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Abstract—A practical asymmetric synthesis of (R)-2-benzyl-, (S)-2-octyl-, and (S)-2-tetradec-5’-enylcyclobutanones was investigated
using enantiopure (S)-o-methylbenzylamine, (R)-methoxymethylbenzylamine, or hydrazine (RAMP). These amines were treated
with cyclobutanone to afford the corresponding imines or hydrazones, respectively. Metallation of these imine derivatives followed
by alkylation with n-octylbromide, benzylbromide, or tetradec-5-enylbromide gave, after hydrolysis, (S)-2-octylcyclobutanone and
for the first time optically active (R)-2-benzylcyclobutanone and (S)-2-tetradec-5"-enylcyclobutanone (TECB) with 67-87% ee. The

absolute configuration was also established.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The synthesis of optically active a-substituted cyclobuta-
nones via asymmetric reactions has not received much
attention. Only a few methods occurring through a ring
enlargement of hydroxycyclopropylcarbinol! or spiro-
pentane derivatives®®® or with chirality transfer.” Poor
to good enantiomeric excesses were generally obtained.

Over the course of our work on the asymmetric synthe-
sis of cyclic analogues of naturally occurring o-amino
acids,> we have previously published the aminocyclo-
butanecarboxylic acids 1* prepared from readily avail-
able racemic o-substituted cyclobutanones 2.*° We
had already prepared enantiopure a-alkoxycyclobuta-
nones 3 by an enzyme-catalyzed transesterification.®
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In connection with our ongoing program, we report
herein the asymmetric alkylation of N-cyclobutylidene
amines or hydrazone derivatives 5, an easy to perform
and efficient route to enantiomerically enriched 2-
alkylcyclobutanones 2 via the corresponding imines 6
(Scheme 1). Only very recently a synthesis of racemic
2-alkylated cyclobutanones was published,” and used
as markers for irradiated foodstuffs.®
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Scheme 1.

2. Results and discussion

Commercially available cyclobutanone 4 was converted
into N-(cyclobutylidene)-amine or hydrazone 5 by
reaction with (S)-o-methylbenzylamine 7A (1 equiv) or
(R)-7B (Scheme 2) in diethyl ether in the presence of
triethylamine (2.5 equiv) and stoichiometric amounts
of titanium(IV) chloride, while with RAMP-7C,° simple
heating was enough to give the hydrazone 5C. Without
purification, the cyclobutanone imine derivatives 5'°


mailto:antfadel@icmo.u-psud.fr

2068

D. Hazelard, A. Fadel | Tetrahedron: Asymmetry 16 (2005) 2067-2070

o— The (S) absolute configuration of (+)-2b was assigned by
J\ H2N HoN— . . i . . .
H.N" > Ph )J 2 comparison of its specific rotation with that of literature
2 PH o (R)-(—)-2b.'9¢ However, the (R) absolute configuration
\ of (+)-2a (benzyl group), unknown in enantiomerically
A 8 7C (RAMP) enriched form, was assigned by analogy to the alkyl-
Scheme 2. ation product (+)-(S)-2b (octyl group), which must have,

were deprotonated with LDA (or NaHMDS) in THF at
—78 °C and the resulting l-azaallylic anion intermedi-
ates were reacted with various alkylbromides to afford
the corresponding N-2-alkyl-1-cyclobutylidene amines
6. The later crude imines 6 were hydrolyzed with aque-
ous oxalic acid from —78 °C to room temperature giving
enantiomerically enriched 2-alkylcyclobutanones 2 in
good yields and high enantiomeric excesses (Table 1).

First, the asymmetric alkylation'! of imine SA (prepared
from cyclobutanone 4 and amine 7A) conducted with
LDA at —78 °C for 1 h, then addition of benzylbromide
at —78 °C to room temperature, gave 2-benzylcyclobu-
tanone 2a with moderate yield and poor enantiomeric
excess (Table 1, entry 1). Improved results were achieved
by using amines 7B and 7C, which gave 2a with 44% and
76% ee, respectively (Table 1, entries 2 and 3). Further-
more, increasing the reaction time of LDA at —78 °C
(4 h instead of 1h) before adding benzylbromide, en-
hanced both the yield and the enantioselectivity of the
resulting 2-benzylcyclobutanone (R)-2a {[«]p = +124 (¢
1, CHCIl3), 79% ee} (entry 4). However, using NaHMDS
as base does not give a better result (entry 5). On the
other hand, upon treatment with octylbromide or tetra-
dec-5-enylbromide,’® hydrazone 5C gave under the same
conditions 2-octylcyclobutanone (S)-2b or 2-tetradec-5'-
enylcyclobutanone (S)-(+)-2¢, respectively, with good
yields and high enantiomeric excesses {[a]p = +42.7 (¢
1, CHCl;), 88% ee} (Table I, entries 6 and 7), and
{[¢]p = +22.7 (¢ 0.4, CHCly), 67% ee} (Table 1, entry 8).

Table 1. Asymmetric alkylation of imines 5 under various conditions

under the same conditions, the same geometry but re-
verse absolute configuration (compare in Table 1, entries
4 and 7). Likewise, the absolute configuration of (+)-2¢
must be (S).

We therefore observed that the (R)-benzylcyclobuta-
none 2a’%>!2 underwent a slow epimerization on stand-
ing at 20°C for 3days (from 80% to 15% ee).
However it was stable under acidic conditions (oxalic
acid, 20 °C, 3 days).

It is noteworthy that the alkylation of SA at —78 °C with
LDA, and BnBr followed by treatment in situ of the
resulting 6A.a with LDA (1 equiv), then hydrolysis with
guaiacol'? or oxalic acid does not give the expected (R)-
2a, but benzylcyclobutanone (S)-2a (with 24% ee), thus,
indicating that no deprotonation of 6A.a occurred under
these conditions (Scheme 3).

A plausible mechanism can be explained for this asym-
metric alkylation. As shown in Figure 1, deprotonation
of RAMP-hydrazone 5C with lithium diisopropylamide
results in azaenolate 8C, a conformationally rigid and
chelated Ecc,Zcn structure.!'® Electrophilic attack on
this rigid intermediate proceeding under high diastereo-
facial differentiation, leads to alkylcyclobutanone (R)- or
(S)-2 in high enantiomeric purity. These results are in
agreement with those given by Enders and Eich-
enauer.!'d While from enamine 5B, the rigid intermedi-
ate 8B providing favorable re face approach of the
electrophile, gives the antipode (S)- or (R)-(—)-2 but in
a moderate enantioselectivity.

N-R* 1) Base, THF, -78 °C ° i
Ef 2) X, 78°C 5 50 G l:t (+)-22: R =5n (7) wreaniposes
) RX, -78°C - — R (+)-2b: R=0ct(S)
5 3) (COOH), (+)-2 (+)-2c: R = tetradecenyl (S)
Entry H,oNR* Base RX 2-Alkylcyclobutanones
2 Yield (%) [*]b Abs. conf. Ee® (%)

1 (S)-7A LDA PhCH,-Br 2a 4 377 (S) 24
2 (R)-7B LDA PhCH,-Br 2a 41 —69 S) 44
3 (R)-1C LDA PhCH,-Br 2a 25 +119 (R 76
4 (R)-1C LDA® PhCH,-Br 2a 64 +124 (R) 79
5 (R)-1C NaHMDS PhCH,-Br 2a 24 ND¢ (R 66
6 (R)-1C LDA CgH, s-Br 2b 50 +42.7 (S)° 87
7 (R)-1C LDAP CgH,5-Br 2b 65 +39.1 (S)° 79.6
8 (R)-7C LDA® C4H,7-Br® 2¢c 35 +22.7 (S) 67

4 Enantiomeric excesses were measured by GC analysis using chiral column (B-cyclodextrine DM).
®LDA was reacted with imine of cyclobutanone at —78 °C for 4 h before adding alkylbromide.
“The absolute configuration was assigned by comparison to the known product 2b (Ref. 1d.e).
4ND: not determined.

¢ Z-Tetradec-5-enylbromide.
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Scheme 3. Attempt to improve enantiomeric excess by double LDA treatment.
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Figure 1. Proposed mechanism of enamine cyclobutanone alkylation.

3. Conclusion

We have developed a practical asymmetric alkylation
for the synthesis of (R)-benzyl-, (S)-octyl-, and (S)-tetra-
dec-5’-enylcyclobutanones or antipodes with reasonably
good yields and high enantiomeric excesses up to 87%,
thus providing the first preparation of optically active
2-benzyl- and 2-tetradec-5'-enylcyclobutanones.'* This
approach should constitute a complementary method
to our enzymatic reaction® for preparing several opti-
cally active cyclobutanones used in the synthesis of
enantiopure aminocyclobutanecarboxylic acids,* which
is currently in progress in our laboratory.
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. General asymmetric alkylation procedure: To a cooled

solution (—78 °C) of crude imine or hydrazone 5 [1 mmol,
prepared from cyclobutanone 4 (1.2 mmol) and amines or
hydrazine 7 (1 mmol)] in THF (3 mL), was added drop-
wise a solution of LDA (2.2 mmol). The mixture was
stirred at —78 °C for 4 h, then alkylbromide (2 mmol) was
added at —78 °C, stirred at —78 °C (3 h), warmed up to
—50°C (3h), and recooled at —78 °C (14 h). The cold
resulting mixture (—78 °C) was hydrolyzed with an aque-
ous saturated solution of oxalic acid (3 mL) and ether
(3mL), with stirring at —78 °C (5 min) then at room
temperature for 24 h. The mixture was extracted with
ether (3x30mL), and the organic layer was dried
(MgS0,), filtered, and then concentrated under partial
vacuum (30 °C, P > 200 mmHg). The residue was purified
by chromatography on silica gel column (eluent, ether—
pentane, 5/95 — 1/9) to give pure 2-alkylcyclobutanone 2
(as noted in Table 1).

(a) Data for (R)-(+)-2-benzylcyclobutanone (R)-2a:
[0]p = +119 (¢ 0.6, CHCI3) (76% ee), R,=0.50 (ether—
pentane, 2/8), tr(R) = 38.48 min; fg(S) = 37.66 min (cyclo-
dextrine DM, 145 °C, 0.5 bar); '"H NMR (CDCls): § 1.50-
1.95 (m, 1H), 2.09-2.30 (m, 1H), 2.54-3.18 (m, 2H), 2.84
(A part of ABC system, Jap = 14.5Hz, Joc =9.1 Hz,
IHpenzy), 3.06 (B part of ABC system, Jap = 14.5 Hz,

Jec = 5.5 Hz, 1Hpenzy1), 3.50-3.71 (m, 1H), 7.10-7.40 (m,
5H); 13C NMR (CDCl3): 6 16.6 (C3), 35.1 (Cy), 44.5 (Cy),
61.2 (Cy), [6 arom. C: 126.3 (1C), 128.5 (2C), 128.7 (20),
138.8 (1C)], 211.5 (Cy); IR (neat): v 3086 cm ™!, 3028, 2923,
1778 (C=0), 1603, 1496, 1454; MS (EI) m/z: 160 (M™, 39),
131 (30), 118 (60), 117 (100), 104 (27), 91 (36).

(b) Data for (S)-(+)-2-octylcyclobutanone (S)-2b: [o]p =
+39.1 (¢ 1, CHCl3) (79.6% ee) {lit. for (R)-2b: [o]p = —32
(c 0.56, CHCl3) 64% ee},'® R;=0.57 (ether—pentane,1/9),
tr(S)) = 72.11 min; tg(R) = 71.02 min (cyclodextrine DM,
125 °C, 0.5 bar); '"H NMR (CDCls): 6 0.87 (t, J = 6.6 Hz,
3H), 1.10-1.55 (m, 14H), 1.55-1.80 (m, 1H-C3), 2.05-2.29
(m, 1H-C3), 2.79-3.15 (m, 2H-C,), 3.15-3.88 (m, |H-C);
13C NMR (CDCly): 6 14.1 (CH;), 16.9 (C5), 22.6, 27.0,
29.2, 29.4, 29.45, 29.5, 31.8, 44.4 (Cy), 60.6 (C,), 212.6
(Cy); IR (neat): v 2926 cm™ !, 1782 (C=0), 1466; MS (EI)
miz: 182 (M*, 1), 164 (3), 112 (20), 98 (100), 84 (31), 83
27).

(c) Data for (S)-(+)-2-(tetradec-5-enyl)-cyclobutanone (.S)-
2¢: [a]p = +22.7 (¢ 0.4, CHCl3) (67% ee) Ry=0.58 (ether—
pentane, 2/8), tr(S)) =267.54 min; tg(R)= 264.39 min
(cyclodextrine DM, 145 °C, 1 bar); 'H NMR (CDCl5): 6
0.88 (t, J = 6.6 Hz, 3H), 1.16-1.56 (m, 17H), 1.56-1.84 (m,
2H), 1.84-2.09 (m, 4H), 2.09-2.30 (m, 1H-C3), 2.77-3.13
(m, 2H-Cy), 3.15-3.88 (m, |H-C;), 5.20-5.36 (m, 2Hjcfin);
BC NMR (CDCL): § 14.1 (CH3), 16.9 (Cs), 22.7,
26.7, 27.0, 27.2, 29.3 (2C), 294, 29.5 (2C), 29.7,
31.9, 444 (Cy), 60.6 (Cy), 129.3 (C=C), 130.2 (C=C),
2122 (Cy); IR (neat): v 2926 cm™!, 1782 (C=0), 1645
(C=0), 1463.
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