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Abstract—A practical asymmetric synthesis of (R)-2-benzyl-, (S)-2-octyl-, and (S)-2-tetradec-5 0-enylcyclobutanones was investigated
using enantiopure (S)-a-methylbenzylamine, (R)-methoxymethylbenzylamine, or hydrazine (RAMP). These amines were treated
with cyclobutanone to afford the corresponding imines or hydrazones, respectively. Metallation of these imine derivatives followed
by alkylation with n-octylbromide, benzylbromide, or tetradec-5-enylbromide gave, after hydrolysis, (S)-2-octylcyclobutanone and
for the first time optically active (R)-2-benzylcyclobutanone and (S)-2-tetradec-5 0-enylcyclobutanone (TECB) with 67–87% ee. The
absolute configuration was also established.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The synthesis of optically active a-substituted cyclobuta-
nones via asymmetric reactions has not received much
attention. Only a few methods occurring through a ring
enlargement of hydroxycyclopropylcarbinol1 or spiro-
pentane derivatives2a,b or with chirality transfer.2c Poor
to good enantiomeric excesses were generally obtained.

Over the course of our work on the asymmetric synthe-
sis of cyclic analogues of naturally occurring a-amino
acids,3 we have previously published the aminocyclo-
butanecarboxylic acids 14 prepared from readily avail-
able racemic a-substituted cyclobutanones 2.4,5 We
had already prepared enantiopure a-alkoxycyclobuta-
nones 3 by an enzyme-catalyzed transesterification.6
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In connection with our ongoing program, we report
herein the asymmetric alkylation of N-cyclobutylidene
amines or hydrazone derivatives 5, an easy to perform
and efficient route to enantiomerically enriched 2-
alkylcyclobutanones 2 via the corresponding imines 6
(Scheme 1). Only very recently a synthesis of racemic
2-alkylated cyclobutanones was published,7 and used
as markers for irradiated foodstuffs.8
2. Results and discussion

Commercially available cyclobutanone 4 was converted
into N-(cyclobutylidene)-amine or hydrazone 5 by
reaction with (S)-a-methylbenzylamine 7A (1 equiv) or
(R)-7B (Scheme 2) in diethyl ether in the presence of
triethylamine (2.5 equiv) and stoichiometric amounts
of titanium(IV) chloride, while with RAMP-7C,9 simple
heating was enough to give the hydrazone 5C. Without
purification, the cyclobutanone imine derivatives 510
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were deprotonated with LDA (or NaHMDS) in THF at
�78 �C and the resulting 1-azaallylic anion intermedi-
ates were reacted with various alkylbromides to afford
the corresponding N-2-alkyl-1-cyclobutylidene amines
6. The later crude imines 6 were hydrolyzed with aque-
ous oxalic acid from �78 �C to room temperature giving
enantiomerically enriched 2-alkylcyclobutanones 2 in
good yields and high enantiomeric excesses (Table 1).

First, the asymmetric alkylation11 of imine 5A (prepared
from cyclobutanone 4 and amine 7A) conducted with
LDA at �78 �C for 1 h, then addition of benzylbromide
at �78 �C to room temperature, gave 2-benzylcyclobu-
tanone 2a with moderate yield and poor enantiomeric
excess (Table 1, entry 1). Improved results were achieved
by using amines 7B and 7C, which gave 2a with 44% and
76% ee, respectively (Table 1, entries 2 and 3). Further-
more, increasing the reaction time of LDA at �78 �C
(4 h instead of 1 h) before adding benzylbromide, en-
hanced both the yield and the enantioselectivity of the
resulting 2-benzylcyclobutanone (R)-2a {[a]D = +124 (c
1, CHCl3), 79% ee} (entry 4). However, using NaHMDS
as base does not give a better result (entry 5). On the
other hand, upon treatment with octylbromide or tetra-
dec-5-enylbromide,7c hydrazone 5C gave under the same
conditions 2-octylcyclobutanone (S)-2b or 2-tetradec-5 0-
enylcyclobutanone (S)-(+)-2c, respectively, with good
yields and high enantiomeric excesses {[a]D = +42.7 (c
1, CHCl3), 88% ee} (Table 1, entries 6 and 7), and
{[a]D = +22.7 (c 0.4, CHCl3), 67% ee} (Table 1, entry 8).
Table 1. Asymmetric alkylation of imines 5 under various conditions

N-R*

5

O

R

1) Base, THF, -78 ˚C

2) RX, -78 ˚C → –50 ˚C

3) (COOH)2 (+)-2

Entry H2NR* Base RX

2

1 (S)-7A LDA PhCH2–Br 2a

2 (R)-7B LDA PhCH2–Br 2a

3 (R)-7C LDA PhCH2–Br 2a

4 (R)-7C LDAb PhCH2–Br 2a

5 (R)-7C NaHMDS PhCH2–Br 2a

6 (R)-7C LDA C8H15–Br 2b

7 (R)-7C LDAb C8H15–Br 2b

8 (R)-7C LDAb C14H27–Br
e 2c

a Enantiomeric excesses were measured by GC analysis using chiral column
b LDA was reacted with imine of cyclobutanone at �78 �C for 4 h before ad
c The absolute configuration was assigned by comparison to the known prod
dND: not determined.
eZ-Tetradec-5-enylbromide.
The (S) absolute configuration of (+)-2b was assigned by
comparison of its specific rotation with that of literature
(R)-(�)-2b.1d,e However, the (R) absolute configuration
of (+)-2a (benzyl group), unknown in enantiomerically
enriched form, was assigned by analogy to the alkyl-
ation product (+)-(S)-2b (octyl group), which must have,
under the same conditions, the same geometry but re-
verse absolute configuration (compare in Table 1, entries
4 and 7). Likewise, the absolute configuration of (+)-2c
must be (S).

We therefore observed that the (R)-benzylcyclobuta-
none 2a7b,12 underwent a slow epimerization on stand-
ing at 20 �C for 3 days (from 80% to 15% ee).
However it was stable under acidic conditions (oxalic
acid, 20 �C, 3 days).

It is noteworthy that the alkylation of 5A at �78 �C with
LDA, and BnBr followed by treatment in situ of the
resulting 6A.a with LDA (1 equiv), then hydrolysis with
guaiacol13 or oxalic acid does not give the expected (R)-
2a, but benzylcyclobutanone (S)-2a (with 24% ee), thus,
indicating that no deprotonation of 6A.a occurred under
these conditions (Scheme 3).

A plausible mechanism can be explained for this asym-
metric alkylation. As shown in Figure 1, deprotonation
of RAMP-hydrazone 5C with lithium diisopropylamide
results in azaenolate 8C, a conformationally rigid and
chelated ECC,ZCN structure.11c Electrophilic attack on
this rigid intermediate proceeding under high diastereo-
facial differentiation, leads to alkylcyclobutanone (R)- or
(S)-2 in high enantiomeric purity. These results are in
agreement with those given by Enders and Eich-
enauer.11d While from enamine 5B, the rigid intermedi-
ate 8B providing favorable re face approach of the
electrophile, gives the antipode (S)- or (R)-(�)-2 but in
a moderate enantioselectivity.
and antipodes
(+)-2a: R = Bn (R)
(+)-2b: R = Oct (S)
(+)-2c: R = tetradecenyl (S)

2-Alkylcyclobutanones

Yield (%) [a]D Abs. conf. Eea (%)

42 �37.7 (S) 24

41 �69 (S) 44

25 +119 (R) 76

64 +124 (R) 79

24 NDd (R) 66

50 +42.7 (S)c 87

65 +39.1 (S)c 79.6

35 +22.7 (S) 67

(b-cyclodextrine DM).

ding alkylbromide.

uct 2b (Ref. 1d,e).
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Figure 1. Proposed mechanism of enamine cyclobutanone alkylation.
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Scheme 3. Attempt to improve enantiomeric excess by double LDA treatment.
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3. Conclusion

We have developed a practical asymmetric alkylation
for the synthesis of (R)-benzyl-, (S)-octyl-, and (S)-tetra-
dec-5 0-enylcyclobutanones or antipodes with reasonably
good yields and high enantiomeric excesses up to 87%,
thus providing the first preparation of optically active
2-benzyl- and 2-tetradec-5 0-enylcyclobutanones.14 This
approach should constitute a complementary method
to our enzymatic reaction6 for preparing several opti-
cally active cyclobutanones used in the synthesis of
enantiopure aminocyclobutanecarboxylic acids,4 which
is currently in progress in our laboratory.
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