

0040-4039(95)00716-4

Highly Diastereoselective [2+2] Cycloadditions via Chelation Control: Asymmetric Synthesis of β-Lactones

Ronald Zemribo and Daniel Romo*

Department of Chemistry, Texas A&M University, College Station, TX 77843-3255

Abstract: Chelation controlled [2+2] cycloadditions of trimethylsilylketene to chiral α - and β benzyloxyaldehydes followed by desilylation provides a highly diastereoselective route to functionalized β -lactones. Several Lewis acids were examined and MgBr₂•Et₂O was found to give the highest diastereoselectivities and yields.

 β -Lactones are useful intermediates in the synthesis of a variety of more complex molecules including tetrahydrofurans, tetrahydropyrans, γ -lactones, and unnatural amino acids.¹ In addition, several natural products containing β -lactones possess potent biological activity. For example, ebelactones A and B are potent lipase inhibitors.²

In connection with a natural product synthesis, we required an asymmetric route to *anti*- β -lactone 3. We were attracted to the possibility of a chelation controlled [2+2] cycloaddition³ of trimethylsilyl ketene 1⁴ to the alkoxy aldehyde 2⁵ with chelating Lewis acids.⁶ To our knowledge, a chelation controlled strategy has not been employed for [2+2] cycloadditions of ketenes to aldehydes.⁷ In this letter we report that highly diastereoselective, chelation-controlled [2+2] cycloadditions can be achieved with aldehydes bearing α - or β -benzyloxy groups allowing access to stereochemically defined β -lactones (*eg.* 3).

Several Lewis acids were studied for their ability to direct and promote the [2+2] cycloadditions (Table I). Intermediate α -trimethylsilyl β -lactones in this sequence were not isolated, but instead were directly desilylated with potassium fluoride dihydrate^{6c} to provide β -lactones 3. As has been previously observed,⁶ use of BF₃•Et₂O led to low diastereoselectivity (entry 1). Better results were obtained with bidentate Lewis acids such as TiCl₄ and SnCl₄ but several uncharacterized byproducts were also obtained resulting in low overall yields (entries 2 and 3). In contrast, MgBr₂•Et₂O gave high diastereoselectivity and overall yield for the two step sequence. Raising the reaction temperature slightly lowered the yield but did not significantly alter the diastereomeric ratio (entry 5 vs 4).

entry	Lewis acid	temp. (°C)	anti/syn ratio (3) ^a	% yield ^b
1	BF3•OEt2	0	1.8 : 1	83
2	TiCl4	-78	95 : 5	36
3	SnCl4	-78	97:3	76
4	MgBr2•OEt2	-43	98:2	94
5	MgBr2•OEt2	-23	97:3	87

Table I. Diastereoselectivity of [2+2] Cycloadditions of Ketene 1 and Aldehyde $(\pm)-2$ as a Function of Lewis acid and Temperature.

^a Diastereomeric ratios were determined by ¹H-NMR (200 MHz) in C6D6 by integration of the benzylic hydrogens. ^bYields refer to the purified (silica gel chromatography) products as mixtures of diastereomers for the two steps.

The stereochemical outcome of the cycloaddition was determined by conversion of β -lactone 3 to the known δ -lactone 4.⁸ Spectral comparisons indicated that the major β -lactone obtained with all Lewis acids studied possessed the *anti* configuration (*i.e. anti-*3 \rightarrow syn-4).

Optically pure aldehydes (S)-2 and (S)-5⁹ were also examined to determine if absolute stereochemical integrity was maintained in these cyloadditions. The derived β -lactones (-)-3 and (-)-6 were converted to the known δ - and γ -lactones (-)-4⁸ and (-)-7,¹⁰ respectively. Spectral comparison (¹H, ¹³C-NMR) established that the cycloaddition of aldehyde (S)-5 had also proceeded with chelation control. Comparison of optical rotations of the derived lactones (-)-4 and (-)-7 with values reported in the literature for these compounds, indicated that partial racemization of the starting aldehydes had occurred. For more rigorous enantiomeric purity determination of β -lactone (-)-3, Mosher esters¹¹ of the debenzylated β -lactone (-)-3, the δ -lactone (-)-4, and the corresponding racemic compounds were prepared. Integration of the resolved methyl doublets (400 MHz ¹H-NMR) indicated the presence of ~6% of the enantiomeric β -lactone, corresponding to ~88% ee for the β -lactone (-)-3. We are currently seeking the origin of this racemization and methods to prevent it.

In summary, MgBr₂•OEt₂ mediated, [2+2] cycloadditions of ketenes to aldehydes bearing α - or β benzyloxy groups have been found to proceed with high diastereoselectivities. This is in accord with chelation controlled aldol, allylation and cyclocondensation reactions of heteroatom substituted aldehydes.¹² The origin of this selectivity is likely a result of the high facial bias imparted by formation of the conformationally rigid chelates (*cf.* 8) of α or β -benzyloxy aldehydes with titanium or magnesium Lewis acids.¹³ In view of the utility of β -lactones as intermediates in synthesis due to their ability to undergo a variety of ring opening and ring expansion reactions, the present method should prove useful as it facilitates access to optically active, functionalized β -lactones. Novel transformations of these and other β -lactones in addition to applications of the present methodology to natural product synthesis will be the subject of future reports.

Representative Procedure for Chelation Controlled [2+2] Cycloaddition/Desilylation Sequence: A solution of aldehyde 2 (230 mg, 1.28 mmol) in 2 mL (plus 0.5 ml rinse) of dry CH₂Cl₂ was added via cannula to a slurry of 372 mg (1.41 mmol) MgBr₂•OEt₂ in 2 mL of CH₂Cl₂ at -42 °C (CH₃CN/CO₂ or Cryocool) under nitrogen. After 15 min a solution of trimethylsilylketene (196 mL, 1.41 mmol) in 2 mL of CH₂Cl₂ was added via syringe pump over 15 min. The reaction mixture was stirred at -42 °C under nitrogen for 7 h and then quenched at that temperature by addition of 1 mL water. After warming to ambient temperature the organic layer was separated, the aqueous phase was extracted with CH₂Cl₂ (3x2 mL) and the combined organics were filtered, dried over Na₂SO₄ and evaporated *in vacuo*. The resulting colorless oil was dissolved in 3 mL CH₃CN and solid KF•2H₂O (180 mg, 1.92 mmol) was added. The mixture was stirred at ambient temperature for 30 min, passed through a short column of florisil and evaporated *in vacuo*. Purification by flash column chromatography (gradient elution: $10\% \rightarrow 25\%$ ethyl acetate/hexane by 5% increments) provided 239 mg (86%) of β-lactone (-)-3 as a colorless oil.¹⁴

Acknowledgment: Support of these investigations by Texas A&M University and the Robert A. Welch Foundation (A-1280) is gratefully acknowledged. We thank Mr. R. M. Rzasa and Mr. H. W. Yang for acquiring 400 MHz NMR spectra. D.R. thanks colleagues in the Texas A&M Chemistry Department for helpful discussions.

REFERENCES AND NOTES

- For a recent review of the synthesis and transformations of β -lactones, see: Pommier, A.; Pons, J.-M. 1. Synthesis 1993, 441-449.
- 2. For leading references to the ebelactones and other β -lactone natural products, see: a) Wovkulich, P. M.; Shankaran, K.; Kiegiel, J.; Uskokovic, M. R. J. Org. Chem. 1993, 58, 832-839 b) Pu, Y.; Lowe, C.; Sailer, M.; Vederas, J. C. J. Org. Chem. 1994, 59, 3642-3655.
- Although most reports of catalyzed cycloaddition reactions of ketenes and aldehydes are described as 3. concerted, recent *ab initio* calculations point to a concerted two stage process for the cycloaddition of ketene and formaldehyde mediated by BF3, see: Lecea, B.; Arrieta, A.; Roa, G.; Ugalde, J. M.; Cossio, F. P. J. Am. Chem. Soc. 1994, 116, 9613-9619.
- Ruden, R. A. J. Org. Chem. 1974, 39, 3607-3608. 4
- Racemic aldehyde 4 was obtained by benzylation and low temperature DIBAl-H reduction of the 5. corresponding ethyl ester which was prepared according to literature procedures, see: Nakamura, K.; Miyai, T.; Ushio, K.; Oka, S.; Ohno, A. Bull. Chem. Soc. Jpn. 1988, 61, 2089.
- 6. For some previous reports of [2+2] cycloadditions of trimethylsilylketene and aldehydes, see: a) Zaitseva, G. S.; Vinokurova, N. G.; Baukov, Y. I. Zh. Obshch. Khim, 1975, 45, 1398. b) Brady, W. T.; Saidi, K. J. Org. Chem. 1979, 44, 733-737. c) Mead, K. T.; Samuel, B. Tetrahedron Lett. 1988, 29, 6573-6576. d) Maruoka, K.; Concepcion, A. B.; Yamamoto, H. Synlett 1992, 31-32. e) Black, T. H.; Zhang, Y.; Huang, J. Syn. Commun. 1995, 25, 15-20.
- In synthetic studies of the lipstatins, Kocienski and Pons have investigated the monodentate Lewis acids 7. BF3•OEt2, AlCl3, and EtAlCl2 for the non-chelation controlled [2+2] cycloaddition of an alkyltrimethylsilyl ketene and a β-alkoxy-substituted aldehyde, see: Pommier, A.; Pons, J.-M.; Kocienksi, P. J.; Wong, L. Synthesis, 1994, 1294-1300 and references cited. In preliminary studies employing MgBr2•OEt2 and β -benzyloxyaldehyde i, we have obtained diastereoselectivities (~85:15, anti:syn) similar to those reported by Pons and Kocienski using monodentate Lewis acids.

- a) Seebach, D.; Chow. H.-F.; Jackson, R. F. W.; Lawson, K.; Sutter, M. A.; Thaisrivongs, S.; Zimmermann, J. J. Am. Chem. Soc. 1985, 107, 5292-5293. b) Takahata, H.; Uchida, Y.; Momose, 8. T. J. Org. Chem. 1994, 59, 7201-7208.
- The optically active aldehydes (S)-2 and (S)-5 were obtained by benzylation (BnOC(=NH)CCl₃, TfOH) 9. and low temperature DIBAI-H (1.0 equiv, CH2Cl2, -90 °C) reduction of (S)-methyl-3-hydroxy-2-methyl propionate and (S)-methyl lactate (Aldrich Chemical Co.), respectively
- Takahata, H.; Uchida, Y.; Momose, T. J. Org. Chem. 1994, 59, 7201-7208.
 Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543-2549.
- a) For examples of chelation controlled aldol reactions and alkylations, see: Reetz, M. Agnew. Chem. 12. Int. Ed. Engl. 1984, 23, 556-569. b) Cyclocondensations: Danishefsky, S. J.; Pearson, W. H.; Harvey, D. F.; Maring, C. J.; Springer, J. P. J. Am. Chem. Soc. 1985, 107, 1256-1268. c) Allylations: Kiyooka, S.; Heathcock, C. H. Tetrahedron Lett. 1983, 24, 4765-4768.
- 13. The solution conformations of the TiCl4 and MgBr₂ complexes of aldehyde 2 have been determined by ¹H-NMR (CD₂Cl₂) and these readily explain the high facial selectivity of additions to these systems, see: Keck, G. E.; Castellino, S. J. Am. Chem. Soc. 1986, 108, 3847-3849.
- 14. Data for β -lactone (-)-3: $[\alpha]^{22}D = 11.2$ (c 1.97, CHCl₃), IR(neat) 1127, 1827 cm⁻¹; ¹H-NMR (C6 D6, 200 MHz) d 0.57(3H, d, J=6.9 Hz), 1.41-1.61(1H, m), 2.45(1H, dd, J=16.2, 4.6 Hz), 2.58(1H, dd, J=16.2, 5.8 Hz), 3.06-3.21(2H, m), 3.78-3.90 (1H, m), 4.19 (2H, app s), 7.10-7.22 (5H, m); ¹³C-NMR (CDCl₃, 50 MHz) d 11.8, 37.8, 41.0, 71.0, 72.2, 73.5, 127.6, 128.4, 138.3, 167.8; MS m/z (relative intensity) 221 (M⁺, 100), 154 (92), 137 (96); FAB HRMS calcd. for C13H16O3 (M⁺+H): 221.1177, found: 221.1193. β-Lactone (-)-6 also exhibited spectral characteristics in accord with its structure.

(Received in USA 29 March 1995; accepted 13 April 1995)