<u>9.00</u>	$C_{21}H_{18}N_2O_2S$
		(ethanol)	69.59	5.01	7.73	8.85	
112	77	109-111	61.02	<u>4.55</u>	8.87	10.04	C ₁₆ H ₁₄ N ₂ O ₃ S
		(AcOH)	61.13	4.49	8.91	10.20	
11b	81	150-152	<u>50.50</u>	<u>4.30</u>	11.59	13.26	$C_{10}H_{10}N_2O_3S$
		(2-propanol)	50.41	4.23	11.76	13.46	
11c	72	171-173	<u>65.47</u>	4.60	11.07	<u>12.35</u>	$C_{14}H_{12}N_2OS$
		(AcOH)	65.60	4.72	10.93	12.51	
11d	88	199—201	<u>47.72</u>	<u>3.11</u>	<u>11.02</u>	<u>8.25</u>	$C_{15}H_{12}BrN_3O_2S$
		(AcOH)	47.63	3.20	11.11	8.48	
11e	75	307-309	<u>49.48</u>	<u>2.84</u>	7.80	<u>8.92</u>	$C_{15}H_{11}BrN_2O_2S$
		(AcOH)	49.60	3.05	7.71	8.83	
12e	69	293-295	<u>49.51</u>	<u>2.93</u>	<u>7.82</u>	<u>8.69</u>	$C_{15}H_{11}BrN_2O_2S$
		(AcOH)	49.60	3.05	7.71	8.83	
12f	71	300 (decomp.)	<u>54.60</u>	3.22	12.85	<u>9.57</u>	C ₁₅ H ₁₁ N ₃ O ₄ S
		(AcOH)	54.71	3.37	12.76	9.74	
12g	68	333335	<u> 50.86</u>	<u>2.71</u>	7.77	8.88	$C_{15}H_{10}Cl_2N_2O_2S$
5		(AcOH)	51.01	2.85	7.93	9.08	
12h	80	340 (decomp.)	61.21	<u>3.25</u>	8.14	<u>8.95</u>	C ₁₈ H ₁₂ N ₂ O ₄ S
		(AcOH)	61.36	3.43	7.95	9.10	

15.42; S, 17.41. $C_{3}H_{10}N_{2}OS$. Calculated (%): C, 52.72; H, 5.53; N, 15.37; S, 17.59. IR, v/cm⁻¹: 3210 (NH); 2255 (CN); 1700 (CONH). ¹H NMR, δ : 12.74 (br.s, 1 H, NH); 4.50 (d, 1 H, H(5), ³J_{H(5)-H(4)} = 10 Hz); 3.57 (br.s, 1 H, SH); 2.50 (m, 2 H, CH₂(3)); 1.43 (m, 3 H, H(4) and CH₂); 0.90 (t, 3 H, CH₃).

Method D. A suspension of aldehyde 1a (10 mmol), cyanothioacetamide (2) (10 mmol), Meldrum's acid (3) (10 mmol), and N-methylmorpholine (12 mmol) in 15 mL of ethanol was refluxed for 3 h. The reaction mixture was cooled to 20 °C and diluted with 10% hydrochloric acid to pH 5. After 12 h, the resulting precipitate was separated and washed with ethanol and heptane. The yield of compound 6a was 1.31 g (72%) and its melting point and TLC mobility were identical to those of the sample prepared by method C.

5-Cyano-6-mercapto-4-methyl-3,4-dihydropyridin-2(1*H*)one (6c) was prepared by method *D* described above for the synthesis of compound 6a from acetaldehyde (1c). Yield 0.94 g (56%), m.p. 134-136 °C (ethanol). Found (%): C, 49.76; H, 5.00; N, 16.48; S, 18.87. C₇H₈N₂OS. Calculated (%): C, 49.98; H, 4.79; N, 16.65; S, 19.06. IR, v/cm^{-1} : 3450 (NH); 2216, 2250 (CN); 1665 (CONH). ¹H NMR, δ : 12.71 (br.s, 1 H, NH); 4.43-4.75 (m, 1 H, H(5)); 3.55 (br.s, 1 H, SH); 2.55 (m, 3 H, H(4) and CH₂); 1.40 (br.s, 3 H, CH₃).

5-Cyano-6-mercapto-4-methylpyridin-2(1H)-one (7). A suspension of compound 6c (10 mmol) in 15 mL of DMSO was heated for 9 h on a boiling water bath. After cooling, the reaction mixture was diluted with 10 mL of water; 2 h later, the precipitate was filtered off and washed with water, ethanol, and hexane. The yield of compound 7 was 0.56 g (34%) and its melting point (270-271 °C) was identical to that of pyridinone 7 obtained previously.⁷

5-Cyano-6-Z-methylthio-4-R-3,4-dihydropyridin-2(1*H*)-ones (10a--e). Method *E*. A suspension of salt 5 (10 mmol) and halide 8 (10 mmol) in 15 mL of ethanol was stirred for 3 h at 20 °C and then diluted with 10 mL of water. The precipitate was filtered off and washed with 40% aqueous ethanol and hexane to give compounds 10a-e (Tables 1 and 2).

Method F. A 10% aqueous solution of KOH (5.6 mL, 10 mmol) and halide 8 (10 mmol) were added to a suspension of compound 6 (10 mmol) in 15 mL of ethanol, and the mixture was stirred for 3 h and diluted with 10 mL of water. The resulting precipitate was separated and washed with 40% aque-

ous ethanol and hexane to give compounds 10a-e whose melting points and TLC mobility were identical to those of the samples synthesized by method E (Tables 1 and 2).

5-Cyano-4-methyl-6-Z-methylthiopyridin-2(1H)-ones (11a-e) were prepared similarly to compounds 10 (method E) using pyridone 7 (Tables 1 and 2).

3-Amino-4-methyl-2-Z-thieno[2,3-b]pyridin-6(7H)-ones (12e-b). A 10% aqueous solution of KOH (5.6 mL, 10 mmol) and halide 9 (10 mmol) were added successively to a solution of thiol 7 (10 mmol) in 10 mL of DMF; the mixture was stirred for 30 min, an additional portion of 10% aqueous solution of KOH (5.6 mL, 10 mmol) was added, and the mixture was stirred for 4 h and diluted with 10 mL of water. The resulting precipitate was filtered off and washed with water, ethanol, and hexane to give compounds 12e-h (Tables 1 and 2).

This work was carried out with the financial support of the Russian Foundation for Basic Research (Project No. 96-03-32012a).

References

- 1. H.-G. Henning, G. Stemplinger, and B. Urban, *Naturw.*, 1991, **40**, 7.
- 2. Chen Bang-Chi, Heterocycles, 1991, 32, 529.
- M. F. Strozhev, I. E. Lielbriedis, and O. Ya. Neiland, Khim. Geteroisikl. Soedin., 1990, 786 [Chem. Heterocycl. Compd., 1990 (Engl. Transl.)].
- 4. V. N. Nesterov, S. G. Krivokolysko, V. D. Dyachenko, V. V. Dotsenko, and V. P. Litvinov, *Izv. Akad. Nauk. Ser. Khim.*, 1997, 1029 [*Russ. Chem. Bull.*, 1997, **46**, 990 (Engl. Transl.)].
- 5. V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov, and A. Senning, *Sulfur Reports*, 1992, 13, 1.
- M. P. Goncharenko, Yu. A. Sharanin, and A. V. Turov, *Zh. Org. Khim.*, 1993, 29, 1610 [*J. Org. Chem.*, 1993, 29 (Engl. Transl.)].
- V. D. Dyachenko, Yu. A. Sharanin, A. M. Shestopalov, L. A. Rodinovskaya, A. V. Turov, V. P. Litvinov, and V. K. Promonenkov, *Zh. Obshch. Khim.*, 1990, **60**, 2384 [J. Gen. Chem., 1990, **60** (Engl. Transl.)].

Received March 3, 1997