LETTER

2223

Total Synthesis of (-)-Chokol A by an Asymmetric Domino Michael Addition—

Dieckmann Cyclization?
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Abstract: A convergent and asymmetric total synthesis of (-)-
chokol A was accomplished in six steps starting from the a, 3-unsat-
urated ester (E)-9 in an overal yield of 27% with an enantiomeric
excess of 95%. The key step of this synthesis is the asymmetric
tandem conjugate addition-Dieckmann cyclization of the higher-
order cuprate 8 derived from vinyl bromide 7 with the a,3-unsatur-
ated ester (E)-9.
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(-)-Chokol A (1) is afungitoxic, modified sesquiterpene?
isolated from the stromata of timothy grass Phleum pre-
tense infected by the pathogenic fungus Epichloé typhina.
This antimycotic natural product was isolated for the first
timein 1985 by Y oshiharaet al.® (-)-Chokol A (1) and the
more active chokols B (2), C (3), D (4), and G (5,
Figure 1) have received special attention due to their fun-
gitoxic properties.*
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Figurel Representative members of the chokole family

Sincethe discovery of 1, sofar five racemic® and only four
enantioselective® syntheses have been described for
chokol A. In 1987 Mash® presented the first asymmetric
synthesis of (—)-chokol A (1). Key step of this synthesis
was the diastereoselective cyclopropanation of a chira
ketal. The overal yield was 9% over 13 steps with an
enantiomeric excess of approximately 80%. The last syn-
thesis of (-)-chokol A (1) was described by Helmchen et
al.%din 1995. They converted the well-established 2-oxo-
cyclopentenecarboxylatein six stepsinto the natural prod-
uct (-)-1 with an overall yield of 22% and >99%ee.
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In 2004 we have reported the enanti osel ective synthesis of
2,3-disubstituted cyclopentanone derivatives viaacombi-
nation of an asymmetric Michael addition and a Dieck-
mann cyclization.” This type of reaction belongs to the
domino processes.®

Based on these results, an enantioselective synthesis of
(-)-chokol A (1) was explored.

Starting the convergent synthesis with the benzylation of
2-bromo-5-hydroxypentene (6)>° (Scheme 1) following
aprotocol given by Gewald et al.!° we obtained the bro-
mo-vinyl building block 7, which is essential for the syn-
thesis of the higher-order cuprate 8. Compound 7 wasthen
treated with 2 equivalents of tert-butyllithium, followed
by 0.5 equivalents of copper(l) cyanide and 0.5 equivalent
of borontrifluoride in order to afford the cuprate 8.

a) NaH, DMF,
Br -30°C,1h B
r
b) BnBr, TBAI
0,
6 74% 7

a) 2 equiv t-BuLi, Et,O
—80 °C, 30 min

b) 0.5 equiv CuCN, Et,0,
-80°Cto-30°C,2h

c) 0.5 equiv BF3-Et,0,
—80 °C, 15 min

*Cu
\H/\/\OBn

8
Cu* = RCU(CN)Lip-BF3

Schemel Synthesisof the higher-order cuprate 8

The a,B-unsaturated ester 9 (Scheme 2) was synthesized
according to a formerly published route’ by addition of
(-)-phenylmenthol to 2-chloro-acetylchloride followed
by a Michaelis-Arbuzov reaction with triethyl phosphite.
The resulting diethoxy phosphonic ester was then
converted into the o,B-unsaturated ester 9 via a Wittig—
Horner reaction with methyl-4-oxo-butanoate. By em-
ploying this reaction sequence, we have generated the
chiral Michael acceptor 9 in three steps with a yield of
83% over the whole sequence.

Addition of the cuprate 8 to the chiral ester 9 (Scheme 2)
in diethyl ether at —115 °C gave after a Michael addition
followed by a Dieckmann cyclization the cyclic B-keto
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Scheme2  Synthesis of (-)-chokol A (1)

ester 10a with an excellent chemical yield of 93% and a
diastereomeric excess of >98%.%1

The cleavage of the chiral auxiliary was conducted by a
transesterification with methanol at 120 °C in a sedled
tube. This led to the methyl B-keto ester 11 in an accept-
able yield of 72% with an excellent enantiomeric excess
of >95%, whereby in ayield of 8% the retro-Dieckmann
product and 84% of the enantiomerically pure (-)-phenyl-
menthol were recovered.

A comparable reaction with the substituted p-keto ester
10b attached to the Helmchen reagent (Scheme 3) instead
of (-)-phenylmenthol as chiral auxiliary and TBDPS as
protecting group showed that the transesterification with
methanol under the above-mentioned reaction conditions
led to a retro-Dieckmann reaction. The substituted cyclo-
pentanone 10b underwent a ring-opening to the substitut-
ed dimethyl adipate 12 with additional recovering of the
chiral camphor acohol derivative.

After methylation with potassium carbonate and methyl
iodide in acetone we obtained the 2,2",3-trisubstituted cy-
clopentanone 13. Compound 13 was then converted with
1,4-diaza-bicyclo[2.2.2]octane (DABCO) into dimethyl
sulfoxide at 120°C via a demethoxycarbonylation
reaction’? into the 2,3-disubstituted cyclopentanone 14.
Surprisingly the DABCO-initiated demethoxycarbonyla-
tion succeeded even without an a-proton between the C1
keto function and the ester, although this was postul ated
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asanecessity for the feasibility of thisreaction.*® In order
to synthesize the tertiary alcohol at the C1 position we
used cerium(lIl) reagents as nucleophiles, which were
generated in situ from methyllithium and chloroceri-
um(lI1)dialkoxides. Best results were obtained by em-
ploying chlorocerium(lil)di-neopentoxide for this
reaction. Addition of this cerium(l11) reagent afforded
compound 15 after aqueous work-up in 89% yield with a
diastereomeric excess of 88% (Table 1).

Tablel Addition of Different Cerium(l11) Reagentsto 14

Reagent Yield of 14 (%) de (%)
MeCeCl, 91 63
MeCe(Oi-Pr), 83 79
MeCe(Ot-Bu), 85 82
MeCe(OCH.i-Pr), 89 88

Because of their high steric demand and the oxophilic na-
ture of cerium, the cerium(l11) reagents are specialy suit-
ed for addition reactions to carbonyl groups that easily
undergo enolization.®® The cleavage of the benzyl ether
under mild conditions was then achieved by the use of cal-
cium in liquid ammonia. The use of calcium in ammonia
proved to be mild enough to cleave the benzyl ether with-
out affecting the double bond. So finally, after column
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chromatography we isolated the natural product (-)- (5) (a) Oppolzer, W.; Cunningham, A. F. Tetrahedron Leit.

chokol A in 74% yield and the enantiomeric excess was
determined to be >95% by comparing its optical rotation
{[a]p?®® —56.2 (c 0.58, EtOH)} with the data reported
earlier.®
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4.52 (s, 2 H, -CH,Ph), 4.76-4.83 (m, 2 H, C=CH,), 7.06—
7.50 (m, 10 H, 2 x Ph). 3C NMR (50.3 MHz, CDCl,):

8 =21.71 (C5—CHj), 26.29 [C2'—C(CH,),Ph], 26.56 (C3’),

Synlett 2006, No. 14, 2223-2226 © Thieme Stuttgart - New York

(12)

(13)

.

26.83 [C2’—C(CH,),Ph], 26.90 (C3"), 27.96 (C5’), 30.96
(C3), 31.25(C2), 34.48 (C4'), 38.09 (C4), 39.81 [C2—
C(CH,),Ph], 41.22 (C2), 45.13 (C6"), 49.90 (C2), 60.35
(C1), 69.66 (C4"), 72.91 (OCH,Ph), 76.27 (C1"), 109.38
(C17=CH,), 124.90 (Cyaapn), 125.42 (Cyyipopn), 127.48
(Coarapn)» 127.55 (Corinopn), 127.92 (Crrgrapr), 128.30
(Cretagn)s 138.42 (Clg,), 148.38 (C17), 151.21 (Cly),
167.49 (-CO,R), 210.23 (C5). MS (El, 70eV): m/z (%) =
516.4 (0.1) [M*], 302.2 (52.0) [M* — C;¢H,,], 119.1 (50.0)
[Ph-C(CH,),*], 91.1 (100.0) [C,H,™]. IR (film): 3020, 3005
(C=CH,), 1745 (C=0), 1710 (-CO,R), 1640 (C=C) cm™.
[a]p® +4.21 (c 1.13, CHCI,). Anal. Cdlcd for Cy4H,,0,: C,
79.03; H, 8.58. Found: C, 78.90; H, 8.71.

(a) Parish, E. J; Mody, N. V.; Hedin, P. A.; Miles, D. H. J.
Org. Chem. 1974, 39, 1592. (b) Huang, B.-S.; Parish, E. J;
Miles, D. H. J. Org. Chem. 1974, 39, 2647. (c) For areview
article about this topic, see: Krapcho, A. P. Synthesis 1982,
805.

Alcarez, C.; Groth, U. Angew. Chem., Int. Ed. Engl. 1997,
36, 2480.

Figure2

Downloaded by: Florida International University. Copyrighted material.



