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Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
 

ABSTRACT: Quaternary carbon stereocenters are common structural motifs in organic synthesis. The construction of these 
stereocenters in a catalytic and enantioselective manner remains a prominent synthetic challenge. In particular, methods for the 
synthesis of alkyne-substituted quaternary carbon stereocenters are very rare. Previous catalytic systems for hydroalkynylation of 
alkenes create tertiary stereocenters. We describe here an iridium catalyzed asymmetric hydroalkynylation of non-activated 
trisubstituted alkene. The hydroalkynylation of β,γ-unsaturated amides occurs with high regio- and enantio-selectivities to afford 
alkyne-substituted acyclic quaternary carbon stereocenters. Computational and experimental data suggest that the enantioselectivity 
is not only determined by the facial selectivity of the alkene but also by an alkene isomerization process. This strategy provides an 
efficient method to access alkyne-substituted acyclic quaternary carbon stereocenters with minimally functionalized starting 
materials.

I. Introduction
Quaternary carbon stereocenters occur frequently in natural 

products, drugs and bioactive molecules.1 For example, 12% 
of the top 200 prescription drugs sold in the US in 2011 
contain quaternary carbon stereocenters.2 However, all 
quaternary carbon stereocenters in these molecules are derived 
from natural product precursors rather than being built through 
chemical synthesis. These situation reflects the longstanding 
challenges associated with the construction of quaternary 
carbon stereocenters, especially in acyclic systems due to the 
enhanced conformational mobility.3

The alkynyl group is a common functionality in organic 
synthesis. It can be easily transformed to an alkenyl, alkyl, 
heteroaryl or carboxylic acid group.4 Thus, construction of 
alkyne substituted quaternary carbon stereocenters, coupled 
with subsequent transformations of the alkyne group, would 
enable access to various functionalized quaternary 
stereocenters. However, transition metal-catalyzed 
enantioselective synthesis of alkyne-substituted quaternary 
carbon stereocenters is very limited (Scheme 1). For example, 
the groups of Nishibayashi,5 Carreira,6 and Song7 have 
reported elegant propargylation methods to access quaternary 
carbon stereocenters, respectively. Czekelius and co-workers 
have developed enantioselective synthesis of alkyne 
substituted quaternary stereocenter through desymmetrization 
of diynamides.8 We are aware of only one example that 
generates alkyne-substituted all-carbon quaternary 
stereocenter through metal-catalyzed alkynyl addition. The 
Hoveyda group has achieved Cu-catalyzed highly 
enantioselective allylic substitution with alkynyl aluminum 
reagents.9 Despite these notable advances, methods for 
catalytic asymmetric synthesis of alkyne-substituted 
quaternary carbon stereocenters from minimally 
functionalized starting materials are highly desirable.10

Asymmetric hydroalkynylation of alkenes with terminal 
alkyne would be an ideal approach for the construction of 
alkyne-substituted quaternary carbon stereocenters because 
this process is atom-economical and make use of 
unfunctionalized materials.11 However, we are mindful of 

several issues for this process to become successful. First, the 
catalyst must be capable of overcoming significant steric 
hindrance for the formation of quaternary carbon stereocenters. 
Current catalytic systems for hydroalkynylations are limited to 
di-substituted alkenes including α,β-unsaturated compounds12 
and activated alkenes,13 leading to the formation of alkyne-
substituted tertiary carbon stereocenters.14 Second, the catalyst 
must exert substantial regio-control because the 
hydroalkynylation could occur at the less substituted site of 
the alkene. Third, the catalyst should suppress undesired 
alkene isomerization because it could lead to diminished 
regioselectivity and enantioselectivity. Consequently, highly 
enantioselective alkene hydroalkynylation that generate all-
carbon quaternary stereocenters remains undeveloped.
Scheme 1. Metal-Catalyzed Construction of Alkyne-
Substituted Quaternary Carbon Stereocenters
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Herein, we report a highly regio- and enantioselective 
hydroalkynylation of nonactivated trisubstituted alkenes 
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assisted by an amide group.15,16 The catalytic alkynylation 
occurs selectively at the more substituted site remote to the 
amide group, providing a method for the generation of 
stereocenter distal to a functional group.3j,17 Combined 
experimental and computational studies suggest that the 
enantioselectivity is controlled by facial selection of the alkene 
and an alkene isomerization process. This strategy provided an 
unprecedented synthetic entry to construct alkyne-substituted 
acyclic quaternary carbon stereocenters.
II. Results and discussion
Table 1. Reaction Development a

+

1a 3a

a Reaction conditions: 1a (1.0 equiv.), 2 (2.0 equiv.), 20 oC, 84 h. Isolated yields
were reported. The er values were determined by HPLC on a chiral stationary
phase. N. D., not determined.
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Et
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Ir(COD)2OTf (10 mol%)
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<5%

PP

L1, (S,S)-Me-DuPhos
<5%

PPh2
PPh2

L5, (R)-BINAP
44%, 91:9 er
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PPh2

MeO

OMe

MeO

OMe

PPh2
PPh2

L6, (R)-GarPhos
37%, 90:10 er

TIPS

L7, CTH-(R)-P-Phos

N

N

MeO

OMe

MeO

OMe

P(Xyl)2
P(Xyl)2

L8, CTH-(R)-Xyl-P-Phos
23%, 95:5 er

DCE
THF

CHCl3
toluene
C6H5F

o-C6H4F2

62%, 94.5:5.5 er
<5%, N. D.
72%, 93.5:6.5 er
<5%, N. D.
33%, 94.5:5.5 er
65%, 95:5 er

Ph2P PCy2
Fe

2.1 Reaction Development. We began by testing the 
combination of Ir(COD)2OTf and a series of chiral ligands to 
effect the hydroalkynylation of β,γ-unsaturated tertiary amide 
1a with triisopropylsilylacetylene 2 (Table 1). Me-Duphos (L1) 
and Ph-BPE (L2), which could promote the hydroalkynylation 
of enamides, did not show any activity in the current reaction. 
The use of bis(phosphine) ligands including Josiphos based on 
ferrocene (L3) and a spirocyclic ligand SDP (L4)18 did not 
provide significant amount of alkynylation product either. 
When BINAP (L5) was used as a ligand, 44% yield of the 
alkynylation product with 91:9 enantiomeric ratio (er) was 
observed. Notably, the alkynylation occurs regioselectively at 
the γ position instead of the less hindered β position. This 
result led us to evaluate structurally related bis(phosphine) 
ligands. With Garphos (L6) as a ligand, we observed similar 
enantioselectivity compared to the result obtained with BINAP 
but in lower yield of the desired product. When the ligand was 

switched to CTH-P-Phos (L7), hydroalkynylation product 3a 
was obtained in higher yield and enantioselectivity. The 
substituents on the phosphine atom of dipyridyl ligand had an 
impact on the hydroalkynylation. Increase of sterics on the 
CTH-P-Phos (CTH-P-Xyl-Phos, L8) led to decreased yield. 
Among various solvents examined for ligand L7, the reaction 
conducted in 1,2-difluorobenzene provided slightly higher 
enantioselectivity. The absolute configuration of the product 
was determined by comparison of the optical rotation with 
authentic sample. 

2.2 Substrate Scope. Having developed an effective 
catalyst system for the regio- and enantioselective 
hydroalkynylation, the scope of the substrates was further 
investigated. First, the reactivity of various β,γ-unsaturated 
amides synthesized from different amines was tested (Table 2). 
The length of alkyl chain on the nitrogen atom did not have a 
significant influence on the yield and enantioselectivity of 
hydroalkynylation (3b, 3c). Furthermore, trisubstituted alkenyl 
amides with phenyl, 
Table 2. Scope of N-Substituted β,γ-Unsaturated Amides a

a See SI for details. Isolated yields were reported. The er values were
determined by HPLC on a chiral stationary phase.
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O
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thienyl and furyl groups underwent hydroalkynylation 
smoothly, furnishing the desired products in good yield and 
enantioselectivity (3d-3f). The hydroalkynylation of substrates 
bearing ether (3g) and acetal (3h) gave slightly higher yields 
and enantioselectivities, probably as a result of their weak 
coordination with the catalyst. Further increase of the 
enantioselectivity was obtained when the amide contained two 
ether substituents although the yield was slightly lower (3i). 
Chemoselective hydroalkynylation was observed for a 
substrate containing two alkenes (3j). However, a terminal 
olefin or a ketone on the substrate was not tolerated (3k). The 
reaction of a Weinreb amide analogue provided modest yield 
of hydroalkynylation product and good enantioselectivity (3l). 

Variations in the substituents of alkenes were also evaluated 
(Table 3). The reaction occurred with alkyl-substituted alkenes 
of different lengths in good yields and enantioselectivities (3g, 
3j-3k). The catalyst is sensitive to the sterics of the alkene. For 
example, when an isopentyl substituted alkene was used as a 
substrate, high yield of hydroalkynylation product was 
observed (3l). However, with an isobutyl-substituted alkene as 
the substrate, higher enantioselectivity but lower yield were 
observed (3m). No desired product was observed with further 
increase of the sterics on the alkene (3n). Moreover, functional 
groups including halide, ester, and ether were all tolerated (3o-
3s). The distance between the alkene and the aryl group did 
not play a major role in the reaction (3r, 3s). Thus, possible 
coordination of the substituent on the alkene to the metal 
center was not observed. Hydroalkynylation of an ethyl 
substituted alkene substrate afforded the product in low yield 
and decreased enantioselectivity, as a result of the increased 
steric hindrance and the difficulty to differentiate two similar 
alkyl groups (3w). Further effort is directed to solve this 
challenge.

Table 3. Scope of Substituted Alkenyl Amides a

a See SI for details. Isolated yields were reported. The er values were determined
by HPLC on a chiral stationary phase.

N

O
R2

Et

R1

R3
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3r, 67%, 95.5:4.5 er
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3o, 72%, 96:4 er 3p, 49%, 98.5:1.5 er

3q, <10%

3s, 73%, 95:5 er 3t, 72%, 96.5:3.5 er

1
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AcO N
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BnO
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O

Et
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3w, 23%, 67:33 er
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O

Et
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2.3 Transformation of Products. The silyl group in the 
hydroalkynylation product could be easily removed by TBAF, 
and the resulting terminal alkyne can be further manipulated to 
access various useful functionalities (Scheme 2). For example, 
semi-hydrogenation and complete hydrogenation of the 
terminal alkyne group afforded alkenyl and alkyl substituted 
quaternary carbon stereocenters respectively (5a, 5b). In 
addition, Pd-catalyzed Sonogashira coupling installed an aryl 
group onto 4, providing an alternative route to obtain the 
product from the hydroalkynylation with phenyl acetylenes 
(5c). Furthermore, the heteroaryl substituted quaternary carbon 
stereocenters were formed in high yields through a copper 
catalyzed click reaction (5d) and a Larock indole cyclization 
(5e). Lastly, 4 was readily converted to an acid substituted 
quaternary carbon stereocenters through Ru-catalyzed 
oxidation. High enantioselectivities were maintained in the 
products during these transformations. In addition to the 
alkyne, chemoselective transformation of the amide was 
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possible. Reduction of the amide afforded an amine with distal 
quaternary stereocenter (5g).
Scheme 2. Transformation of Alkynylation Products

Reaction conditions: (a) TBAF, THF, RT. (b) H2, Lindlar's catalyst, EtOAc, RT.
(c) H2, Pd/C, MeOH, RT. (d) PhI, PdCl2(PPh3)2, CuI, NEt3, THF, 45 oC. (e)
TsN3, CuTc, toluene, RT. (f) N-tosyl-2-iodobenzene, Pd(PPh3)2Cl2, CuI, TMG,
DMF, 40 oC. (g) RuCl3, NaIO4, CCl4, MeCN, H2O, RT. (h) LiAlH4, THF. R1 =
CH2CH2OMe. Enantiomeric ratios of 5f and 5g were not determined.
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2.4 Identification of the Catalyst Resting State. 
Monitoring the Ir catalyzed hydroalkynylation between 1u and 
triisopropylsilylacetylene 2 revealed one major iridium 
complex throughout the course of the reaction. A singlet at 
12.04 ppm was observed in the 31P NMR spectrum, indicating 
that the two phosphorous atoms are equivalent. An Ir complex 
6 was prepared from a combination of iridium precursor and 
the phosphine ligand. The spectral data of this compound were 
identical to the complex observed during the catalytic reaction 
(Equation 1). Thus, Ir complex 6 is the catalyst resting state of 
the catalytic reaction. These results provide basis for the 
following computational studies.

The hydroalkynylation of 1a catalyzed by Ir complex 6 has 
similar kinetic profile to that of catalyzed by the in-situ 
generated catalyst, suggesting that complex 6 is a kinetically 
competent catalytic species. 

Ir
P

P
*

THF
(1)

6

Ir(COD)2OTf + L7
RT

2.5 Measurement of Kinetic Isotope Effect (KIE). To 
determine the rate-limiting step of the catalytic 
hydroalkynylation, experiments to measure the kinetic isotope 
effect were conducted. To obtain reasonable rate for kinetic 
measurement, the reactions were conducted at 50 ℃  in 
dichlorobenzene. A comparison of the initial rates for the 
catalytic hydroalkynylations of 2a and 2a-d in separate vessels 
revealed a KIE of 1.3 (Scheme 3). This relatively small KIE 
suggested that the cleavage of the alkynyl C-H bond is less 
likely to be turnover-limiting. 
Scheme 3. Kinetic Isotopic Effect of Alkyne

Independent rates: kH/kD = 1.3

Ir(COD)2OTf (10 mol%)
(R)-L7 (12 mol%)

1,2-Dichlorobenzene
50 °C

+
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nPr
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TIPS
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2
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+

1a 3a-d

N

O
nPr
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Et

Me

N

O

Et

EtnPr

Me

TIPS

D
2-d

TIPS

as above

D

To see whether the migratory insertion of the alkene is 
involved in the turnover-limiting step, the KIE of deuterated 
alkene was measured. If migratory insertion of the alkene is 
turnover-limiting, an inverse KIE would be observed (Scheme 
4). The measurement of the reaction of 1u and 1u-d revealed a 
KIE of 0.90. This inverse KIE suggests that the migratory 
insertion of the alkene is likely involved in the turnover-
limiting step.
Scheme 4. Kinetic Isotopic Effect of Alkene
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Bn
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Me

Bn
D
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D

kH/kD = 0.90

R1 = CH2CH2OMe

1u
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2.6 Origin of enantioselectivity. To gain insight into the 
origin of enantioselectivity, computational studies by density 
functional theory were conducted (Figure 1). The catalytic 
hydroalkynylation begins with the ligand exchange to generate 
an amide and alkyne bound Ir complex (Int-7). Oxidative 
addition of the terminal alkyne to the iridium center affords an 
alkynyl iridium hydride (Int-8), which undergoes migratory 
insertion of the alkene into the Ir−C bond to give a five 
membered iridacycle (Int-10). Finally, C-H reductive 
elimination delivers the hydroalkynylation product after 
dissociation.19

We computed the reaction pathways that lead to both 
enantiomers of the product. In both pathways, migratory 
insertions of the alkene have the highest activation free 
energies. The pathway leading to (R)-enantiomer has an 
activation barrier of 35.4 kcal/mol (TS-2b) while the pathway 
leading to (S)-enantiomer has an activation barrier of 30.2 
kcal/mol (TS-2a). At least two factors contribute to the energy 
difference of TS-2a and TS-2b (Figure 2). First, the iridium 
hydride experiences significant repulsion with the ethyl group 
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of the substrate in TS-2b while such repulsion was not 
observed in TS-2a (2.27 vs 2.58 Å). Second, attractive C-
H···O interactions of the carbonyl group with two aryl C-H 
bonds on the ligand were observed in TS-2a while only one 
weaker C-H···O interaction was found in TS-2b (2.25 and 
2.26 vs 2.30 Å). The computation results indicate that the 
formation of (S)-enantiomer is favored over the formation of 
(R)-enantiomer by 5.2 kcal/mol, and an er of greater than 
99.5:0.5 would be observed.

Experimentally, the absolute configuration was determined 
to be (S). This result is in agreement with the computation. In 
addition, the small KIE of deuterated alkyne and inverse KIE 
of deuterated alkene all agree with the computation that 
migratory insertion rather than C-H cleavage is rate limiting. 
However, the er obtained in the reaction of 1a is only 95:5, 
significantly lower than the computed value. Therefore, we 
suspect that the enantioselectivity is not solely determined by 
the facial selectivity during migratory insertion (TS-2a vs TS-
2b) but also by alternative processes.  

In view of the Ir-H species involved in the reaction pathway, 
alkene isomerization could occur and have an impact on the 

enantioselectivity. If isomerization of the substrate from E to Z 
occurred, further hydroalkynylation of the Z-alkene would 
lead to the opposite enantiomer. Consequently, erosion of 
enantioselectivity would be observed. To test this hypothesis, 
both hydroalkynylation pathways from Z-alkene leading to the 
two enantiomers were also calculated (Figure 3). Similarly, the 
migratory insertions have the highest activation free energies 
for both pathways. The transition state TS-2c, connected to the 
(R)-enantiomer, has an activation barrier of 30.6 kcal/mol, 
while TS-2d which connects to the (S)-enantiomer, has an 
activation barrier of 35.6 kcal/mol. The activation free 
energies of the transition state structures from TS-2a to TS-2d 
indicate that TS-2a and TS-2c are the two major competing 
transition states leading to the major and minor enantiomers. 
In addition to the energy difference between TS-2a and TS-2c, 
the concentration difference of substrates 1-E and 1-Z also 
contribute to the relative rates of the pathways leading to the 
major and minor enantiomers. Therefore, the E/Z ratio of the 
alkene under the reaction conditions needs to be determined to 
provide proof for the alkene isomerization scenario. 
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To analyze the alkene isomerization process, control 
experiments were conducted (Scheme 5, A). We monitored the 
catalytic hydroalkynylation of 1u-E. Indeed, alkene 
isomerization was observed, although the concentration of the 
1u-Z was low because of the unfavorable thermodynamics. As 
the reaction proceeds, the E/Z ratio decreases slightly, while 
the enantiomeric ratio also decreases. The E/Z ratio of the 
alkene correlates roughly with the observed enantiomeric ratio.

To provide a better measurement of the alkene 
isomerization process, catalytic hydroalkynylation of the 
thermodynamically less favored 1u-Z was conducted (Scheme 
5, B). Indeed, significant amount of alkene isomerization was 
observed. As the reaction progresses, the Z/E ratio of 
remaining alkene decreases, while the er of product decreases 
as well. At higher temperature, the sense of enantioselectivity 
was even reversed due to significant alkene isomerization. 
Taken together, these results support that the enantioselectivity 
is not only determined by the enantio-face discrimination of 
the alkene, but also by an alkene isomerization process.
Scheme 5. Control Experiments
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2.7 Importance of the coordinating group. To probe the 
effect of the coordinating group on the reactivity and 
selectivity of Ir-catalyzed hydroalkynylation, transition states 
for the migratory insertion without amide coordination were 
computed (Figure 4). For both E and Z-alkenyl amides, four 
possible spatial arrangements of the alkenyl amide and the 
alkyne around the iridium center were considered. All these 
transition state structures have significantly higher activation 
free energies than that of the transition states with amide 
coordination (from TS-2a to TS-2d). Thus, the amide group 
played a major role to lower the activation barrier for the 
migratory insertion through coordination with the metal center.
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Figure 4. Computed transition states for migratory insertions 
without amide coordination.

To verify this effect, we tested the catalytic 
hydroalkynylation of a β,γ-unsaturated ester, in which the ester 
group is less coordinating than an amide. Indeed, no desired 
product was obtained, which provided support for the 
importance of the amide group (Equation 2).

12

OEt

O
nPr

Me o-C6H4F2, 20 °C

OEt

O
nPr

Me

TIPS
13

(2)

<5%

Ir(COD)2OTf (10 mol%)
(R)-L7 (12 mol%)

H TIPS

III. Conclusion
In summary, we have developed an iridium-catalyzed 

hydroalkynylation of trisubstituted β,γ-unsaturated amides. 
Complete γ-selectivity and high enantioselectivity were 
observed. This method provides an unprecedented strategy for 
the construction of alkyne-substituted acyclic quaternary 
carbon stereocenters. The alkyne group in these products 
undergoes a variety of transformations, thus allowing access to 
diverse chiral building blocks containing quaternary carbon 
stereocenters. The combined theoretical and experimental 
studies indicated that the enantioselectivity is not only 
determined by the facial selectivity of the alkene but also by 
an alkene isomerization process. Further computational studies 
revealed the importance of the amide group for the 
hydroalkynylation reaction. Improvement of the catalyst 
activity and application of this methodology in natural product 
synthesis are currently in progress in our laboratory.
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