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Abstract 

Two D-π-A-π-A organic dyes (YC-1 and YC-2) with 

5-phenyl-5H-dibenzo[b,f]azepine derivatives as donor, thiophene as π bridge, and 

isoindigo and cyanoacrylic acid as acceptors were prepared. YC-1 and YC-2 show a 

panchromatic absorption between 300 nm and 800 nm both in solution and neat film. 

The photovoltaic performances of both dyes were evaluated in dye-sensitized solar 

cells based on iodide/triiodide electrolyte without any co-sensitizer. The YC-1 based 

device displays better device performance with open-circuit photocurrent density of 

12.12 mA cm-2, open-circuit voltage of 0.53 V, and fill factor of 68.9 %, 

corresponding to overall conversion efficiency (ƞ) of 4.38 %. The inferior 

performance of device based on YC-2 (ƞ = 1.46 %) is ascribed to short electron life 

time as evidenced from electrochemical impedance spectroscopy measurement. This 

research provided a potential promising donor unit for organic dyes and revealed the 

influence of donor size in organic dyes for photovoltaic performances. 

 

Keywords: 5-phenyl-5H-dibenzo[b,f]azepine; Isoindigo; D-π-A-π-A framework; 

Photovoltaic performance; Dye-sensitizer solar cells;  
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1. Introduction 

Dye-sensitized solar cells (DSSCs) have emerged as one promising candidate for 

renewable and green energy owing to their low cost fabrication procedure and 

attractive power conversion efficiency (ƞ) [1,2]. To date, a great deal of sensitizing 

dyes, including metal complexes [3-8] and organic molecules [9-12], has been 

exploited to achieve high ƞ. As such, several DSSCs show ƞ > 10% under AM1.5 

simulated solar light (100 mW cm–2) [13-17]. Compared to ruthenium-based 

sensitizers, organic dyes are attractive because of their high molar extinction 

coefficients, structural variety and possibly low cost due to the absence of platinoid 

ion and exciting progresses have been made recently with these materials [18,19].  

Generally, effective organic dyes for high performance of DSSCs are constructed 

around a donor-π-bridge-acceptor (D-π-A) framework resulting in effective 

intramolecular charge transfer [20-24]. Recently, the concept has been extended to 

D-A-π-A [24-29] architecture, in which the additional acceptor unit is favorable to the 

photophysical properties of the dyes, enhancing the photovoltaic performances and 

the photostability of dyes. Among these DSSCs dyes, considerable endeavors have 

been made to design new-type donor moieties, such as triphenylamine [10,19,25], 

carbazole [23,24], phorphyrin [26], indoline [30] and phthalocyanine derivatives 

[31,32]. Triarylamine derivatives are the one of most effective dyes in DSSCs owing 

to their good electron-donating character and generally reversible oxidation process 

[33]. Conversion efficiencies in the range of 9-10 % have been reported with 

arylamine-based organic dyes [33]. For example, a D-A-π-A dye (WS-9) using 
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indoline derivatives as the donor, cyanoacrylic acid as the acceptor, n-hexylthiophene 

unit as the conjugated spacer and the benzothiadiazole unit as the additional acceptor 

unit achieved ƞ = 9.04% with iodine electrolyte [34]. Hua and coworkers designed an 

D-A-π-A motif based on arylamine organic dyes utilizing quinoxaline unit as the 

additional acceptor moiety (YA422), resulting in a ƞ = 10.65% with [Co(bpy)3]
3+/2+ 

electrolyte [35]. However, arylamine-based organic dyes remain some challenges 

including lack of absorption in the near-infrared region and dye aggregation on the 

TiO2 film. Therefore, further red-shifted absorption spectra can be obtained by 

grafting additional conjugated spacer between the donor and acceptor units to form a 

D-π-A-π-A framework owing to the expended conjugation. Lin and his coworkers 

demonstrated the D-π-A-π-A motif possessed broad absorption spectra and efficient 

light-to-electricity conversions [36]. Even so, the research of structure-property 

relationship of this D-π-A-π-A motif is still overlooked. 

Encouraged by the successful application of triphenylamine (TPA) to DSSCs, 

herein we propose the use of 5-phenyl-5H-dibenzo[b,f]azepine, PDBAz, as a novel 

donor group of organic dye for DSSC. Because of some structural similarity with TPA, 

it was expected that PDBAz would still provide advantageous properties of TPA, such 

as good hole transporting ability and sterically-hindered structure limiting dye 

aggregations [37-39]. Furthermore, the additional conjugation in PDBAz would result 

in red-shifted absorption, thus leading to an expected enhancement of Jsc.  

We have prepared two dyes based on the D-π-A-π-A architecture with isoindigo 

and cyanoacrylic acid as acceptor groups and thiophene as π-linker. 2-Ethylhexyl 
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chains were grafted onto the isoindigo unit to ensure solubility and disrupt undesirable 

dye aggregation. To study the effect of molecular structure on photovoltaic 

performance, two donor groups were used: dye YC-1 has PDBAz while dye YC-2 

uses bis-PDBA-aniline, a much bulkier donor moiety (Chart 1). Both dyes show 

panchromatic absorption from 300 nm to 800 nm in solution and neat film. To study 

the effect of the donor size on photovoltaic performance, YC-1 and YC-2 were used 

as sensitizer for dye-sensitized solar cells with an iodide-based electrolyte. The device 

using YC-1 as the sensitizer exhibited better photovoltaic performance (ƞ = 4.38% 

with Jsc = 12.12 mA cm–2) than the cell using YC-2 ( ƞ = 1.46% with Jsc = 4.84 mA 

cm-2) due to major difference in JSC. Compared to the analogous TPA-based dye (ID1: 

3.52 %, 9.89 mA cm-2) [38], YC-1 shows enhanced performance in the same 

condition. Density functional theory (DFT) calculations and electrochemical 

impedance spectroscopy (EIS) have been used to understand the structure-property 

relationship of both YC-1 and YC-2. 

 

2. Experimental section 

2.1. Materials 

Transparent conducting oxide (TCO, 15 Ω /square, F-doped SnO2 from Geao Science 

and Educational Co. Ltd.) was used as the substrate for the TiO2 thin-film electrode. 

Methoxypropionitrile (MPN) was purchased from Aldrich. Tetra-n-butylammonium 

hexafluorophosphate (TBAPF6) and lithium iodide were bought from Fluka. Iodine 

(99.999%) was purchased from Alfa Aesar. Intermediate 7 has been reported in the 
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previous literature [40]. The starting material of 10-methoxy-5H-dibenzo[b,f]azepine 

is purchased from Energy Chemical. All other solvents and chemicals used in this 

work were of reagent grade and used without further purification. 

2.2. Characterization 

1H NMR and 13C NMR spectra were obtained with a Brucker AM 400 spectrometer. 

Mass spectra (MS) were recorded on a Bruker Autoflex MALDITOF instrument using 

dithranol as a matrix. The UV-vis absorption and photoluminescence spectra were 

measured with a Varian Cray 50. Cyclic voltammograms were performed with a 

Versastat II electrochemical workstation (Princeton applied research) using a normal 

three-electrode cell with a Pt working electrode, a Pt wire counter electrode, and 

Ag/AgCl reference electrode. The photovoltaic characterization was performed on the 

setup that constitutes a 450 W xenon lamp (Oriel), a Schott K113 Tempax sunlight 

filter (PräzisionsGlas & Optik GmbH), and a source meter (Keithley 2400) which 

applies potential bias and measures the photogenerated current. IPCE was obtained 

using a SR830 lock-in amplifier, a 300 W xenon lamp (ILC Technology) and a 

Gemini-180 double monochromator (Jobin-Yvon Ltd.). The electrochemical 

impedance spectroscopy measurements of all the DSSCs were performed using a 

Zahner IM6e Impedance Analyzer (ZAHNER-Elektrik GmbH & CoKG, Kronach, 

Germany). The frequency range is 0.1 Hz-100 kHz. The applied voltage bias is from 

-0.60 V to -0.85 V. The magnitude of the alternating signal is 5 mV. Intensity 

modulated photovoltage spectroscopy was obtained by the Zahner IM6e Impedance 

Analyzer (ZAHNER-Elektrik GmbH & CoKG, Kronach, Germany) and a 
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light-emitting display array (λ = 457 nm, blue light). The frequency range is 0.1 

Hz-100 kHz. 

2.3. Fabrication of DSSCs 

Four layers of Dyesol 90-T TiO2 paste and a scattering layer were screen-printed onto 

the FTO glass. The photoanodes was sintered gradually up to 500 oC and kept at this 

temperature before cooling. The photoanodes were immersed into 40 mM TiCl4 

aqueous solution at 70 oC for 30 min and sintered at 450 oC for 30 min and cooled 

down to 80 oC. Then the photoanodes were placed into 3×10-4 M dye bath in DCM 

solution for 6 h. The dye-sensitized photoanodes were sealed with platinized counter 

electrodes by a hot-melt film (25-µm-thick Surlyn, Dupont). The electrolytes were 

introduced to the cells via two pre-drilled holes in the counter electrodes. The 

electrolyte consists of 0.05 M I2, 0.05 M LiI, 0.5 M BMII, 0.1 M DMPII and 0.1 M 

GuSCN in acetonitrile. The active area of all DSSCs is 0.12 cm2. 

2.4. Synthesis 

5-(4-bromophenyl)-10-methoxy-5H-dibenzo[b,f]azepine (1) 

To a solution of 10-methoxy-5H-dibenzo[b,f]azepine (223 mg, 1.0 mmol), sodium 

tert-butoxide (t-BuONa) (288 mg, 3.0 mmol) and tris(dibenzylideneacetone) 

-dipalladium (Pd2(dba)3) (11.6 mg, 0.01 mmol) in dry toluene (15 mL) was added 

tri-tert-butylphosphine (P(t-Bu)3) (0.03 M in toluene, 1 mL, 0.03 mmol) and 

1-bromo-4-iodobenzene (390 mg, 1.3 mmol). The resulting mixture was refluxed for 

8 h under nitrogen atmosphere. Then the reaction mixture was let to cool down to 

room temperature and quenched with saturated aqueous NaHCO3 (20 mL). The 
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organic layer was separated and the aqueous layer was extracted with 

dichloromethane (DCM) (3 × 25 mL). The combined organic layers were washed with 

water, dried over anhydrous MgSO4, and then concentrated under vacuum to give the 

crude product 1, which was purified by column chromatography on silica gel 

(PE/DCM, 5:1) to afford the pure compound 1 as a white solid (192 mg, 50%). 1H 

NMR (400 MHz, CDCl3, TMS), δ(ppm): 7.82 (d, J = 7.6 Hz, 1H), 7.53 (d, J = 7.2 Hz, 

1H), 7.49–7.34 (m, 5H), 7.28 (d, J = 12.5 Hz, 1H), 7.08 (d, J = 8.4 Hz, 2H), 6.25 (d, J 

= 8.4 Hz, 2H), 6.04 (s, 1H), 3.80 (s, 3H). 13CNMR (100 MHz, CDCl3) δ: 156.15, 

147.56, 142.80, 141.12, 135.90, 134.25, 131.26, 130.92, 130.17, 129.64, 129.61, 

128.49, 127.70, 127.36, 127.18, 113.48, 109.77, 102.19, 55.42. 

10-methoxy-5-(4-(thiophen-2-yl)phenyl)-5H-dibenzo[b,f]azepine (2) 

To a mixture of 1 (500 mg, 1.33 mmol) and 2-(tributyltin)thiophene (740 mg, 2.0 

mmol) in toluene (25 mL) was added Pd(PPh3)4 (57 mg, 0.05 mmol) and then 

refluxed for 12 h under nitrogen atmosphere. After cooled down to room temperature 

(RT) and quenched with water, the mixture was extracted with DCM (3 × 30 mL). 

The combine organic layers were washed with water and dried with anhydrous 

MgSO4. After filtration, the solvent was removed under vacuum and the residue was 

purified by silica gel column chromatography with (PE/DCM, 6/1) as eluent to obtain 

2 as a white solid (100 mg, 19%). 1H NMR (400 MHz, CDCl3, TMS), δ(ppm): 7.82 (d, 

J = 5.6 Hz, 1H), 7.66–7.19 (m, 9H), 7.18–6.91 (m, 3H), 6.41 (d, J = 5.9 Hz, 2H), 6.06 

(s, 1H), 3.80 (s, 3H). 13CNMR (100 MHz, CDCl3) δ: 156.30, 148.06, 145.18, 143.10, 

136.10, 134.49, 130.90, 130.22, 129.78, 129.74, 128.53, 127.91, 127.69, 127.31, 
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127.16, 126.62, 124.61, 123.00, 112.16, 102.41, 68.10, 55.43. 

10-methoxy-5-(4-(5-(trimethylstannyl)thiophen-2-yl)phenyl)-5H-dibenzo[b,f]azep

ine (3) 

2.5 M n-BuLi (0.3 mL, 0.75 mmol) was added dropwise to a solution of 2 (98 mg, 

0.26 mmol) in dry THF (15 mL) at –78 °C under nitrogen. After stirring for 2 h, 

trimethylchlorotin (0.5 mL, 1.9 mmol) was added. The reaction mixture was stirred 

for additional 30 min and then gradually warmed to RT and stirred for 12 h. The 

reaction was quenched with water (30 mL) and the resulting mixture was extracted 

with DCM (3 × 25 mL). The organic layers were combined and washed with water 

and dried over anhydrous MgSO4. After filtration, the solvent was removed under 

vacuum to give product 3 (60 mg, 32%). 1H NMR (400 MHz, CDCl3, TMS), δ(ppm): 

7.81 (d, J = 7.8 Hz, 1H), 7.50 (dd, J = 21.9, 3H), 7.39 (d, J = 13.7 Hz, 5H), 7.17 (s, 

1H), 7.07 (t, J = 19.0 Hz, 2H), 6.40 (d, J = 8.6 Hz, 2H), 6.06 (s, 1H), 3.79 (s, 3H), 

0.46-0.20 (m, 9H). 

4-(thiophen-2-yl)aniline (4)  

Pd(PPh3)4 (134 mg, 0.116 mmol) was added to a solution of 4-bromoanilines (2 g, 

11.6 mmol) and 2-(tributyltin)thiophene (8.5 g, 22.7 mmol) in 50 mL toluene and the 

mixture was heated at 110°C for 12 h under nitrogen atmosphere. After cooling to RT, 

the mixture was poured into water (50 mL) and the organic layer separated. The 

aqueous layer was extracted with DCM (3 × 25 mL). The combined organic layers 

were washed with water and dried over anhydrous MgSO4. The volatiles were 

removed under vacuum to give crude product 4, which was purified by column 
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chromatography on silica gel with (PE/DCM, 4/1) as eluent to obtain 4 as a light 

yellow solid (1.8 g, 89%). 1H NMR (400 MHz, CDCl3, TMS), δ(ppm): 7.42 (d, J = 

6.6 Hz, 2H), 7.15 (s, 2H), 7.02 (s, 1H), 6.69 (d, J = 6.7 Hz, 2H), 3.73 (s, 2H). 

4-(10-methoxy-5H-dibenzo[b,f]azepin-5-yl)-N-(4-(10-methoxy-5H-dibenzo[b,f]az

epin-5-yl)phenyl)-N-(4-(thiophen-2-yl)phenyl)aniline (5) 

To a solution of compound 4 (0.35 g, 2 mmol), t-BuONa (1 g, 8.0 mmol) and 

Pd2(dba)3 (110 mg, 0.12 mmol) in dry toluene (50 mL) was added P(t-Bu)3 (1 M in 

toluene, 0.3 mL) and 1 (2.26 g, 6.0 mmol). The resulting mixture was refluxed for 8 h 

in nitrogen atmosphere. After cooling down to RT, the reaction mixture was quenched 

with saturated aqueous NaHCO3 (20 mL). The organic layer was separated and the 

aqueous layer was extracted with DCM (3 × 35 mL). The combine organic layers 

were washed with water and dried over anhydrous MgSO4. The volatiles were 

removed under vacuum to give the crude product 5, which was purified by column 

chromatography on silica gel with (PE/DCM, 5/1) as eluent to obtain 5 as a light 

yellow solid (1.35 g, 87%). 1HNMR (400 MHz, CDCl3, TMS), δ(ppm): 7.66 (d, J = 

5.5 Hz, 2H), 7.51 (s, 2H), 7.47 – 7.20 (m, 13H), 7.13 (s, 2H), 6.95 (s, 2H), 6.68 (d, J = 

5.5 Hz, 4H), 6.50 (d, J = 5.1 Hz, 2H), 6.27 – 5.96 (m, 6H), 3.69 (s, 6H). 13CNMR (100 

MHz, DMSO) δ: 155.83, 148.70, 145.06, 144.39, 142.96, 141.24, 137.57, 136.07, 

134.35, 131.43, 130.63, 130.09, 129.75, 128.66, 128.49, 128.08, 127.62, 127.42, 

127.16, 126.55, 124.70, 124.13, 121.93, 118.08, 112.48, 102.96, 55.79.  MALDI-MS 

calcd for C53H40N2O2S [M]+, 769.281; found, 769.441. 
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4-(10-methoxy-5H-dibenzo[b,f]azepin-5-yl)-N-(4-(10-methoxy-5H-dibenzo[b,f]az

epin-5-yl)phenyl)-N-(4-(5-(trimethylstannyl)thiophen-2-yl)phenyl)aniline (6) 

2.5 M n-BuLi (0.3 mL, 0.75 mmol) was added dropwise to a solution of compound 5 

(551 mg, 1 mmol) in dry THF (15 mL) at –78 oC under nitrogen. After stirring for 1 h 

at –78 oC, trimethyl tin (0.47 mL, 1.7 mmol) was added. The reaction mixture was 

stirred at –78 °C for additional 30 min and then gradually warmed to room 

temperature and further stirred for 12 h. Then the reaction was quenched by adding 

water (30 mL) and the resulting mixture was extracted with DCM (3 × 25 mL). The 

organic layers were combined, washed with water and dried over anhydrous MgSO4. 

The volatiles were removed under vacuum to give compound 6 as a yellow oil (320 

mg) in 45%. 1HNMR (400 MHz, CDCl3, TMS), δ(ppm): 7.77 (s, 2H), 7.47 (br, 6H), 

7.34 (br, 8H), 7.08 (s, 2H), 6.77 (br, 6H), 6.29 (br, 4H), 6.06 (br, 2H), 3.78 (d, J = 25.4 

Hz, 6H), 0.51-0.20 (m, 9H).  

Synthesis of 8 

A mixture of compound of 7 (1.28 g, 2 mmol), Pd2(dba)3 (73 mg, 0.08 mmol), 

P(o-tyl)3 (50 mg, 0.16 mmol), and Na2CO3 (2.76 g, 20 mmol) in 60 mL of THF was 

heated to 50 °C. After stirring for 30 min, a solution of 5-formylthiophen-2-yl boronic 

acid (0.31 g, 2 mmol) in THF (10 mL) was injected to the mixture. The mixture was 

then heated at 80 °C for 10 h. After cooling to RT and quenched with water, the 

resulting solution was extracted with DCM (3 × 30 mL). The combined organic layers 

were washed with water and dried over anhydrous MgSO4. The volatiles were 

removed under vacuum and the residue was purified by column chromatography 
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silica gel with PE/DCM (V/V, 5/2) as eluent to obtain 8 as a purple solid (750 mg, 

55%). 1HNMR (400 MHz, CDCl3, TMS), δ(ppm): 9.96 (s, 1H), 9.23 (d, J = 8.3 Hz, 

1H), 9.08 (d, J = 8.6 Hz, 1H), 7.77 (s, 1H), 7.50 (s, 1H), 7.37 (d, J = 9.2 Hz, 1H), 7.16 

(d, J = 14.7 Hz, 1H), 7.04 (s, 1H), 6.92 (s, 1H), 3.69 (dd, J = 31.1, 9.4 Hz, 4H), 1.86 

(s, 2H), 1.33 (dd, J = 29.4, 18.9 Hz, 16H), 1.08-0.70 (m, 12H). 

Synthesis of 9 

Compound 3 (150 mg, 0.275 mmol), compound 8 (200 mg, 0.3 mmol), Pd(PPh3)4 (13 

mg, 0.011 mmol) and 15 mL toluene were mixed together in a 25 mL flask and the 

mixture was heated at 110 °C for 12 h. The mixture was then cooled down to room 

temperature and extracted with DCM (3×10 mL). The combined organic layers were 

washed with water and dried over anhydrous MgSO4. The volatiles were removed 

under vacuum and the residue was purified by column chromatography on silica gel 

with PE/EA (V/V, 7/1) as eluent to obtain 9 as a black solid (120 mg, 44%). 1HNMR 

(400 MHz, CDCl3, TMS), δ(ppm): 9.92 (s, 1H), 9.17 (dd, J = 23.9, 8.4 Hz, 2H), 7.84 

(d, J = 7.9 Hz, 1H), 7.76 (d, J = 3.6 Hz, 1H), 7.61 – 7.30 (m, 15H), 7.10 (d, J = 3.3 Hz, 

1H), 7.03 (s, 1H), 6.95 (s, 1H), 6.44 (d, J = 8.6 Hz, 2H), 6.07 (s, 1H), 3.81 (s, 3H), 

3.71 (d, J = 15.6 Hz, 4H), 1.88 (s, 2H), 1.47-1.04 (m, 16H), 1.03-0.59 (m, 12H). 

13CNMR (100 MHz, CDCl3) δ: 182.38, 168.39, 155.94, 153.58, 148.44, 146.16, 

145.71, 145.21, 141.29, 140.57, 138.36, 134.32, 133.34, 130.49, 130.13, 129.51, 

128.46, 127.64, 126.37, 123.91, 122.93, 122.23, 122.21, 120.22, 119.50, 118.51, 

118.07, 112.14, 105.30, 104.42, 102.14, 55.42, 44.13, 37.80, 30.86, 28.86, 23.09, 

14.13, 14.09, 10.84. MALDI-MS calcd for C62H63N3O4S2 [M] +, 976.426; found, 
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976.549. 

Synthesis of 10 

Compound 6 (160 mg, 0.208 mmol), compound 8 (162 mg, 0.25 mmol), Pd(PPh3)4 

(12 mg, 0.01 mmol) and 15 mL toluene were mixed together in a 25 mL flask and the 

mixture was heated at 110 °C for 12 h. The mixture was then cooled down to room 

temperature and extracted with DCM (3×10 mL). The combined organic layers were 

washed with water and dried over anhydrous MgSO4. The volatiles were removed 

under vacuum and the residue was purified by column chromatography on silica gel 

with PE/EA (V/V, 7/1) as eluent to obtain 10 as a black solid (110 mg, 38%). 1H 

NMR (400 MHz, CDCl3) δ(ppm): 9.91 (s, 1H), 9.20 (d, J = 8.4 Hz, 1H), 9.14 (d, J = 

8.2 Hz, 1H), 7.77 (br, 4H), 7.72 (s, 2H), 7.63–7.29 (m, 24H), 6.84 (dd, J = 120.7, 49.3 

Hz, 9H), 6.32 (s, 5H), 6.07 (s, 2H), 3.82 (s, 6H), 3.73 (s, 4H), 1.35 (dd, J = 41.3, 20.1 

Hz, 18H), 1.03–0.73 (m, 12H). 13CNMR (100 MHz, CDCl3) δ: 182.69, 168.63, 

168.43, 156.23, 153.61, 149.35, 149.22, 149.12, 146.47, 146.05, 145.54, 145.17, 

143.45, 142.93, 141.72, 140.96, 138.60, 137.66, 136.05, 135.62, 134.47, 133.38, 

130.69, 130.48, 130.05, 129.79, 129.71, 128.32, 127.52, 127.00, 126.85, 126.58, 

126.20, 124.80, 124.28, 122.98, 120.46, 118.46, 112.58, 104.44, 102.59, 55.43, 43.95, 

37.81, 30.86, 28.88, 28.83, 24.31, 23.09, 14.15, 14.10, 10.86, 10.84.MALDI-MS 

calcd for C89H83N5O5S2 [M]+, 1364.584; found, 1364.832.  

Synthesis of YC-1 

Compound 9 (200 mg, 0.19 mmol), 2-cyanoacetic acid (200 mg, 2.2 mmol), 

ammonium acetate (320 mg) in acetic acid (30 mL) were heated to 120 °C under 
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nitrogen atmosphere for 24 h. After cooling down to room temperature, the mixture 

was poured into water. The precipitate was filtered off and purified by column 

chromatography on silica gel using DCM/CH3OH (15/1,V/V) as eluent to provide 

YC-1 as a dark solid (80 mg, 38%).1HNMR (400 MHz, DMSO-d6, TMS), δ(ppm): 

9.14–8.90 (m, 2H), 8.21 (s, 1H), 8.05 (s, 1H), 7.76 (d, J = 7.4 Hz, 2H), 7.62 (d, J = 

24.3 Hz, 4H), 7.54–7.22 (m, 8H), 7.16 (d, J = 8.8 Hz, 2H), 7.05 (s, 1H), 6.93 (s, 1H), 

6.27 (d, J = 7.9 Hz, 1H), 6.19 (s, 1H), 3.75 (s, 3H), 3.62 (s, 4H), 1.76 (s, 2H), 

1.10–1.31 (m, 20H), 0.85 (d, J = 23.8 Hz, 8H). MALDI-MS calcd for C65H64N6O5S2 

[M] +, 1044.432; found, 1044.519. 

Synthesis of YC-2 

Compound 10 (150 mg, 0.11 mmol), 2-cyanoacetic acid (183 mg, 2.0 mmol), 

ammonium acetate (290 mg) in acetic acid (25 mL) were heated to 120 °C under 

nitrogen atmosphere for 24 h. After cooling to room temperature, the mixture was 

poured into water. The precipitate was filtered off and purified by column 

chromatography on silica gel using DCM/CH3OH (15/1,V/V) as eluent to provide 

YC-2 as a dark solid (63 mg, 40%). 1HNMR (400 MHz, DMSO-d6, TMS), δ (ppm): 

8.99 (s, 2H), 8.23 (s, 1H), 8.09 (s, 1H), 7.70 (dd, J = 22.6, 7.4 Hz, 2H), 7.53 (s, 1H), 

7.48 – 7.18 (m, 14H), 7.14 (s, 1H), 6.98 (s, 1H), 6.88 (s, 1H), 6.69 (d, J = 7.1 Hz, 4H), 

6.55 (d, J = 7.0 Hz, 1H), 6.27–6.09 (m, 5H), 3.72 (s, 6H), 3.60 (s, 4H), 1.75 (s, 2H), 

1.19 (d, J = 75.3 Hz, 20H), 0.96–0.63 (m, 8H). MALDI-MS calcd for C92H84N6O6S2 

[M] +, 1431.589; found, 1431.755. 
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3. Results and discussion 

3.1. Synthesis and characterized 

The synthetic routes of the two dyes YC-1 and YC-2 are described in Scheme 1. 

Intermediates 1 and 5 were prepared by the Buchwald-Hartwig amination via the 

palladium-catalyzed cross-coupling of amines (10-Methoxy iminostilbene or 4) with 

aryl halides (4-bromoiodobenzene or 1). Typical Stille coupling reactions between 

aryl bromide (1 and 4-bromoaniline) and tributyl(thiophen-2-yl)stannane were carried 

out to afford compound 2 in moderate yield (19%) and compound 4 in high yield 

(89%). Intermediates 2 and 5 were reacted with Sn(CH3)3Cl to give compound 3 and 

6 in yield of 32% and 45%, respectively. Compound 8 was obtained via Suzuki 

coupling reaction between intermediate 7 and 5-formylthiophen-2-ylboronic acid in a 

yield of 55%. The key aldehyde precursors of 9 and 10 were synthesized through 

Stille coupling of 3 (or 6) and 8 in 44% and 38% yields, respectively. Finally, 

Knoevenagel condensation of these aldehydes with cyanoacetic acid gave the dyes 

YC-1 and YC-2. Both target dyes were characterised by 1H NMR and TOF-Mass. 

3.2. Photophysical properties 

The UV-vis absorption spectra of YC-1 and YC-2 are shown in Figure 1 and the 

corresponding data are listed in Table 1. Panchromatic absorption with two typical 

bands is observed for YC-1 and YC-2 both in solution and on neat film. The 

absorption band between 340 nm and 470 nm with the maximum extinction 

coefficient (ε) of ≈ 3-5 × 104 M–1 cm–1 is attributed to the localized aromatic π–π* 

transitions, while the band at 470–800 nm (ε ≈ 2-4 × 104 M–1 cm–1) is ascribed to the 
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intramolecular charge transfer transition (ICT) [41]. YC-2 exhibits a 31 nm red shift 

of the absorption band at long-wavelength both in solution and neat film compared to 

YC-1, ascribed to the larger donor group in YC-2. Additionally, YC-2 displays a 

lower ε at long-wavelength than YC-1 pointing to a lower oscillator strength for the 

ICT transition. Compared to the absorption in solution, a similar absorption bands 

with slight hypochromic shift (ca. 18 nm) are observed in neat film. This result can be 

presumably explained by the formation of H-type aggregates [41].  

When both the dyes were adsorbed onto 2.0 µm thick TiO2 films, similar absorption 

bands with remarkable blue shift are observed (23 nm for YC-1 and 40 nm for YC-2) 

compared to that achieved in solution (Figure 2 and Table 1). According to previous 

reports, this blue shift is caused by the deprotonation of the dyes on TiO2 film and 

formation of H-aggregates [41,42].  

3.3. Electrochemical property 

To investigate the possibility of electron transfer from the dyes to TiO2, cyclic 

voltammetry was carried out to estimate the redox potentials of YC-1 and YC-2 and 

the data are summarized in Table 1. The oxidation potentials of YC-1 and YC-2 are 

located at 0.81 V and 0.72 V (Fc/Fc+ is 0.46 V vs Ag/AgCl, Fc/Fc+ is 0.63 V vs NHE 

[43]) versus Ag/AgCl electrode, respectively (Figure 3). Both the values of oxidation 

potential (YC-1: 0.98 V vs NHE, YC-2: 0.89 V vs NHE) are higher than that of 

iodide/triiodide (0.35 V vs NHE) [18,42], indicating YC-1 and YC-2 can provide 

ample driving force for the dye regeneration. Compared to YC-1, the additional 

10-Methoxy iminostilbene and triphenylamine units in YC-2 decrease its oxidation 
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potential by 90 mV owing to increased donor ability. On the other hand, the zero-zero 

transition energies (E0-0) are estimated to be 1.67 V (YC-1) and 1.56 V (YC-2) based 

on the absorption thresholds. Estimated from oxidation potentials and E0-0, the optical 

reduction potentials of both dyes are determined to be –0.69 V and –0.67 V (vs NHE) 

for YC-1 and YC-2, respectively. Both dyes show almost the same reduction 

potentials due to the same acceptor units. The optical reduction potentials lie above 

the conduction band of TiO2 (–0.5 V vs NHE) [44], favoring the injection of electrons 

from the dyes to the TiO2. 

3.4. Theoretical calculations 

In order to investigate the relationship between electronic distribution and 

molecular structure, density functional theory (DFT) calculations were performed to 

optimize the geometry of both dyes based on Gaussian 09 at B3LYP/6-31G(d) level. 

As shown in Figure 4, a similar pattern of highest occupied molecular orbitals 

(HOMOs) are observed at thiophene and 5-phenyl-5H-dibenzo[b,f]azepine units for 

YC-1 and YC-2. Conversely, the lowest unoccupied molecular orbitals (LUMOs) 

display a different electron population. For YC-1, the LUMO is delocalized across the 

anchoring group, isoindigo, thiophene and 5-phenyl-5H-dibenzo[b,f]azepine moieties, 

while the LUMO of YC-2 is only located at anchoring group. This larger 

HOMO-LUMO overlap in YC-1 points to a more effective intermolecular charge 

transfer in YC-1 compared to YC-2.  

3.5. Photovoltaic performance 

The performance of YC-1 and YC-2 as sensitizer for dye-sensitized solar cells 
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were evaluated at 100 mW cm–2 under simulated AM1.5G solar light. The 

current-density-voltage (J-V) curves of the devices are shown in Figure 5 and the 

performance parameters are summarized in Table 2. The DSSCs based on YC-1 

showed a short-circuit photocurrent density (Jsc) of 12.12 mA cm–2, an open-circuit 

voltage (Voc) of 0.53 V, and a fill factor (FF) of 68.9%, corresponding to an overall ƞ 

of 4.38%. YC-2-based DSSCs exhibited a Jsc of 4.84 mA cm–2, a Voc of 0.48 V, and an 

FF of 63.4%, achieving ƞ of 1.46%. All the photovoltaic parameters of the YC-1 are 

higher than those of YC-2, in particular the difference in short-circuit current is 

striking. The latter is mainly attributed to the large difference of IPCE between the 

two dyes in the 450-650 nm interval, where the intensity of incident photon flux is the 

highest. 

To gain further insight into the influence of molecular structure on the current 

density of the devices, the incident photo-to-current conversion efficiency (IPCE) of 

the devices were measured (Figure 6). Both dyes show two well-separated peaks at 

349 nm and 419 nm and one broad peak between 500 nm and 800 nm. The shape of 

the spectra is reminiscent of the absorption spectra with a blue shift as observed in the 

absorption spectra of the TiO2 films. Importantly the IPCE of YC-1 based device is 

about 61 %, 48 % and 31 % at 349 nm, 419 nm 559 nm, respectively while YC-2 

based device exhibits IPCE of only 51 %, 38 % and 15 % at the same wavelengths. 

Therefore the IPCE of the YC-1 based device is about 10 % higher across the whole 

visible wavelength range than that of YC-2 based device. This result is ascribed to the 

better light harvesting properties of YC-1 (higher epsilon) than YC-2, which was 
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expected from the absorption spectra (Figure 1). Consequently, the higher IPCE 

values of YC-1 results in the much higher Jsc compared to YC-2.  

3.6. Electrochemical Impedance Spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) was carried out to explore the 

electron recombination dynamics in the devices. The Nyquist plots and bode plots of 

DSSCs based on YC-1 and YC-2 were recorded in dark with applied bias of 0.55 V 

and the results are shown in Figure 7 and Figure 8.  

Estimated from the fitting of the EIS spectra with an electrochemical model [38,45], 

the series resistances (RS), charge transfer resistances at the Pt/electrolyte interface 

(RCE) and dye/TiO2/electrolyte interface (Rrec) were calculated (Table 3). The RS and 

RCE corresponding to the arc in high frequency region (Figure 4 inset) show almost 

the same value in both DSSCs owing to the same electrode and electrolyte. Rrec 

corresponds to the middle arc in low frequency region and indicates that the Rrec of 

YC-1 based device is distinctly higher than that of YC-2 based device. 

The intermediate frequency peak in the EIS Bode plots is assigned to the 

recombination at the TiO2/electrolyte interface. As seen from Figure 8, the 

intermediate frequency peak of YC-1 based device shows a lower frequency than that 

of YC-2 based device. Based on this result [46], the electron lifetimes (τe, 1/(2πf)) are 

assessed to be 12.5 ms and 7.2 ms for YC-1 and YC-2, respectively. YC-1 possesses 

a longer τe in titania films, which could be attributed to a lower rate of charge 

recombination and higher Voc. Additionally, the radius of the intermediate arc in 

Figure 8 describes the charge transfer impedance at the TiO2/electrolyte interface [42]. 
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YC-1 shows a larger arc than YC-2, implying that YC-1 has a more difficult charge 

transfer than YC-2, which results in a higher electron density in the titania film 

leading to superior performance for its corresponding device. Likewise, this result 

could be derived from Nyquist plot (Figure 7). 

 

4. Conclusions 

In conclusion, two D-π-A-π-A dyes based on 5-phenyl-5H-dibenzo[b,f]azepine 

donor group were synthesized and characterized. Compared to the reported dyes ID1, 

which uses a triphenylamine donor group, YC-1 and YC-2 showed red-shifted 

absorption and enhancement of molar extinction coefficient due to extended 

conjugation. YC-2 possesses stronger donor ability as shown by the decreased 

oxidation potential compared to YC-1. The influence of the different donor groups on 

the photovoltaic performance of sensitized cells was explored. YC-1 exhibited the 

best power conversion efficiency of 4.38% (Jsc = 12.12 mA cm–2, Voc = 0.53 V and FF 

= 68.89) for the DSSCs without any co-sensitizer, which is almost three folds the 

efficiency of YC-2. This result is attributed to the more effective ICT and longer 

lifetime of electron injected in the titania of YC-1 as evidenced by DFT and EIS, 

leading to an improvement of photocurrent and open circuit voltage, and, thus power 

conversion efficiency. This research illustrated: (1) 5-phenyl-5H-dibenzo[b,f]azepine 

could be a promising donor moiety in DSSCs dyes; (2) The balance between spatial 

structure and intermolecular charge transfer plays a key role for the high efficiency in 

sensitizer. Future work will be focus on optimized DSSCs with the co-sensitizer and 
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cobalt electrolyte to further improve the performance. 
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Tables Captions 

 

Table 1 Photophysical data of YC-1 and YC-2 

Table 2 Photovoltaic performance parameters of sensitized cells 

Table 3 Parameters evaluated from fitting the EIS spectra of YC-1 and YC-2 based  

DSSCs 
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Table 1 

 

Dye 
Absorption/nm(105 M–1cm–1) 

Solution    Neat film    On TiO2 
aEg

opt/eV bEox/V cEred-opt/V  

YC-1 
415 (0.45), 

585 (0.45) 
410, 563 

402, 

562 
1.67 0.98 -0.69 

YC-2 
392 (0.48), 

616 (0.35) 
391, 600 

414, 

576 
1.56 0.89 -0.67 

a estimated from the edge-absorption spectra; b calculated from onset oxidation peaks. Edyes
ox-EFC/FC++0.63 

V; c calculated from the formulation: E
red-opt

 = Eg-Eox 

 

 

Table 2 

 

Dye  Jsc/mA cm-2 Voc/V FF PCE/% 

YC-1 12.12 0.53 68.89 4.38 

YC-2 4.84 0.48 63.35 1.46 

 

 

Table 3 

 

Dye RS (Ω) RCE (Ω) Rrec (Ω) τe (ms) 

YC-1 16.11 56.47 96.55 12.5 

YC-2 16.96 41.48 63.23 7.2 
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Figures Captions 

 

Chart 1 molecular structure of ID-1, YC-1 and YC-2 

Scheme 1 synthesis of YC-1 and YC-2 

Figure 1 UV−vis absorption spectra of YC-1 and YC-2 in CHCl3 solution (10–5 M) and as neat 

films 

Figure 2 UV−vis absorption spectra of YC-1 and YC-2 were measured on TiO2 films 

Figure 3 CV curves of YC-1 and YC-2 were measured in CHCl3 solution (inset the CV curve of 

ferrocene) 

Figure 4 Electron distributions of MOs (a: YC-1, b: YC-2) 

Figure 5 J-V curves of YC-1 and YC-2 based sensitized cells 

Figure 6 IPCE curves of YC-1 and YC-2 based sensitized cells 

Figure 7 Nyquist plots of YC-1 and YC-2 based dye sensitized cells 

Figure 8 Bode plots of YC-1 and YC-2 based sensitized cells 
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Chart 1 
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Scheme 1 

 

 
Reaction conditions: Reaction conditions: (a) 1-bromo-4-iodobenzene, Pd2(dba)3, P(t-Bu)3, 

t-BuONa, toluene, 

reflux, overnight, 50%; (b) tributyl(thiophen-2-yl)stannane, Pd(PPh3)4, toluene, reflux, overnight, 19%; (c) 

Sn(CH3)3Cl, dry THF, n-BuLi, -78oC to RT, 12 h, (3: 32%, 6: 45 %); (d) Pd(PPh3)4, toluene, 110oC, 12h, 89%; (e) 

Pd2(dba)3, P(t-Bu)3, 
t-BuONa, toluene, reflux, 8h, 87%; (f) Pd2(dba)3, K2CO3, P(o-tyl)3,THF, reflux, 10h, 55%; (g) 

Pd(PPh3)4, toluene, 110 oC, 10h (9: 44%, 10: 38%); (h) CH3COOH, CH3COONH4, CH3COOCN, 120oC, 24h, 

(YC-1: 38%, YC-2: 40%). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

39 
 

Figure 6 
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Figure 7 
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Figure 8 
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Research Highlights 

 

� Tow D-π-A-π-A dyes bearing 5-phenyl-5H-dibenzo-[b,f]azepine units were 

synthesized.  

� The effect of donor size on the property of sensitizer was systematically studied 

� The dyes show panchromatic absorption between 300-800 nm in solution and neat 

film 

� PCE of 4.38% was achieved for DSSCs based on I3
-/I- electrolyte without 

co-sensitizer 

 


