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The continuing investigation of SAR studies of 3-(2-hydroxyethoxy)-N-(5-benzylthiazol-2-yl)-benzam-
ides as stearoyl-CoA desaturase-1 (SCD-1) inhibitors is reported. Our prior hit-to-lead effort resulted in
the identification of 1a as a potent and orally efficacious SCD-1 inhibitor. Further optimization of the
structural motif resulted in the identification of 4-ethylamino-3-(2-hydroxyethoxy)-N-[5-(3-trifluorom-
ethylbenzyl)thiazol-2-yl]benzamide (37c) with sub nano molar IC50 in both murine and human SCD-1
inhibitory assays. This compound demonstrated a dose-dependent decrease in the plasma desaturation
index in C57BL/6J mice on a non-fat diet after 7 days of oral administration.

� 2009 Elsevier Ltd. All rights reserved.
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Stearoyl-CoA desaturase-1 (SCD-1), a microsomal enzyme, is a
rate-limiting enzyme in the synthesis of monounsaturated fatty
acids from their saturated fatty acid precursors.1,2 In adult mice,
SCD-1 isoform is expressed in lipogenic tissues including the liver
and adipose tissue. Deficiency of SCD-1 has been shown to cause
defective hepatic cholesterol ester and triglyceride synthesis,3

resistance against obesity,3 and reduced liver steatosis in rodents.4

In humans, a higher desaturation index (the ratio of oleate to stea-
rate or 18:1/18:0) is strongly correlated with higher plasma tri-
glyceride levels.5 Even though the detailed mechanism by which
SCD-1 deficiency affects body weight and adiposity is not com-
pletely understood, inhibition of SCD-1 may represent a novel ap-
proach for the treatment of metabolic syndromes. In the preceding
article,6 we reported optimization of the HTS hit compound to
identify potent and orally bioavailable SCD-1 inhibitors, such as 1
(Fig. 1). The improvement in oral bioavailability that was accom-
plished in the course of the optimization was significant, however,
more improvement in bioavailability is desirable to achieve more
potency in pharmacological studies in vivo. In this article, we
would like to report further exploration in SAR of the lead com-
ll rights reserved.

: +81 3 5436 8563.
o.jp (Y. Uto).
pound to improve bioavailability and in vivo potency. Our plans
to modify 1 are summarized in Figure 1. Structurally, the hydroxy-
ethoxy functional group in the 3-position of the right-hand phenyl
is considered to be essential for both strong SCD-1 inhibitory
R2, V, W, X, Y are investigated.

Figure 1. Plans for SAR studies of 1.
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activity and good oral exposure,6 whereas the methoxy on the 4-
position is presumed to be modifiable (R2 in Fig. 1). In regard to
the central pharmacophore, we tried to replace the thiazole with
other S-containing heteroaryls (X and Y in Fig. 1). The linkers be-
tween the thiazole core and the terminal phenyls on both ends
(V and W in Fig. 1) were investigated as well. As for the substitu-
ents on the left-hand phenyl, we reported in the preceding manu-
script6 that halogens and haloalkyls were preferred on the 3-, 3,4-
or 3,5-positions. We assumed it was not necessary to further inves-
tigate substitutions on the left hand phenyl at this point.

The synthetic routes for the compounds in Tables 1–3 are out-
lined in Schemes 1–3.7 Condensation of the commercially available
2-(3,5-bis-trifluoromethylphenyl)thioacetamide (2) and 2-chloro-
3-oxo-propionic acid ethyl ester (3)8 efficiently provided the de-
sired 2-benzylthiazole (4) in 97% yield. Saponification of the ethyl
ester, Curtius rearrangement in t-BuOH, and deprotection of the
N-Boc with TFA provided the 5-aminothaizole (5) in 38% yield over
three steps. Coupling between 5 and the benzoic acid (10) in the
presence of HATU was extremely sluggish and the desired product
11 was obtained in only 6% yield after THP deprotection
(Scheme 1). For the synthesis of thiophene analogs, nucleophilic
Table 1
Evaluation of heteroaryl cores

NH

O

O

O

OH

AR

No. R
A

IC50
a (nM)

mouse D9
IC50

a (nM)
human D9

Inhibition %a at
10 lM
human D6

1a 3-CF3

N

S
2 3 15

1b 3,5-Di-CF3

N

S
0.6 0.3 NTb

11 3,5-Di-CF3

N

S 44 32 22

12 3-CF3
S 76 145 22

13 3-CF3

N N

S
10 8 <5

a Values are the geometric means of at least two experiments.
b NT—not tested.

Table 2
Summaries of PK profilesa in C57BL/6J mice

N

S
NH

O
O

O
OHF3C

1a

No. PK

Cmax
b (lg/mL) t1/2

b (h)

1a 1.7 3.5
13 0.12 2.5

a A dose of each compound was either intravenously (5 mg/kg, DMA/Tween80/saline 1
MC, n = 3) administered using an intubation tube. Plasma samples (20 lL) were collected
compounds were determined by LC/MS.

b Values are the geometric means of at least two experiments.
addition of 2-lithiothiophene to 3-trifluoromethylbenzaldehyde
and reduction of the resulting alcohol in the presence of an excess
amount of TMS–Cl and NaI9 provided 2-(3-trifluoromethylben-
zyl)thiophene (6) in 85% yield over two steps. Regioselective nitra-
tion by Cu(NO3)2 in acetic anhydride gave the desired
nitrothiophene (7) in 83% yield. Reduction, condensation with 10,
and THP deprotection gave 12. The thiadiazole analog (13)10 was
prepared from 5-(3-trifluoromethylbenzyl)-[1,3,4]thiadiazol-2-
ylamine (9) and 10 in the analogous procedures utilized for the
preparation of 11.

For optimization of the V linkers (Fig. 1), the synthetic routes
are outlined in Scheme 2. Lithium–halogen exchange on (5-bro-
mothiazol-2-yl)-carbamic acid tert-butyl ester (14)11 with n-BuLi,
addition of 3-trifluoromethylbenzaldehyde, Dess–Martin oxida-
tion, and acidic deprotection of the N-Boc group gave 15 in 42%
yield over three steps. The aminothiazole (15) was coupled with
10 and subsequent THP deprotection provided the 5-benzoylthiaz-
ole (16) in 54% yield over two steps. The ketone in 16 was reduced
with NaBH4 to produce the thiazole–phenyl–methanol analog (17).
N N

S
NH

O
O

O
OHF3C 13

profilesa (po, 20 mg/kg)

Tmax
b (h) AUC(0–8 h)

b (lg h/mL) F (%)

0.7 8.2 12
1.0 0.4 2

0/10/80) injected into the tail vein of C57BL/6Jmice (n = 2) or orally (20 mg/kg, 0.5%
up to 8 h after intravenous or oral administration. The plasma concentrations of the

Table 3
Evaluation of linkers to the thiazole core (V and W)

N

S
W

V
O

F3C O
OH

No. V W IC50
a (nM)

mouse D9
IC50

a (nM)
human D9

Inhibition %a at
10 lM human D6

1a

H
N

O
2 3 22

16
O H

N

O
>1000 NTb NTb

17
OH H

N

O
276 884 8

20 O
H
N

O
>1000 >1000 NTb

24 N

O
836 828 16

29

H
N

O
49 32 <5

a Values are the geometric means of at least two experiments.
b NT—not tested.
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Condensation of 2-amino-5-bromothiazole (18) and 3-trifluoro-
methylphenol provided 19. Amide bond formation and deprotec-
tion gave 20. As for the amide linker (W in Fig. 1), synthetic
routes for the methylated amide analogs and the reverse amide
analogs are shown in Scheme 3. Since it was presumed that alkyl-
ation of acylated aminothiazoles would provide undesired alkyl-
ation products (i.e., alkylation at the 3-position of thiazole),12 we
tried to aminate the 2-bromothiazole (22) with (4-methoxyben-
zyl)methylamine. The synthesis was initiated with diazonium for-
mation and subsequent bromination on the aminothiazole (21)
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Scheme 2. Reagents and conditions: (a) n-BuLi/THF, then 3-trifluoromethylbenzaldehyde
(d) HATU, 10, Et3N, DMA, rt to 80 �C; (e) 1 N HCl, MeOH, rt, (16; 54% over two step
trifluoromethylphenol, THF/DMF (1:9), 39%.
under Sandmeyer reaction conditions gave the 2-bromothiazole
(22). Palladium catalyzed amination with (4-methoxyben-
zyl)methylamine produced 23. Deprotection of the PMB group in
TFA, HATU mediated amide bond formation and subsequent THP
deprotection gave the N-methylated thiazole analog (24). Synthe-
sis of the reverse amide analog (29) was initiated with alkylation
of 2-methoxy-5-nitrophenol (25) with 2-bromoethanol, followed
by TBS protection, and reduction of the nitro group to provide
the aniline (26) in 70% yield over three steps. The isocyanate
(27), prepared from 26 and triphosgene, was immediately reacted
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Table 5
Evaluation of 4-amino(–NR2R3) analogs

N

S
NH

OF3C
N

O

R2

R3
37
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with lithiated thiazole (28), which was freshly prepared from 22.
After acidic deprotection, 29 was obtained.

The SCD-1 inhibitory activity13 of the compounds prepared in
Scheme 1 is summarized in Table 1. The data suggest that the
nitrogen atom at the 3-position of the thiazole core should play a
pivotal role in causing powerful SCD-1 inhibition because the
2-benzylthiazole core (11) and the thiophene core (12) exhibited
significant decrease in SCD-1 inhibition. The sulfur atom in the
core also turned out to be very important because the 5-benzylox-
azole analog was >100 times weaker in SCD-1 inhibition than the
Table 4
Modification of 4-methoxy group (R)

N

S
NH

OF3C
R

O
OH

No. R IC50
a (nM) mouse

D9
IC50

a (nM) human
D9

IC50
a (nM) human

cell

1a OMe 2 3 15

36a O 2 2 22

36b
O

O
3 0.6 6

36c

O

N
NTb >9999 NTb

36d
O

OH
22 16 NTb

a Values are the geometric means of at least two experiments.
b NT—not tested.

OH

No.

N
R2

R3

IC50
a (nM) mouse

D9
IC50

a (nM) human
D9

IC50
a (nM) human

cell

37a N 7 15 23

37b N 4 4 5

37c NH 0.4 0.04 2

37d N O 6 12 44

37e
NH

O
8 11 119

37f
NH

SO
O

>9999 NTb NTb\

a Values are the geometric means of at least two experiments.
b NT—not tested.
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Table 6
PK parameters of 37b and 37c in C57BL/6J micea

N

S
NH

OF3C
N

O
OH

37

R

No. R PK profilesa (iv, 5 mg/kg) PK profilesa (po, 20 mg/kg)

t1/2
b (h) CIb (mL/min/kg) Vdb (L/kg) AUC(0–8 h)

b (lg h/mL) Cmax
b t1/2 Tmax

b AUC(0–8 h)
b (lg h/mL) F (%)

37b Et 0.7 83 2.7 1.0 0.8 1.5 0.8 2.0 51
37c H 1.1 21 1.2 4.0 1.8 1.4 1.0 4.3 27

a A dose of each compound was either intravenously (5 mg/kg, DMA/Tween80/saline 10/10/80) injected into the tail vein of C57BL/6J mice (n = 2) or orally (20 mg/kg, 0.5%
MC, n = 3) administered using an intubation tube. Plasma samples (20 lL) were collected up to 8 h after intravenous or oral administration. The plasma concentrations of the
compounds were determined by LC/MS.

b Values are the geometric means of at least two experiments.

Table 7
The liver SCD-1 inhibition by 37b and 37c in C57BL/6J mice on a non-fat dieta

N

S
NH

OF3C
N

O
OH

37

R

No. R ID50 (mg/kg)a

At 2–3 h At 6–7 h

37b Et 1.0 2.0
37c H 0.8 2.0

a Values are the geometric means of at least two experiments.
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corresponding 5-benzylthiazole analog (data not shown). The thia-
diazole core (13) demonstrated comparable enzymatic SCD-1
inhibitory activity (IC50 (human) = 8 nM) and selectivity toward
D6 isozyme of the desaturase (<5% inhibition at 10 lM) as the 5-
benzylthiazole core (1a). The pharmacokinetic profiles of 1a and
13 are compared in Table 2. 13 exhibited only marginal plasma
exposure (AUC = 0.4 lg h/mL) and bioavailability (F = 2%) after oral
administration, indicating that the thiazole core is important not
only for potency but also for desirable pharmacokinetics.

The results of the linker modification are summarized in
Table 3. As for linker V, modifications of methylene in 1a to car-
bonyl (16), carbinol (17), and ether (20), resulted in a significant
decrease of activity, indicating that the methylene linker in 1a is
crucial for robust SCD-1 inhibition. In the case of amide linker W,
methylation of the amide proton (24) caused a >100-fold loss of
activity, whereas the reverse amide (29) retained weaker SCD-1
inhibitory activity (IC50 (human) = 32 nM). At this point, we were
quite convinced that the N-(5-benzylthiazol-2-yl) benzamide sys-
tem is a critical structural requirement for the development of po-
tent SCD-1 inhibitors. In the next phase of the optimization, we
turned to the right-hand portion of the lead compound.

The synthetic procedures for the compounds in Tables 4 and 5
are outlined in Schemes 4 and 5.7 Synthesis of the 4-alkoxy analog
was initiated by esterification of 4-fluoro-3-hydroxybenzoic acid
(30), followed by alkylation with 2-(2-bromoethoxy)tetrahydro-
2H-pyran, an SN2Ar reaction with a corresponding alcohol and sub-
sequent saponification to provide 31a–31c. Compound 31d was
prepared by dialkylation of 32 and saponification. To prepare 4-
amino derivatives, the commercially available 3-hydroxy-4-nitro-
benzoic acid methyl ester (33) was alkylated with 2-(2-bromoeth-
oxy)tetrahydro-2H-pyran and reduced under a hydrogen
atmosphere to generate aniline (34). The aniline was alkylated
with a corresponding aldehyde in the presence of NaBH3CN and
saponified to provide 35a–35c. Preparation of morpholino (35d),
acetylamino (35e), and methylsulfonylamino (35f) are also de-
picted in Scheme 4. As shown in Scheme 5, the 4-alkoxy or 4-ami-
no benzoic acids thus prepared were condensed with
aminothiazole 21 in the presence of HATU. Subsequent THP depro-
tection gave 4-alkoxy analogs (36a–36d) and 4-amino series (37a–
37f).

As shown in Table 4, elongation of the methoxy to ethoxy in 36a
retained strong potency (IC50 (human) = 2 nM).13,14 The methoxy-
ethoxy analog (36b) also displayed potency equal to that of lead
compound 1a, while the terminal dimethylamino (36c) completely
lost activity and the hydroxyethoxy group at the 4-position (36d)
resulted in a slight decrease in activity. It is fair to say there is a ste-
ric tolerance at this position and that lipophilic groups are pre-
ferred. The alkoxy groups were replaced with amines such as
those in 37a–37f (Table 5). As indicated in the SAR of the 4-alkoxy
analogs, a variety of alkyl amines were tolerated, dimethylamino
(37a), diethylamino (37b), and morpholino (37d) retained strong
inhibitory activity against SCD-1. Remarkably, ethylamino (37c)15

was found to be the most active SCD-1 inhibitor in this series, with
IC50 (human) = 0.04 nM. In the case of acylated and sulfonylated
analogs, acetlylamino (37e) retained potency for both murine
and human SCD-1, while methylsulfonylamino analog (37f)
showed only marginal inhibitory activity.

For the analysis of the in vivo efficacy of SCD-1 inhibitors, we
took note that Attie and co-workers reported that the hepatic tri-
glyceride levels of mice on a very low-fat diet increased by
240%.16 We assumed that the SCD-1 activity in the liver of these
mice was very high and were interested in the inhibitory effect
of the most potent SCD-1 inhibitor (37c) and its structurally re-
lated analog (37b) against the liver SCD-1 in C57BL/6J mice on a
non-fat diet. The inhibitory activity was determined by measuring
the ratio of [14C] stearate and [14C] oleate in the liver.17 The dose at
which 50% of the conversion is inhibited is described as ID50. As
shown in Tables 6 and 7, both compounds showed similar PK pro-
files and in vivo activity. A combination of strong enzymatic inhib-
itory activity (IC50 (mouse) = 0.4 nM) and good oral exposure right
after oral administration (Cmax = 1.8 lg/mL and Tmax = 1 h) of 37c
contributed to strong potency in liver SCD-1 inhibition (ID50 (2–
3 h) = 0.8 mg/kg). The decrease in potency at 6–7 h (ID50 = 2 mg/
kg) could be attributed to the relatively short plasma half-life
(t1/2 = 1.4 h) and fast clearance (Cl = 21 mL/min/kg). While showing
about 10-fold weaker enzymatic SCD-1 inhibition and relatively
lower plasma exposure, 37b demonstrated potency equal to that
of 37c in liver SCD-1 inhibition in mice. It is assumed that the con-
centration of 37b in the liver was higher than that of 37c, though
no data on their hepatic concentrations were available at this
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point. For multiple dosing studies of SCD-1 inhibitors, 37c was
tested in a 7-day efficacy study using C57BL/6J mice on a non-fat
diet.18 The desaturation index, calculated as the ratio of
C18:1N9(cis)/C18:0, was used as an in vivo biomarker. After
once-daily administration for 7 days, 37c dose-dependently
reduced the desaturation index, with a 65% reduction at 3 mg/kg
(Fig. 2). In the preliminary analysis, we did not observe any abnor-
malities in the skin or eyes of the C57BL/6J mice at 3 mg/kg (Cuta-
neous abnormalities and narrow eye fissure have been reported in
studies on SCD-1 deficient mice19). We assume that the balanced
combination of the strong potency and short plasma half life of
37c resulted in pharmacological efficacy in vivo and may be bene-
ficial in ameliorating adverse events. The liver can be a key tissue
for metabolizing xenobiotics, and orally administered drugs can
obtain significant concentrations in this tissue. Since SCD-1 is ex-
pressed in the liver, significant systemic exposure of SCD-1 inhib-
itors may not be necessary to realize a pharmacodynamic
response. While this is a preliminary speculation, the relatively
short plasma half-life of 37c may help to accomplish favorable tis-
sue selectivity (liver over eyes or skin). Histopathological analysis
of the key tissues (eyes, skin, and liver) of the C57BL/6J mice after
a 7-day treatment with the SCD-1 inhibitor 37c is currently in pro-
gress and will be reported elsewhere along with more details about
the pharmacological studies of the 3-(2-hydroxyethoxy)-N-(5-ben-
zylthiazol-2-yl)benzamide-based SCD-1 inhibitors.

In summary, we prepared and assayed compounds derived from
1, which was identified as a potent SCD-1 inhibitor in the preced-
ing article. SAR studies of this lead compound proved that the N-(5-
benzylthiazol-2-yl)benzamide system is a critical structural
requirement for the development of potent SCD-1 inhibitors. Fur-
ther delineation of SAR studies of this lead compound, especially
in the right-hand portion, resulted in the identification of 4-ethyl-
amino-3-(2-hydroxyethoxy)-N-[5-(3-trifluoromethylbenzyl)thia-
zol-2-yl] benzamide (37c) with sub nano molar IC50 in both murine
and human SCD-1 inhibitory assays. Compound 37c demonstrated
a dose-dependent decrease in the plasma desaturation index in
C57BL/6J mice on a non-fat diet after once-daily 7-day oral admin-
istration. Further optimization and pharmacological and toxicolog-
ical evaluation of this series of compounds will be reported in due
course.
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