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Abstract—ortho-[(N-Methyl)carbamoyl]phenyl benzyl sulfoxide is used as a synthetic equivalent of �-hydroxy and �-chloro benzyl
carbanions by means of a two-step sequence involving (1) highly stereoselective �-C-alkylation with alkyl bromides, and (2)
displacement of the sulfinyl group by an OH or a Cl under Pummerer or chloro-Pummerer conditions, respectively. The sulfinyl
auxiliary can be effectively regenerated and recycled. © 2002 Elsevier Science Ltd. All rights reserved.

The use of umpolung synthetic equivalents of �-
hydroxy and �-chloro carbanions not stabilized by an
additional electron-withdrawing group (as in the case of
�-alkoxy/�-Cl-enolates, or metallated cyanohydrins) is
still uncommon in organic synthesis, and relatively few
examples of these potentially powerful synthetic tools
are extant in the literature.1

Recently, we demonstrated that enantiopure �-Li sul-
foxides can be used as chiral �-hydroxy and �-chloro
carbanion equivalents with alkyl and aryl imines,2 by
means of a two-step procedure based on: (1) C�C bond
forming reaction leading to �-sulfinyl-amines, (2) ‘non-
oxidative’ Pummerer reaction (NOPR)3 or chloro-Pum-
merer reaction (NOCPR)4 which allow for replacing the
sulfinyl auxiliary by an OH or a Cl atom, respectively,
with an SN2-like pathway (stereoinversion at carbon).
This strategy was exploited by us and others for the
stereoselective synthesis of biologically important �-
amino-alcohols, such as statine,3 and its trifluoromethyl
(Tfm) analog,5 Tfm-analogs of ephedra alkaloids,6 sev-
eral phenyl-glycinols,7 �-chloro-amines and aziridines.4

As an extension of this synthetic concept, we com-
menced a project aimed at developing sulfoxide
reagents to be used as �-hydroxy and �-chloro carban-
ion equivalents of broader scope. Herein, we describe
the use of bis-lithiated sulfoxide 1a as �-hydroxy and
�-chloro benzyl carbanion equivalents for the synthesis
of benzyl-carbinols and -chlorides (Fig. 1).

In our strategy (Scheme 1) C-alkylation of an ortho-
[(N-alkyl)carbamoyl]phenyl sulfoxide 1 with an alkyl
halide was planned to give the �-alkyl sulfoxide 2.
Next, we expected that treatment of 2 under Pummerer
or chloro-Pummerer conditions could give rise to
NOPR- or NOCPR-like outcomes, that is formation of
the corresponding alcohol (3) or chloride (4). Recycling
benzisothiazolone co-product 5 by re-conversion into
the starting sulfoxide 1 was conceived as an advantage
in terms of atom economy. As shown below, this
strategy turned out to be successful only in the case of
benzyl sulfoxide 1a (R1=Ph). In fact, �-alkyl sulfoxides
2 obtained from 1a (step 1) underwent the desired
transformations into 3 and 4 (step 2), whereas in gen-
eral substrates 2 did not display NOPR- or NOCPR-
like reactivity.

The preparation of racemic sulfoxides 1 (Scheme 2)
started with S-alkylation of thiosalicylic acid by BnBr,
n-PrBr or MeI, affording the ortho-carboxy sulfides 6,
which were transformed into the amides 7 by coupling
with CH3NH2 or (CH3)2NH, and oxidized with
MCPBA to 1a–d in good overall isolated yields (Table
1).

Figure 1. The new umpolung synthon.
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Scheme 1. Planned synthetic strategy.

Scheme 2. Preparation of sulfoxides 1.

tuted sulfoxide 1c (R1=H) smoothly afforded C-alkyl-
ated products such as 8j,k. No reaction took place with
the N,N-dimethylamide 1d (n-BuLi/HMPA, THF),
suggesting that the ortho N-lithiated amide function
plays a key role. Further support to this hypothesis
came from the observation that benzyl p-tolylsulfoxide
was unreactive with n-Hex-Br under the same condi-
tions, whereas using LDA as base afforded in modest
yield and no stereocontrol both diastereomers of 1-
phenyl-1-(p-tolylsulfinyl)heptane.

Step 2 (see Scheme 1), namely the Pummerer processes,
were investigated next. Several authors previously
reported that N-monosubstituted ortho-carbamoyl-
arylsulfoxides undergo an ‘interrupted’ Pummerer
reaction14 upon treatment with certain electrophiles,15

providing benzisothiazolones and esters (with Ac2O/
H2SO4 or trichloroacetic anhydride) or chlorides (with
SOCl2, diphosgene or AcCl) as co-products. As we
expected, treatment of dichloromethane (DCM) solu-
tions of the three benzyl sulfoxides 8a,c,d (Scheme 4
and Table 3) under NOPR conditions [TFAA/TMP
(2,4,6-trimethylpyridine), then aq. NaHCO3] afforded
in good yields the secondary benzylic carbinols 9a–c,
along with the benzisothiazolone co-product 5a.16a,b

Non-benzylic sulfoxides (R1�Ph) such as 8i,j failed to
give the corresponding alcohols, affording mixtures of
conventional ‘Pummerer products’.17 Concerning the
chloro-Pummerer reaction, 1a was already known to
give high yields of benzyl chloride 10a upon treatment
with SOCl2.15a We found that the NOCPR conditions
(oxalyl chloride, TMP, DCM, −50°C) work well on
secondary (R�H) benzyl sulfoxides 8a,c,d, affording
the benzyl chlorides 10b–d together with 5a. In this case
too, non-benzylic sulfoxides 8j,k did not react under
NOCPR conditions (overnight).16c

The co-product 5a could be reduced by NaBH4 in
excess to the thiol 11 (Scheme 5), which was recon-
verted to the starting sulfide 7a by S-benzylation (ca.
80% overall).

A likely mechanism for these Pummerer reactions is
shown in Scheme 6 for the model substrate 8a.
Acylation of the sulfinyl oxygen by TFAA or (COCl)2

18

followed by removal of TFA or HCl by TMP, and
interception of the transient sulfur cation by the ortho-
carbamoyl nitrogen provides the sulfurane intermediate
12. The latter undergoes fragmentation (S�X and C�S

Table 1. Preparation of sulfoxides 1

Product X R1 Yield (%)aR2

Br1a Ph H 82
HEtBr1b 81

I H1c H 77
Me1d Br Ph 84

a Overall isolated yield from thiosalicylic acid.

Treatment of benzyl sulfoxide 1a (Scheme 3) with 2.6
equiv. of BuLi,8,9 in the presence of 5 equiv. of HMPA
(THF, −78°C), followed by addition of alkyl bromides
(Table 2) afforded the products 8a,c–f with good to
excellent yields and high diastereoselectivity. Lower
diastereoselectivity was achieved with allyl and benzyl
bromides (products 8b and 8g, respectively). Except for
MeI, which gave rise to a mixture of C- and N-methyl-
ated products, all the reactions occurred with high
site-selectivity in favor of the C-alkylation.10 The stereo-
chemistry of the main diastereomer 8e was assessed by
single-crystal X-ray diffraction,11 and the configurations
of the other main benzyl diastereomers 8a–g were confi-
dentially assigned on the basis of spectroscopic and
physical analogies with 8e.

Lithiated n-propyl sulfoxide 1b reacted with several
halides as well, affording effectively the corresponding
products, such as 8h,i. Unfortunately, the latter were
invariably formed with low stereocontrol as mixtures of
the two diastereomers.12,13 Also the lithiated �-unsubsti-

Scheme 3. Step 1: alkylation of racemic 1.
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Table 2. Step 1: alkylation of racemic 1

Prod.Substr. Yield (%)dD.e. (%)cRXR1

(CH3)2CH(CH2)2BrPh 928a1a 94
8b Ph1a CH3CH�CHCH2Br 66 79
8c Ph1a Ph(CH2)3Br 94 74

Ph 958d 921a CH2�CH(CH2)3Br
8e Ph1a CH3(CH2)4Br 88 69

748f 921a CH3(CH2)2BrPh
9658PhCH2Br1a Ph8g

8gb Ph1a PhCH2Br �5 70
8ha Et1b CH3(CH2)5Br 60�5

1b 7032(4-MeO-C6H4)CH2ClEt8ia

1c H8j 62–Ph(CH2)3Br
8k1c (2,6-Cl2-C6H3)CH2BrH – 85

a Stereochemistry not assigned.
b LDA was used instead of n-BuLi/HMPA.
c Measured by HPLC/1H NMR.
d Overall isolated yield.

Scheme 4. Step 2: Pummerer and chloro-Pummerer reactions.

bonds breaking leading to 5a) and recombination (for-
mation of a new X�C bond) affording either the benzyl
alcohol 9a (after hydrolysis of the trifluoroacetate 13)
or the benzyl chloride 10b. The pattern of reactivity of
sulfoxides 1 (see also Ref. 16a) and 8 under both
Pummerer and chloro-Pummerer conditions suggests
that fragmentation of 12 should involve the formation
of a benzyl carbocation intermediate and a counter-
anion (CF3CO2

− or Cl−), which then undergo
recombination.

In perspective, the high stereoselectivity of the C-alkyl-
ation of racemic sulfoxide reagent 1a (step 1) may
represent a key factor for the development of an asym-
metric version of this methodology, whose success will
also rely on the preparation of highly enantiomerically
enriched 1a, as well as on the development of stereo-
controlled conditions for performing the Pummerer and
chloro-Pummerer reactions (step 2). These issues are
presently under active investigation, together with the
extension of this strategy to other �-OH and �-Cl-car-
banions, and its use in the synthesis of more complex
structures of biological interest.
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