Bioorganic & Medicinal Chemistry 22 (2014) 1285-1302

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Inhibition of IkB kinase- β and IkB kinase- α by heterocyclic adamantyl arotinoids

José García-Rodríguez^a, Santiago Pérez-Rodríguez^a, María A. Ortiz^b, Raquel Pereira^a, Angel R. de Lera^{a,*}, F. Javier Piedrafita^{b,*}

^a Departamento de Química Orgánica, CINBIO and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain ^b Torrey Pines Institute for Molecular Studies, 3550 General Atomics Ct, San Diego, CA 92121, USA

ARTICLE INFO

Article history: Received 25 September 2013 Revised 26 November 2013 Accepted 3 January 2014 Available online 10 January 2014

Keywords: Adamantyl arotinoids Synthesis Kinase activities IKK

ABSTRACT

We recently reported on a series of retinoid-related molecules containing an adamantyl group, a.k.a. adamantyl arotinoids (AdArs), that showed significant cancer cell growth inhibitory activity and activated RXR α (NR2B1) in transient transfection assays while devoid of RAR transactivation capacity. We have now explored whether these AdArs could also bind and inhibit IKK β , a known target that mediates the induction of apoptosis and cancer cell growth inhibition by related AdArs containing a chalcone functional group. In addition, we have prepared and evaluated novel AdArs that incorporate a central heterocyclic ring connecting the adamantyl-phenol and the carboxylic acid at the polar termini. Our results indicate that the majority of the RXR α activating compounds lacked IKK β inhibitory activity. In contrast, the novel heterocyclic AdArs containing a thiazole or pyrazine ring linked to a benzoic acid motif were potent inhibitors of both IKK α and IKK β , which in most cases paralleled significant growth inhibitory and apoptosis inducing activities.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The adamantyl arotinoids (AdArs)^{1,2} are included within the group of atypical retinoids or retinoid-related molecules (RRMs),³⁻⁵ a name that reflects the fact that they exert their anticancer activities independently of the transactivation of the retinoid receptors (RARs, subtypes α , β , and γ ; and RXRs, subtypes α , β , and γ).^{6,7} RARs and RXRs are members of the nuclear hormone receptor superfamily of ligand-responsive transcription factors,⁸ which mediate the multifarious actions of natural and synthetic retinoids in embryo and throughout life. Some AdArs, however. are known to bind to RARs, such as 1a (6-[(3-adamant-1-yl)-4-hydroxy-phenyl]-2-naphthoic acid, CD437, also called AHPN), which is a RAR γ agonist.⁵ Other analogs of **1a**, such as **2a** (AHPC, Adarotene, which also binds $RAR\gamma$ and is a stronger apoptogenic agent than 1a). 5-Cl-AHPN 1b and 3-Cl-AHPC 2b (see Fig. 1). lack RAR transactivation activity while preserving the induction of growth arrest and apoptotic activity in a variety of cancer cell lines.^{9–11} Moreover, 3-Cl-AHPC 2b binds the nuclear hormone receptor small heterodimer partner (SHP) and modulates SHP interaction with the Sin3A repressor.^{12,13} While still unclear, the mechanism of RRM-mediated cell death, in particular the apoptosis induced by **1a**, appears to be largely dependent on cell type. Evidences for caspase-dependent and independent mechanisms^{14–16} via the intrinsic^{17,18} and extrinsic pathways¹⁹ have been provided for these compounds.

In addition to SHP, RRMs with pro-apoptotic activity can target the IKK/NFκB signaling pathway via direct inhibition of IKKβ, which has been validated as a cancer target in vitro and in preclinical studies with very promising results, although clinical studies have not yet produced positive outcomes.^{20,21} Thus, great efforts have been dedicated to develop IKK/NFkB inhibitors as potential therapies for the treatment of cancer and inflammatory diseases.^{22–24} We initially found that MX781 **3** substantially inhibited IKK isolated from TNFα-stimulated HeLa cells, and displayed effective and consistent inhibition of IKK/NFkB activity in various cancer cell lines, thus confirming IKK as an AdAr target.²⁵ Furthermore. a number of chalcone containing analogs with an additional substituent ortho to the carbonyl group were prepared and found to elicit enhanced inhibition of recombinant IKKB in vitro, which paralleled increased growth inhibitory and apoptosis inducing activities in cancer cells.²⁶ Most recently, substitution of the chalcone functionality by a heterocyclic group has demonstrated that AdArs can inhibit IKK and induce apoptosis independently of a potential Michael addition from a Cys residue to the α , β -unsaturated ketone.²⁷ Contrasting with the inhibition of IKK/NFκB signaling by MX781 **3** and its apoptogenic analogs observed by us, activation of NF κ B by CD437 1a is necessary for the induction of apoptosis in prostate

^{*} Corresponding authors. Tel.: +34 986 812316; fax: +34 986 818167 (A.R.L.); tel./ fax: +1 858 597 3884 (F.J.P.).

E-mail addresses: qolera@uvigo.es (A.R. de Lera), jpiedrafita@tpims.org (F.J. Piedrafita).

^{0968-0896/\$ -} see front matter \odot 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmc.2014.01.006

Figure 1. RRMs with adamantyl groups.

carcinoma cells.^{28,29} Cinnamic acid derivative **2b** also activates IKK α and IKK β in breast carcinoma and leukemia cancer cells.^{28,30,31} The exact mechanism of IKK/NF κ B activation by these AdArs is still undefined.^{13,30,31}

In a previous study, we prepared a series of analogs of **2** that incorporate an additional Me substituent at the adamantyl-phenol end *ortho* to the biphenyl connection and naphthoic, cinnamic and phenylacetic acids as polar end groups (compounds **4–6**).³² The compounds derived from cinnamic and naphthoic acid exhibited potent antiproliferative activities in several cancer cell lines, and this effect correlated in general with the induction of apoptosis as measured by caspase activation. However, the strong deviation of planarity of these AdArs due to the presence of the 2,2'-disubstituted biphenyl connection altered their binding profile from RAR to RXR. We were able to show that some of those analogs induced RXR activity as efficiently as 9-*cis*-retinoic acid in transient transfection assays, suggesting that RXR might be responsible for their observed tumor cell growth inhibitory effects.³²

We now report on the activities of these analogues in the inhibition of IKK α , IKK β and IKK ϵ in vitro and found that none of the RXR ligands with the exception of the partial agonist 4b inhibited IKKβ by >75%. In contrast, potent growth inhibitory activity was seen with 4a, which correlated well with strong inhibition of both IKK α and IKK β in the absence of RAR/RXR activity. We also profiled a novel series of AdArs (7-10) that incorporate a central heterocyclic ring that connects the adamantyl-phenol and the carboxylic acid at the polar termini. The MEM derivative of the phenol ortho to the adamantyl group was also included in order to reveal the role of this substituent that is present in the parent compound MX781 **3**, which is a potent inhibitor of IKK/NF κ B signaling.^{26,27} The new heterocyclic compounds elicited negligible RAR and RXR transactivation activity and only the thiazole 8b functioned as strong RAR antagonist. Furthermore, the benzoic-linked thiazoles 8a-d and methoxypyrazine 10a elicited an even greater inhibitory activity against recombinant IKKβ in vitro than compound **3**, which in some cases (8a and 10a) correlated with superior anticancer activity. In general, the presence of a MEM group reduced IKK β inhibitory activity compared to the hydroxyl group-containing analog.

2. Synthesis

The synthesis of AdArs **4-6a,b** has been reported before.³² An improved preparation of 3-acetamidopropyloxy-AHPC, 3-A-AHPC 2c, an antagonist of 2a, and its methyl analog 5c has been developed, which differs from that of the original procedure in the order of steps for the formation of the bromocinnamic ester **15**,¹¹ and thus does not require protection/deprotection of the phenol. Bromination of 3-hydroxybenzaldehyde 11 was followed by the condensation of **12** with triethylphosphonoacetate and DBU¹¹ to afford 13 in 94% yield. The phenoxide of 13 (generated from treatment with K₂CO₃ in acetone) was treated with Boc-protected 3bromopropanamine 14 to give 15 (94%). This step was followed by the Suzuki reaction with the previously described^{11,32} boronic acids 16a^{11,32,33} and 16b³² to effect the coupling of the two fragments and provide the AdAr skeleton of 17a and 17b. These steps required optimization of the reaction conditions [Pd(PPh₃)₄, Na₂₋ CO₃, dioxane, microwave irradiation, 100 °C, 30 min] and afforded the desired biphenyl compounds in excellent yields (89 and 93%, respectively). Sequential deprotection of the silvl ether (to 18a and 18b) and tert-butoxycarbonyl groups afforded the intermediate aminophenols, which were treated with acetic anhydride and pyridine to give the corresponding derivatives (19a and 19b. respectively). Saponification of the esters in 19a and 19b produced the desired AdArs 2c and 5c, respectively.

For the preparation of the heterocyclic derivatives, we have chosen the dihalogenated heterocycles, namely dibromothiazole **20** (Scheme 2) and bromoiodopyrazine **26** (Scheme 3) as linchpin units to which the other substituents could be incorporated by exploiting the differential reactivity of the halogens in palladiumcatalyzed cross-coupling reactions.^{34,35} The premise that site-selective reactions of dibromothiazole **20** and bromoiodopyrazine **26** at the most electron-deficient positions are feasible has previously been reported.^{36–39}

The synthesis of 2,5-dibromothiazole **20** and the selective Pdcatalyzed cross-coupling reaction at position C2 have been described,⁴⁰ but the functionalization of dibromothiazole by sequential halogen replacement reactions with different organometallics is unprecedented. For our purpose, the Suzuki coupling of 2,5-dibromothiazole $\mathbf{20}$ and aryl boronic acids $\mathbf{16a}^{11,32,33}$ and **16b**³² took place at 90 °C in the presence of Pd(PPh₃)₄ and aqueous Na₂CO₃.^{38,39} Product **22a** was obtained in moderate yield (50%) and was accompanied by small amounts of the bis-coupled derivative 21a (5%). The mixture of mono- and bis-coupled products of 16b could not be separated and was used in the fluoride-induced deprotection to obtain 23b (30%, two steps) and bis-coupled 21b (5%, two steps). After deprotection of 22a (Scheme 2), the adamantylphenols 23a and 23b were treated with NaH and MEMCl in THF at 0 °C to afford the MEM derivatives **23c** and **23d**, respectively. Only by using the Jeffery modification of the Heck reaction,⁴¹ in the presence of *n*-Bu₄NCl and under strictly anhydrous conditions, could **23** efficiently react with methyl acrylate to produce the desired product (24a-d). Protection of phenols 24a-d with MEMCl and hydrolysis (LiOH·H₂O) of the esters afforded carboxylic acids **7a-d** (Scheme 2). Due to the electron-withdrawing nature of the methyl ester, the Suzuki coupling of bromothiazoles **23a-d** with 4-(methoxycarbonyl)phenylboronic acid to afford arotinoids 25a-d required activation by microwave irradiation. Saponification (LiOH \cdot H₂O) afforded carboxylic acids **8a–d** in the yields shown in Scheme 2.

A similar synthetic approach was employed for the pyrazine derivatives (Scheme 3). The Suzuki coupling of dihalopyrazine **26** and arylboronic acids **16a** and **16b** (Scheme 1) afforded **27a** and **27b** in 76% and 30% yield, respectively. The Heck reaction of these bromopyrazines with methyl acrylate also caused the silyl group deprotection and produced **28a** and **28b** in 67% and 57% yield, respectively. In the case of **27a**, the starting pyrazine was partially recovered (19%) in deprotected form (compound **29a**, see below). Treatment of the phenols with MEMCI gave derivatives **28c** and **28d**, respectively, in good yields. Saponification of **28a–d** (LiOH·H₂-O) afforded carboxylic acids **9a–d** (Scheme 3). Fluoride-promoted deprotection of **27a** and **27b** gave rise to phenols **29a** and **29b**, which were converted into the MEM derivatives **29c** and **29d**, respectively, under the usual conditions. The coupling of these

bromopyrazines with 4-(methoxycarbonyl)phenylboronic acid under the same Suzuki conditions was only successful for the non-methylated analogs **29a** and **29c**, and produced the final AdAr scaffold in moderate yields. However, similar treatment with analogs having a methyl group (**29b** and **29d**) led to their decomposition. Finally saponification of esters **30a** and **30c** afforded arotinoids **10a** and **10c**, respectively, in good yields (Scheme 3).

3. Biology

3.1. Inhibition of IKK β and IKK α by the novel AdArs

Following up on our previous reports that portrayed the inhibition of IKK β by MX781 **3** and derivatives, ^{25–27} we evaluated the effect of AdArs on recombinant IKKs using a LANCE TR-FRET kinase assay. The naphthoic acid 2'-Me-5-Cl-AHPN 4a was a strong inhibitor of both IKK α and IKK β with an IC₅₀ of 4.75 μ M against IKK β , about 2.5 times more potent than MX781 3 (IC₅₀ 11.83 μ M) (Table 1). The presence of a MEM chain in compound 4b substantially reduced the activity against IKKa, while preserving strong inhibition of IKKβ, although to a lesser extent as illustrated by the higher IC_{50} value (7.06 μ M). The presence of the naphthoic acid ring was crucial, as compounds **5a,b,c** and **6a** were inactive whereas **6b** elicited partial activity. Among the heterocyclic compounds, the benzoic acid-linked thiazoles **8a-d** were the strongest inhibitors of IKK β and IKK α , with the MEM chain and the Me substituent in **8d** marginally reducing IKK α activity. The Me substituent at the adamantyl-phenol end ortho to the biphenyl connection and the MEM substitution did not interfere with anti-IKKB activity as all four analogs elicited similar IC₅₀ values, between $3.37 \,\mu\text{M}$ (8a) and 5.16 μ M (**8c**). In contrast, substitution of the benzoic acid by an acrylic acid in compounds **7a-d** severely affected IKK activity and partial activity was only detected with the methylated analog 7b. Likewise, the methoxypyrazine containing AdAr 10a was also a potent inhibitor of both IKK α and IKK β , but addition of the MEM

Scheme 1. Reagents and reaction conditions: (a) Br₂, HOAc, 25 °C, 14 h, 31%; (b) triethylphosphonoacetate, DBU (3 equiv), CH₂Cl₂, 25 °C, 4 h, 72%; (c) K₂CO₃, acetone, 60 °C, 24 h, 94%; (d) Pd(PPh₃)₄, Na₂CO₃, DME, 100 °C, MW, 30 min (**17a**, 89%; **17b**, 93%); (e) TBAF, THF, 0 °C, 2.5 h, 18b, 98%. (f) (i) EtOH, HCl, 85 °C, 1 h, (ii) Ac₂O, Py, CH₂Cl₂, 25 °C, 20 h (**19a**, 58%; **19b**, 37%); (g) MeOH, Na₂CO₃, 70 °C, 3 h (**2c**, 53%; **5c**, 57%).

Scheme 2. Reagents and reaction conditions: (a) 20, Pd(PPh₃)₄, Na₂CO₃, MeOH, 1,4-dioxane, 90 °C, 6 h (22a, 50%; 21a, 5%); (b) *n*-Bu₄NF, THF, 0 °C, 3 h (23a, 91%; 23b, 30% for the two steps, 21b, 5%); (c) NaH, MEMCI, THF, 25 °C, 19 h (23c, 88%; 23d, 66%; 24c, 70%; 24d, 78%); (d) Methyl acrylate, Pd(OAc)₂, PPh₃, *n*-Bu₄NCl, NaHCO₃, 4 Å molecular sieves, DMF, 70 °C, 17 h (24a, 68%; 24b, 56%); (e) LiOH, THF/H₂O, 25 °C, 2 h (7a, 95%; 7b, 76%; 7c, 91%; 7d, 92%; 8a, 99%; 8b, 77%; 8c, 99%; 8d, 94%); (f) 4-(methoxycarbonyl)phenylboronic acid, Pd(PPh₃)₄, Na₂CO₃, MeOH, DME, MW, 120 °C, 10 min (25a, 78%; 25b, 53%; 25c, 61%; 25d, 61%).

Scheme 3. Reagents and reaction conditions: (a) boronic acids **16a/16b**, Pd(PPh₃)₄, Na₂CO₃, MeOH, 1,4-dioxane, 50 °C, 12 h (**27a**, 76%; **27b**, 30%); (b) methyl acrylate, Pd(OAC)₂, PPh₃, *n*-Bu₄NCl, NaHCO₃, 4 Å MS, DMF, 70 °C, 17 h (**28a**, 67%; **28b**, 57%); (c) NaH, MEMCl, THF, 25 °C, 19 h (**28c**, 92%; **28d**, 87%; **29c**, 89%; **29d**, 99%); (d) LiOH, THF/ H₂O, 25 °C, 2 h (**9a**, 73%; **9b**, 84%; **9c**, 62%; **9d**, 65%; **10a**, 99%; **10c**, 93%); (e) *n*-Bu₄NF, THF, 0 °C, 3 h (**29a**, 83%; **29b**, 63%); (f) 4-(methoxycarbonyl)phenylboronic acid, Pd(PPh₃)₄, Na₂CO₃, MeOH, 1,4-dioxane, 50 °C, 12 h (**30a**, 58%; **30c**, 66%).

chain in analog **10c** greatly impaired IKK activity. As observed with the thiazole containing AdArs, substitution of the benzoic acid by acrylic acid in the pyrazines (compounds **9a–d**) severely compromised IKK activity and only the methylated analogs **9b** and **9d** caused partial inhibition of recombinant IKKα.

(**4b**, **5a**, **5b**, and **6b**)³² were strong inhibitors of IKK, with the exception of **4b** that inhibited IKK β by 80% and **6b**, which partially inhib-

ited both IKK α and IKK β (<50%). On the other hand, the atypical IKK

family member IKKE was not affected by any of the AdArs, and only

compound 4a elicited limited inhibition (41%). The cinnamic acid

2b caused a partial inhibition of IKK α and IKK β activity in vitro, which suggests that activation of IKK/NF κ B signaling reported by others in breast cancer and leukemia cells^{13,30,31} likely occurs upstream of the IKK complex.

Interestingly, none of the previously reported RXR α agonists **3.2. Effect of AdArs on cancer cell growth**

We have previously demonstrated that MX781 **3** inhibits cancer cell growth and induces apoptosis in an IKK β -dependent manner.²⁵ This is further supported by our observations that several chalcone analogs of MX781 **3** with improved IKK α /IKK β inhibitory activity

Table 1	
Effect of AdArs on recombinant IKKs, Jurkat cell viability, and DEVDase activ	vity

AdAr	% Inhibition of IKK activity ^a			% Inhibition of IKK activity ^a Cell viability ^b		bility ^b	DEVDase ^c
	ΙΚΚα	ΙΚΚβ	ΙΚΚε	IC ₅₀ (μM) IKKβ	% Viability	IC ₅₀ (μM)	
2b	41.3 ± 3.8	40.6 ± 1.1	24.1 ± 6.9		6.6 ± 0.7		74.3 ± 16
2c	5.0 ± 4.9	0	14.4 ± 4.1		42.7 ± 8.6		6.1 ± 1.7
3	56.3 ± 4.4	43.9 ± 4.7	15.8 ± 5.6	11.83	28.5 ± 5.5	3.33	20.7 ± 7.8
4a	87.3 ± 5.5	96.4 ± 2.7	41.5 ± 14	4.75	7.7 ± 4.8	2.19	55.8 ± 8.0
4b	33.9 ± 3.2	79.2 ± 6.0	13.7 ± 5.2	7.06	33.1 ± 4.9	5.62	12.4 ± 2.0
5a	23.7 ± 4.5	4.9 ± 2.4	11.9 ± 9.5		34.1 ± 0.9	4.04	0.8 ± 0.9
5b	13.5 ± 2.9	4.3 ± 3.6	2.9 ± 4.8		83.7 ± 3.6		1.3 ± 1.2
5c	2.3 ± 4.0	0	5.2 ± 8.0		28.0 ± 4.0	2.61	6.3 ± 0.9
6a	26.9 ± 2.9	4.9 ± 5.6	8.5 ± 6.8		45.8 ± 1.7	3.98	1.8 ± 0.8
6b	42.3 ± 4.4	39.8 ± 9.5	0		86.8 ± 1.9		2.6 ± 0.5
7a	32.8 ± 3.6	5.0 ± 4.2	0		92.9 ± 4.3		0.6 ± 1.8
7b	46.6 ± 5.0	26.2 ± 1.6	0		92.3 ± 5.0		1.5 ± 0.8
7c	4.5 ± 5.8	1.9 ± 3.4	14.3 ± 7.6		102.9 ± 5.1		0.6 ± 0.3
7d	29.2 ± 1.6	12.2 ± 6.9	11.1 ± 4.0		96.1 ± 1.8		1.6 ± 1.2
8a	85.3 ± 2.2	94.1 ± 0.6	11.6 ± 4.7	3.37	6.0 ± 2.2	2.24	81.4 ± 8.6
8b	87.9 ± 9.5	95.0 ± 2.6	0	4.78	39.0 ± 9.9	4.40	12.1 ± 2.9
8c	82.9 ± 3.7	89.3 ± 3.5	25.3 ± 5.9	5.16	74.5 ± 4.0	5.43	9.8 ± 2.8
8d	73.3 ± 5.7	87.7 ± 3.9	17.0 ± 8.0	4.43	59.5 ± 0.9	5.71	4.9 ± 0.5
9a	17.9 ± 4.9	8.2 ± 4.2	7.8 ± 4.4		60.9 ± 2.4	5.01	3.1 ± 1.3
9b	50.1 ± 5.1	7.3 ± 5.8	6.7 ± 3.6		70.9 ± 5.1	5.38	2.6 ± 0.4
9c	4.2 ± 4.3	1.6 ± 3.9	9.4 ± 5.8		94.9 ± 4.2		0.2 ± 0.9
9d	45.7 ± 6.3	3.8 ± 3.3	5.9 ± 3.4		96.5 ± 4.0		0.3 ± 1.0
10a	78.5 ± 5.7	83.9 ± 3.5	26.1 ± 5.9	7.81	14.9 ± 7.2	3.13	42.6 ± 3.2
10c	23.8 ± 7.4	25.4 ± 5.5	18.8 ± 6.5		91.4 ± 4.2		2.5 ± 0.3

^a The effect of 20 μ M AdArs on the activity of recombinant IKKs was determined by LANCE Ultra-kinase assay at a concentration of ATP near the apparent K_m for each kinase. Values indicate the percentage of inhibition with respect to solvent control samples ± standard deviation obtained in 3–4 experiments performed in triplicate. IC₅₀ values (in μ M) were calculated over 8 point 1/2.5 serial dilution curve starting at 40 μ M.

^b Effect of AdArs on cancer cell proliferation. The percentage of cell viability was calculated in Jurkat T cells treated with 4 μ M of the indicated AdArs for 24 h. Control cells were incubated with the same volume of solvent DMSO (0.1% v/v). Cell viability values below 60% identify cell-killing activity. The average ± standard deviation of three independent experiments performed with triplicate data points is shown. IC₅₀ values (in μ M) were calculated for active compounds over an 8 point dose response curve starting at 10 μ M.

^c A DEVDase fluorometric assay was used as a measure of apoptosis in Jurkat cells treated with 5 μ M of the indicated AdArs for 4 h, as described in Section 5. The values indicate the fold induction of DEVDase activity with respect to control cells incubated in the presence of solvent DMSO. The average ± standard deviation of two independent experiments performed in triplicate is shown. Values of 2 or below are not significant as they are within the standard error of control samples.

elicited enhanced growth inhibition and apoptosis inducing activities in Jurkat T cells.^{26,27} We therefore evaluated the effect of heterocyclic AdArs on the viability of Jurkat cells and DEVDase activity as measures of cell proliferation and apoptosis inducing activity, respectively. As shown in Table 1, the methylated analog of 5-Cl-AHPN, compound 4a, and two heterocyclic AdArs, the thiazole 8a and the pyrazine 10a, elicited the greatest inhibition of Jurkat cell viability (>85%) and induction of apoptosis (>40 fold), similar to that observed with the apoptogenic compound 3-Cl-AHPC 2b and considerably higher than MX781 3. The corresponding derivatives containing the MEM chain, which is characteristic of MX781 3, 4b and 8c produced a much diminished growth inhibition and proapoptotic effect, whereas 10c was inactive in both assays. Likewise, the methylated compounds **8b** and **8d** also showed partial activity in Jurkat cells even though they elicited significant inhibition of recombinant IKK α and IKK β in vitro. Although we found clear differences in cell viability and DEVDase activity among the various AdArs when tested at a single concentration, all active compounds exhibited similar IC₅₀ values against Jurkat cells, with compounds 4a, 8a, and 10a having the lowest IC₅₀s (2.19, 2.24, and 3.13 μ M, respectively). This agrees with the strongest induction of DEVDase activity and robust inhibition of IKKs. While there is an overall good correlation between the effect of AdArs on IKK activity and Jurkat cell viability, the inhibition of IKK α/β observed with some thiazole analogs was not sufficient to trigger cell killing and optimal DEVDase activity (see compounds 8c and 8d), although they still inhibited cell proliferation. Furthermore, it is worth mentioning that compound **2c** and its methyl analog **5c** exhibited growth inhibition and weak but reproducible activation of caspases independently of IKK α/β inhibition. This effect could be a consequence of growth arrest, since **2c** has been reported to block the induction of apoptosis but not growth arrest by other AdArs.¹¹

As reported by others, 3-Cl-AHPN **2b** elicited robust cell killing activity but limited inhibition of recombinant IKK α/β in vitro, which relates to the reported activation of IKK/NF κ B signaling in breast cancer cells.^{13,30,31} The RXR agonists **4b** and **5a** had substantial cancer cell killing activity, which appeared to be dependent (**4b**) or independent (**5a**) of the activation of caspases (Table 1). These results concur with our previous report on adamantyl rexinoids³² and the small differences observed here could be due to different experimental conditions used in both studies.

3.3. RAR/RXR transactivation profile of AdArs

The RAR/RXR profile of compounds **4**, **5**, and **6** has already been reported, with compounds **4b**, **5a,b** and **6b** functioning as RXR agonists.³² Of the novel heterocyclic compounds described here, none was able to induce significant RAR α or RXR α -mediated transcriptional activity on their own, with the exception of the MEMO-linked thiazole **8c**, which induced weak transactivation of Gal4-RXR α (3-fold induction over solvent control or 21% of the maximum activity observed with the control rexinoid CD3254**33**) (Table 2 and Fig. 2). In contrast, the 2-methylphenyl-thiazole **8b** inhibited luciferase activity of Gal4-RAR α in the antagonistic mode (Table 2), and a subsequent dose response experiment revealed an IC₅₀ of 1.277 μ M. Similarly, the corresponding unmethylated positional isomer also functioned as an RAR α antagonist in this system, with an IC₅₀ value of 2.65 μ M (data not shown).

Table 2			
RAR/RXR	transactivation	profile	of AdArs

Ligand	RAR profile		RXR profile		RXR-coactivator interaction ^c	
	Agonist ^a	Antagonist ^b	Agonist ^a	Antagonist ^b	D22	SRC-1
None	1	1.2 ± 0.2	1	7.1 ± 2.9	100 ± 4	148 ± 7
31 , atRA	110.8 ± 12	100	n.t.	n.t.	n.t.	n.t.
32, UVI2024	1.3 ± 0.3	7.1 ± 2.9	n.t.	n.t.	n.t.	n.t.
33 , CD3254	n.t.	n.t.	14.3 ± 3.4	100	416 ± 15	561 ± 12
34, UVI3003	n.t.	n.t.	1.0 ± 0.2	23.3 ± 2.4	-4 ± 4	-2 ± 3
4a	1.1 ± 0.2	90.0 ± 4.2	0.9 ± 0.1	69.9 ± 2.5	29 ± 3	53 ± 6
4b	1.1 ± 0.1	82.7 ± 5.9	9.8 ± 2.8	84.7 ± 5.4	159 ± 6	187 ± 7
5a	1.1 ± 0.2	67.1 ± 1.4	13.3 ± 1.9	96.2 ± 7.2	487 ± 36	373 ± 18
5b	1.8 ± 0.5	61.5 ± 6.2	19.0 ± 3.8	120.6 ± 11	654 ± 81	437 ± 16
5c	1.0 ± 0.4	70.0 ± 2.7	0.9 ± 0.1	73.6 ± 3.7	113 ± 4	152 ± 1
6a	1.4 ± 0.4	79.7 ± 5.2	1.4 ± 0.2	96.1 ± 5.0	28 ± 7	81 ± 24
6b	1.3 ± 0.4	74.1 ± 6.0	16.0 ± 4.4	96.3 ± 8.1	214 ± 12	422 ± 11
7a	1.1 ± 0.1	92.4 ± 5.0	1.7 ± 0.4	78.7 ± 2.6	156 ± 3	162 ± 5
7b	1.0 ± 0.1	87.3 ± 8.4	1.3 ± 0.2	85.7 ± 9.8	77 ± 3	82 ± 9
7c	1.0 ± 0.1	94.2 ± 7.8	0.9 ± 0.1	83.9 ± 6.1	127 ± 23	130 ± 8
7d	1.9 ± 2.0	75.3 ± 8.4	1.5 ± 0.2	91.7 ± 5.5	88 ± 3	133 ± 9
8a	4.6 ± 1.2	66.2 ± 2.4	0.9 ± 0.1	67.2 ± 6.6	94 ± 13	183 ± 17
8b	1.4 ± 0.1	33.2 ± 4.4	1.9 ± 0.5	91.7 ± 5.5	113 ± 1	117 ± 10
8c	1.2 ± 0.2	92.4 ± 9.4	3.1 ± 1.3	83.2 ± 5.9	133 ± 5	159 ± 5
8d	0.9 ± 0.1	61.6 ± 4.0	0.9 ± 0.2	91.4 ± 7.6	93 ± 9	115 ± 6
9a	1.1 ± 0.2	93.2 ± 5.0	1.7 ± 0.3	119.4 ± 4.8	92 ± 6	116 ± 4
9b	1.0 ± 0.3	89.0 ± 6.2	1.0 ± 0.1	89.4 ± 2.7	93 ± 3	106 ± 2
9c	1.1 ± 0.2	78.7 ± 5.4	0.9 ± 0.1	94.9 ± 4.4	119 ± 15	122 ± 7
9d	0.8 ± 0.1	99.5 ± 9.9	1.1 ± 0.1	86.3 ± 4.7	87 ± 3	106 ± 4
10a	1.9 ± 0.4	95.4 ± 12	1.0 ± 0.1	83.7 ± 7.7	102 ± 11	111 ± 16
10c	1.1 ± 0.3	108.7 ± 12	1.1 ± 0.1	87.7 ± 4.0	170 ± 9	172 ± 5

n.t.: not tested.

^a Values indicate the fold induction of RARα or RXRα activity with respect to solvent control cells (non-stimulated). As positive control, RARα-transfected cells were treated with 1 μM atRA **31**, whereas RXRα-expressing cells were treated with 1 μM of the synthetic rexinoid CD3254 **33**. AdArs were used at 4 μM. The average ± standard deviation of two independent experiments with triplicate data points is shown.

^b To determine the antagonist profile of AdAr analogs, RAR/RXR-expressing cells were incubated with 100 nM atRA **31**/CD3254 **33** in the presence of a 40 fold molar excess of the indicated AdArs. The values indicate the percentage of activity with respect to control cells stimulated with agonist ligand (atRA **31** or CD3254 **33**) in the absence of AdAr (100% activity). The percentage of activity of non-stimulated cells is also shown. As positive controls, RAR and RXR-transfected cells were treated with 1 µM of the well-known antagonists UVI2024 **32** and UVI3003 **34**, respectively. The average ± standard deviation of 2 or 3 experiments performed with triplicate data points is shown.

^c Two separate TR-FRET-based homogeneous assays were used to measure the interaction of GST-RXR α -LBD with two different coactivator-derived peptides, D22 and SRC1. The value indicates the percentage of change compared to samples that contained no ligand (Delta F%, see experimental section for definition). The experiment was repeated twice with triplicate data points and the average data \pm standard deviation (n = 6) is shown.

Although not as powerful as the inverse agonist UVI2024 **32** $(IC_{50} 0.114 \,\mu\text{M})$,²⁷ both thiazole containing AdArs were stronger antagonists of RAR α than the parental compound MX781 **3** $(IC_{50} 4.474 \,\mu\text{M})$.

To confirm that the RXR transactivating AdArs are indeed able to directly bind to the RXR LBD, we performed cell free coactivator recruitment assays with purified recombinant GST-RXRa LBD and two coactivator derived peptides: the synthetic peptide D22 labeled with fluorescein and biotin-tagged SRC-1-676-700 peptide containing the second LXXLL motif. Concurring with the cell-based luciferase transactivation assays, compounds 5a and 5b induced a robust binding of RXR LBD to both D22 and SRC-1 peptides, to a level comparable to that observed with the rexinoid agonist CD3254 **33**. The full agonist **6b**³² also induced strong interactions with SRC-1 peptide, but behaved as a partial agonist with D22 peptide (see Table 2 and Fig. S1). As expected, the naphthoic acid derivative 4b produced a modest increase of RXR_α-peptide interactions above basal controls in the absence of ligand, which is in accordance with the partial agonist activity observed in transient transfection assays (see Table 2), as we have recently reported.³² The heterocyclic AdArs induced no or very limited (<2 fold) recruitment of coactivator peptides by RXR^a LBD.

The rexinoid antagonist UVI3003 34^{42} completely inhibited RXR α -D22/SRC-1 interactions, even to the level of non-protein control (Table 2). Likewise, the adamantyl-phenol derivatives (lacking the MEM chain) of the two rexinoids **4b** and **6b**, **4a** and **6a** respectively, also inhibited the recruitment of both D22 and SRC-1 peptides by RXR α LBD significantly (Table 2 and Fig. S2),

Figure 2. Structure of selected RAR and RXR modulators.

suggesting that **4a** and **6a** might function as weak inverse agonists. When used in combination with a low concentration of CD3254 agonist **33**, both **4a** and **6a** inhibited the interaction of RXR α LBD with D22 coactivator peptide stimulated by CD3254 (Fig. S2). Even though this effect was not comparable to that of UVI3003 **34** (25% inhibition by **4a** and **6a** versus complete inhibition of RXR α /D22 binding by UVI3003 **34**), it concurred with a weak but consistent effect elicited by **4a** in a cell based Gal4-RXR α transactivation assay in the antagonist mode (30% inhibition) (see Table 2).

4. Discussion

Adamantyl arotinoids (AdArs) have been recognized as promising anticancer therapeutic agents due to their growth inhibitory and apoptosis inducing activities. Although originally derived from RAR γ/β selective retinoid-related molecules, AdArs are often classified as atypical retinoids as they exert their cancer cell growth inhibitory and apoptogenic activities independently of RAR transactivation. While certain AdArs have been shown to target IKK β as a likely mediator of their anticancer activity, others have been shown to function as RXR agonists. Yet, other AdArs have been reported by others to bind the nuclear receptor SHP while activating IKK/NF κ B signaling in order to induce apoptosis.

Here we report on the IKK inhibitory activity of rexinoid AdArs and a novel series of heterocyclic containing AdArs with OH or OMEM substitutions at the adamantyl phenyl ring. None of the novel heterocyclic AdArs described has any significant RAR or RXR transactivating effect. Only the thiazole analog **8b** functioned as a RARa antagonist, whereas the unmethylated MEMO-linked thiazole 8c produced a weak activation of RXR (~20% of control). We demonstrate that inhibition of IKK and activation of RXR do not overlap, but they both correlate with robust tumor cell growth inhibitory activity. Thus, compound **4a** was shown previously to exhibit strong antiproliferative activity but not RXR activity:³² we now demonstrate that **4a** is the most potent inhibitor of lurkat cell proliferation (IC₅₀ 2.19 μ M) coinciding with strong inhibition of IKK α and IKK β (IC₅₀ 4.75 μ M), which suggests that inhibition of IKK β might be responsible for the growth inhibitory activity of this AdAr. This contrasts with the limited or no anti-IKK activity found with rexinoid AdArs that show proven cancer cell growth inhibitory effects (5a,b and 6b). One exception to this rule is the MEM analog of **4a**, naphthoic acid **4b**, which has strong growth inhibitory activity, functions as a partial RXR agonist, and also inhibits IKK β with an IC₅₀ of 7.06 μ M.

Our present studies further confirm the rexinoid activity of these AdArs using a cell free biochemical assay in which we measure the interaction of recombinant GST-RXR LBD with coactivator derived peptides. This assay proved more sensitive than cellular assays in detecting weak inverse agonists. As a result, we could demonstrate that removal of the MEM chain from the adamantyl phenol ring converts two of the rexinoid agonists (4b and 6b) into weak RXR^a inverse agonists (4a and 6a). Compounds 4a and 6a elicited strong inhibition of RXR-peptide interaction in vitro, but had no effect on RXR-driven luciferase activity when used alone. When assayed in the antagonist mode (in the presence of suboptimal concentrations of a rexinoid agonist. CD3254 33)⁴² we found that 4a behaved as a weak antagonist in both cellular and biochemical assays, whereas 6a was only active in the biochemical assay with D22 peptide. It is very likely that AdArs function in a coactivator specific fashion and therefore affect RXRq-driven transactivation in a cell type dependent manner.

In general, there is a good correlation between the inhibition of IKK β activity and the inhibition of cancer cell viability, which in turn is associated with induction of apoptosis. Thus, a correlation analysis between the inhibition of IKK β and inhibition of cell viability by the heterocyclic AdArs (**7-9**) and including the parent compound **3** as well as the naphtoic acid derivatives **4a** and **4b**, produced a correlation coefficient of 0.8039 with a *P* value of 0.0002 (data not shown). The strongest correlation is seen with **4a**, thiazole **8a**, and pyrazine **10a**. Thiazole **8a** displays the greatest inhibition of IKK β (IC₅₀ 3.37 μ M) and the maximum induction of DEVDase activity (>80 fold stimulation), whereas pyrazine **10a** also elicits robust inhibition of IKK β (IC₅₀ 7.81 μ M) and induction of apoptosis in terms of DEVDase activity (43 fold increase). To strengthen this correlation, substitution of the benzoic acid in

compounds **8** and **10** by an acrylic acid (compounds **7** and **9**, respectively), greatly impaired both IKK inhibition and anticancer activity. Furthermore, while this correlation between the inhibition of IKK and cancer cell growth, and induction of apoptosis is reminiscent of the activity observed with chalcone containing AdArs,^{26,27} inhibition of recombinant IKK in vitro does not always correlate with potent anticancer activity among the heterocyclic AdArs, in particular with those containing a MEM chain. Thus, addition of a Me group and/or a MEM chain into thiazole **8a** (compounds **8b**, **8c**, and **8d**) diminished growth inhibitory activity and greatly impaired apoptosis inducing capability in Jurkat cells without affecting the inhibition of IKK α/β . This reduced cellular activity could be the consequence of impaired cellular uptake, metabolism, and/or off target activities unrelated to cancer cell growth and apoptosis.

Other than IKK and RXR, the orphan receptor SHP has also been shown to be the target of AdArs, in particular 3-Cl-AHPC **2b** and analogs.^{12,43} 3-Cl-AHPC **2b** has been reported by others to activate IKK/NF κ B signaling pathway, an activity that seems necessary for the induction of apoptosis.²⁸ The mechanism of IKK/NF κ B activation has not been delineated, but is in conflict with our observed modest but consistent inhibition of recombinant IKK α/β activity in our cell-free assay. This suggests that 3-Cl-AHPC **2b** has pleiotropic effects in a cellular environment, including but not limited to inhibition of protein phosphatases as possible mediators of IKK activation.

The recent resolution of the ΙΚΚβ crystal structure^{44,45} will certainly have a positive impact in the future lead optimization efforts to improve the potency and selectivity of AdArs as IKK inhibitors. Until now, we have relied on the synthesis and evaluation of numerous compounds, including chalcones and heterocyclic AdArs in order to withdraw some structural requirements for optimal inhibition. Whereas our lead compound MX781 3 had a chalcone functional group and a MEM chain in the adamantyl phenolic ring, the results presented here and elsewhere clearly demonstrate that eliminating the MEM chain has generally a beneficial effect on the overall IKK/growth inhibitory activity of the AdAr (compare compounds **4a** and **4b**). Moreover, the chalcone function is not critical for IKK inhibition by AdArs, as substitution by certain heterocyclic groups also improves activity (see for example thiazole 8a and pyrazine **10a**). The inclusion of a heterocyclic thiazole or pyrazine group within the arotinoid structure could have advantages over classical arotinoids for the inhibition of protein kinases that we are trying to achieve with these AdARs. Thiazole and pyrazine ring systems are important structural elements found in kinase inhibitors, even in FDA approved drugs (i.e., dasatinib). Pyrazine is less basic than pyridine or pyrimidine, which are commonly found in ATP-competitive kinase inhibitors.

5. Experimental

5.1. General

Solvents were dried according to published methods and distilled before use. All other reagents were commercial compounds of the highest purity available. All reactions were carried out under argon atmosphere, and those not involving aqueous reagents were carried out in oven-dried glassware. Analytical thin layer chromatography (TLC) was performed on aluminium plates with Merck Kieselgel 60F254 and visualized by UV irradiation (254 nm) or by staining with a solution of phosphomolibdic acid. Flash column chromatography was carried out using Merck Kieselgel 60 (230–400 mesh) under pressure. Infrared spectra were obtained on JASCO FTIR 4200 spectrophotometer, from a thin film deposited onto a NaCl glass. ¹H NMR spectra were recorded in CDCl₃, CD₃OD,

 CD_3CN and $DMSO-d_6$ at ambient temperature on a Bruker AMX-400 spectrometer at 400 MHz with residual protic solvent as the internal reference (CDCl₃, $\delta_{\rm H}$ = 7.26 ppm; CD₃CN, $\delta_{\rm H}$ = 1.94 ppm; CD₃OD, $\delta_{\rm H}$ = 3.31 ppm; DMSO- d_6 , $\delta_{\rm H}$ = 2.50 ppm); chemical shifts (δ) are given in parts per million (ppm), and coupling constants (J) are given in Hertz (Hz). The proton spectra are reported as follows: *d* (multiplicity, coupling constant *J*, number of protons, assignment). ¹³C NMR spectra were recorded in CD₃Cl₃, CD₃OD, DMSO- d_6 and CD₃CN at ambient temperature on the same spectrometer at 100 MHz, with the central peak of CDCl₃ $(\delta_c = 77.0 \text{ ppm}), \text{ CD}_3\text{OD} \ (\delta_c = 49.0 \text{ ppm}), \text{ DMSO-}d_6 \ (\delta_c = 39.4 \text{ ppm})$ or CD₃CN (δ_c = 118.3, 1.3 ppm) as the internal reference. The DEPT135 sequence was used to aid in the assignment of signals on the ¹³C NMR spectra. Melting points were determined on a Stuart SMP10 apparatus. Elemental analyses were determined on a Carlo ErbaEA 1108 analyzer. MS experiments were performed on an APEX III FT-ICR MS (Bruker Daltonics, Billerica, MA), equipped with a 7T actively shielded magnet. Ions were generated using an Apollo API electrospray ionization (ESI) source (Bruker Daltonics, Billerica, MA), with a voltage between 1800 and 2200 V (to optimize ionisation efficiency) applied to the needle, and a counter voltage of 450 V applied to the capillary. Samples were prepared by adding a spray solution of 70:29.9:0.1 (v/v/v) methanol/water/ formic acid to a solution of the sample at a v/v ratio of 1–5% to give the best signal-to-noise ratio. Data acquisition and data processing were performed using the XMASS software, version 6.1.2 (Bruker Daltonics). FAB experiments were performed on a VG AutoSpec instrument, using 3-nitrobenzylalcohol or glycerol as matrix.

5.2. General procedure for the Suzuki coupling

In a Schlenk flask, a solution containing the haloheterocycle (1 mmol), the boronic acid (1.3 mmol), methanol (5 mL) and a 2 M aqueous sodium carbonate solution (3.35 mmol) in benzene (25 mL) was deoxygenated by bubbling a stream of argon through it. Pd(PPh₃)₄ (0.14 mmol) was then added and the flask was evacuated and purged with argon. The reaction mixture was heated for the time indicated and the reaction was quenched with water and extracted with CH_2Cl_2 (3×). The combined organic extracts were dried over Na₂SO₄, filtered and the solvent was evaporated in vacuo. The residue was purified by column chromatography on silica gel as indicated.

5.3. General procedure for the microwave-assisted Suzuki coupling

In a reaction flask, a solution containing the haloheterocycle (1.0 mmol), the boronic acid (1.1 mmol) and a 2 M aqueous sodium carbonate solution (4.0 mmol) in DME (10 mL) was deoxygenated by bubbling a stream of argon through it. Pd(PPh₃)₄ (0.10 mmol) was then added and the flask was evacuated and purged with argon. The reaction mixture was heated in a microwave reactor for the time indicated and the reaction was quenched with water and extracted with CH_2Cl_2 (3×). The combined organic extracts were dried over Na₂SO₄, filtered and the solvent was evaporated in vacuo. The residue was purified by column chromatography on silica gel as indicated.

5.4. General procedure for the deprotection of silyl ethers

Tetrabutylammonium fluoride (1.5 mmol) was added to a solution of the silyl ether (1 mmol) in THF (1 mL) at 0 °C. After the solution was stirred for 2 h at this temperature, water was added and the reaction was extracted with EtOAc ($3\times$). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and the

solvent was evaporated in vacuo. The residue was purified by column chromatography on silica gel as indicated.

5.5. General procedure for the protection of phenols with MEMCI

Sodium hydride (60% as a dispersion in oil, 1.1 mmol) was added to a solution of the phenol (1.0 mmol) in THF (10 mL). After stirring for 30 min at room temperature, 2-methoxyethoxymethyl chloride (1.1 mmol) was added and the mixture was stirred at room temperature for 19 h. The reaction was quenched with water and extracted with EtOAc ($3\times$). The combined organic extracts were dried over Na₂SO₄, filtered and the solvent was evaporated in vacuo. The residue was purified by column chromatography and crystallized as indicated.

5.6. General procedure for the Heck reaction

Tetrabutylammonium chloride (1.0 mmol) was added to a solution of sodium hydrogencarbonate (2.5 mmol) and 4 Å molecular sieves (0.4 g/mmol) in DMF (8 mL) and stirring was maintained for 15 min at room temperature. Then, a solution containing triphenylphosphine (0.08 mmol), methyl acrylate (2 mmol) and the haloheterocycle (1.0 mmol) in DMF (0.13 mL) was added via cannula. The mixture was stirred for 15 min and Pd(OAc)₂ (0.08 mmol) was added. After stirring the reaction mixture at 70 °C for 17 h, the solid was removed via filtration through Celite^{*} and the solvent was evaporated in vacuo. The residue was treated with CH₂Cl₂ and washed with NaHCO₃ (3×). The combined organic layers were dried over Na₂SO₄, filtered and the solvent was evaporated in vacuo. The residue as phy on silica gel and crystallized as indicated.

5.7. General procedure for the hydrolysis of esters

Lithium hydroxide (15 mmol) was added to a solution of ester (1 mmol) in a 1:1 THF/H₂O (17 mL) mixture. The solution was stirred at room temperature for 2 h, neutralized with 10% HCl and extracted with EtOAc ($4\times$). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and the solvent was evaporated in vacuo. Crystallization of the residue provided the desired acid as indicated.

5.7.1. Ethyl (*E*)-3-[3-(adamant-1-yl)-(2-(3-(*tert*-butoxycarbon ylamino)propoxy)-4-(*tert*-butyldimethylsilyloxy)biphenyl-4-yl]acrylate (17a)

According to the general procedure for the microwave-assisted Suzuki coupling, the reaction of **15**¹¹ (0.15 g, 0.35 mmol) and arylboronic acid 16a¹¹ (0.017 g, 0.46 mmol) gave, after purification of column chromatography on silica gel (70:30 hexane/EtOAc), 0.12 g (55%) of a white solid identified as **17a**. ¹H NMR $(400.13 \text{ MHz}, \text{ CDCl}_3)$: δ 7.74 (d, J = 16.0 Hz, 1H, H3), 7.30 (d, J = 8.4 Hz, 1H, ArH), 7.14 (d, J = 2.4 Hz, 1H, H2" or H2'), 7.1 (d, J = 2.0 Hz, 1H, H2' or H2"), 6.99 (dd, J = 8.0, 2.0 Hz, 1H, H6" or H6′), 6.96 (dd, *J* = 8.4, 2.4 Hz, 1H, H6′ or H6″), 6.82 (d, *J* = 8.0 Hz, 1H, ArH), 6.34 (d, J = 16.0 Hz, 1H, ArCHCH), 4.75 (br, 1H, NH), 4.20 (q, J = 7.1 Hz, 2H, COOCH₂CH₃), 4.07 (t, J = 5.8 Hz, 2H, H2), 3.34 (q, J = 5.6 Hz, 2H, CH₂NHAc), 1.9–2.1 (m, 11H, 3 × AdCH₂ + -OCH₂CH₂CH₂N + 3 × AdCH), 1.75 (s, 6H, 3 × AdCH₂), 1.44 (s, 9H, CO-*t*-Bu), 1.28 (t, *J* = 7.1 Hz, 3H, COOCH₂CH₃), 1.06 (s, 9H, SiC(CH₃)), 0.36 (s, 6H, 2 \times SiCH₃) ppm. 13 C NMR (100.62 MHz, CDCl₃): δ 166.9 (s), 157.7 (s), 156.0 (s), 154.1 (s), 144.4 (d), 139.0 (s), 136.3 (s), 133.6 (s), 133.5 (s), 131.5 (d), 131.4 (s), 129.4 (d), 127.5 (d), 119.0 (d), 118.7 (d), 116.7 (d), 111.8 (d), 66.0 (t, ArOCH₂), 60.3 (t, $COOCH_2CH_3$), 40.4 (t, $3 \times AdCH_2$), 38.0 (t, CH_2N), 37.1 $(t, 3 \times AdCH_2), 37.0$ (s, AdC), 29.6 $(t, OCH_2CH_2CH_2N), 29.0$ (d, $3 \times AdCH$), 28.9 (q, $3 \times$, HNCOC(CH₃)₃), 26.4 (q, $3 \times$, SiC(CH₃)₃), 18.9 (s, SiC + COCH₃), 14.3 (q, COOCH₂CH₃), -3.4 (q, $2 \times Si(CH_3)$) ppm. IR (NaCl): ν 3380 (w, N–H), 2928 (s, C–H), 2906 (s, C–H), 2855 (s, C–H), 1713 (s, C=O), 1631 (m), 1602 (m), 1480 (s), 1259 (s), 1172 (s) cm⁻¹. MS (FAB⁺): m/z (%) 689 (M⁺, 100), 633 (18), 632 (10), 591 (18), 590 (41), 588 (20), 545 (34), 544 (76), 542 (36), 397 (20), 341 (32).

5.7.2. Ethyl (*E*)-3-[5-(adamant-1-yl)-2-(3-(*tert*-butoxycarbon ylamino)propoxy)-4-(*tert*-butyldimethylsilyloxy)-2-meth ylbiphenyl-4-yl]acrylate (17b)

According to the general procedure for the microwave-assisted Suzuki coupling, the reaction of **15**¹¹ (0.15 g, 0.35 mmol) and arylboronic acid **16b**³² (0.18 g, 0.46 mmol) gave, after purification of column chromatography on silica gel (85:15 hexane/EtOAc), 0.22 g (91%) of a white solid identified as **17b**. ¹H NMR $(400.13 \text{ MHz}, \text{ CDCl}_3)$: δ 7.43 (d, I = 16.0 Hz, 1H, H3), 7.17 (d, *I* = 2.7 Hz, 1H, H3'), 7.16 (d, *I* = 8.5 Hz, 1H, H6'), 6.94 (dd, *I* = 8.5, 2.7 Hz, 1H, H5'), 6.87 (s, 1H, ArH), 6.66 (s,1H, ArH), 6.28 (d, *I* = 16.0 Hz, 1H, H2), 4.76 (br, 1H, NH), 4.16 (q, *I* = 7.2 Hz, 2H, COOCH₂CH₃), 4.07 (t, *J* = 6.0 Hz, 2H, ArOCH₂), 3.34 (t, *J* = 6.0 Hz, 2H, CH_2NH^tBoc), 1.9–2.1 (m, 14H, $3 \times AdCH_2 + OCH_2CH_2CH_2$ -N + 3 × AdCH + ArCH₃), 1.73 (s, 6H, 3 × AdCH₂), 1.44 (s, 9H, $CO^{t}Bu$), 1.25 (t, I = 7.2 Hz, 3H, COOCH₂CH₃), 1.06 (s, 9H, SiC(CH₃)₃), 0.37 (s, 3H, SiCH₃), 0.36 (s, 3H, SiCH₃) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 166.9 (s), 157.7 (s), 156.0 (s), 153.9 (s), 143.6 (d), 136.6 (s), 136.2 (s), 134.2 (s), 134.1 (s), 132.1 (d), 130.9 (s), 129.6 (d), 120.5 (d), 118.7 (d), 116.4 (d), 111.1 (d), 79.2 (s, OC(CH₃)₃), 65.9 (t, OCH₂), 60.2 (q, COOCH₂CH₃), 40.5 (t, 3 × AdCH₂), 38.0 (t, CH₂N), 37.0 (t, $3 \times AdCH_2$), 36.5 (s, AdC), 29.6 (t, CH₂CH₂CH₂N), 29.0 (q or d, $3 \times \text{AdCH}$ or SiC(CH₃)₃ or $3 \times \text{C}(\text{CH}_3)_3$), 28.4 (q or d, $3 \times \text{C}(\text{CH}_3)_3$) or $3 \times \text{AdCH}$ or $\text{SiC}(CH_3)_3$), 26.4 (q or d, $\text{SiC}(CH_3)_3$ or $3 \times \text{C}(CH_3)_3$ or 3 × AdCH), 19.7 (q, ArCH₃), 18.9 (s, SiC(CH₃)₃), 14.2 (q, COOCH₂-CH₃), -3.4 (q, SiCH₃), -3.3 (q, SiCH₃) ppm. IR (NaCl): v 3377 (m, N-H), 2959 (m, C-H), 2903 (m, C-H), 2853 (s, C-H), 1702 (s, C=O), 1505 (m), 1486 (m), 1454 (m), 1256 (s), 1230 (s), 1168 (s), 1019 (s), 872 (s), 837 (s), 782 (s), 731 (s) cm⁻¹. MS (FAB⁺): m/z (%) 705 ([M+1]⁺, 19), 704 (M⁺, 100), 703 ([M-1]⁺, 54), 648 (11), 647 (11), 646 (11), 605 (10), 604 (22), 604 (14), 559 (15), 558 (32). HRMS (FAB⁺): calcd for C₄₂H₆₁NO₆Si, 703.4223; found, 703.4243.

5.7.3. Ethyl (*E*)-3-(2-(3-acetamidopropoxy)-4-acetoxy-3-(adamant-1-yl)-biphenyl-4-yl)acrylate (19a)

To a mixture of **17a** (0.11 g, 0.19 mmol) in EtOH (3.2 mL) was added concentrated HCl (0.32 mL). This mixture was heated at 85 °C for 8 h and then concentrated. The residue containing the primary amine 18a was sequentially treated with CH₂Cl₂ (4.6 mL), pyridine (0.24 mL, 3.01 mmol), and Ac₂O (0.08 mL, 0.82 mmol) and stirred overnight at room temperature before addiction of H_2O and extraction with EtOAc (3×). The organic layer was washed with H₂O, brine, dried (Na₂SO₄), the solvent was removed in vacuo and the residue was purified by column chromatography on silica gel (98:2 CH₂Cl₂/MeOH) to afford **19a** (0.04 g, 58%) as a white solid (mp 215 °C, CH₂Cl₂/MeOH/hexane). ¹H NMR (400.13 MHz, CD₃OD): δ 7.81 (d, J = 15.5 Hz, 1H, H3), 7.43 (d, J = 8.4 Hz, 1H, ArH), 7.38 (s, 1H, ArH), 7.32 (s, 1H, ArH), 7.25 (d, J = 8.4 Hz, 1H, ArH), 7.15 (d, J = 8.3 Hz, 1H, ArH), 7.08 (d, J = 8.3 Hz, 1H, ArH), 6.46 (d, J = 15.5 Hz, 1H, H2), 6.18 (br, 1H, NH), 4.32 (q, J = 7.1 Hz, 2H, COOCH₂CH₃), 4.20 (t, J = 5.8 Hz, 2H, ArOCH₂), 3.58 (q, J = 5.8 Hz, 2H, CH₂NHAc), 2.49 (s, 3H, Ac), 2.13 (br, 6H, 3 × AdCH₂), 2.11 (s, 6H, 3 \times AdCH or COCH₃), 1.57 (m, 8H, 3 \times AdCH₂ + OCH₂CH₂CH₂N), 1.40 (t, J = 7.1 Hz, 3H, COOCH₂CH₃) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 170.4 (s), 169.5 (s), 166.6 (s), 158.0 (s), 148.5 (s), 143.8 (d), 140.5 (s), 136.7 (s), 135.5 (s), 133.7 (s), 131.6 (d), 129.4 (d), 127.7 (d), 124.0 (d), 119.5 (d), 116.5 (d), 111.9 (d), 66.2 (t, OCH₂), 60.4 (t, OCH₂), 41.1 (t, $3 \times AdCH_2$), 37.2 (t, CH₂N), 36.8 (t + s, $3 \times AdCH_2 + AdC$), 28.9 (t, $OCH_2CH_2CH_2NHAc$), 28.8 (d, $3 \times AdCH$), 23.2 (q), 21.8 (q), 14.3 (q, $COOCH_2CH_3$) ppm. IR (NaCl): v 3293 (w, N–H), 2903 (m, C–H), 2849 (m, C–H), 1753 (m), 1705 (m, C=O), 1651 (m, C=O), 1633 (m, C=O), 1476 (m), 1367 (m), 1203 (s), 1173 (s), 1038 (m), 750 (s) cm⁻¹. EM (EI): m/z (%) 559 (M⁺, 5), 418 (12), 135 (11), 100 (100). HRMS (EI): calcd for $C_{34}H_{41}NO_6$, 559.2934; found, 559.2928.

5.7.4. Ethyl (*E*)-3-[5-(adamant-1-yl)-2-(3-(*tert*-butoxycarbon ylamino)propoxy)-4-hydroxy-2-methylbiphenyl-4-yl]acrylate (18b)

According to the general procedure for the cleavage of silyl ethers, compound 17b (0.17 g, 0.25 mmol) was treated with a solution of TBAF (0.27 mL, 1 M in THF, 0.27 mmol) to afford, after purification by column chromatography on C₁₈ silica gel (100% acetonitrile), 0.16 g (98%) of a vellow solid identified as **18b**. ¹H NMR (400.13 MHz, CDCl₃): δ 7.42 (d. *I* = 16.0 Hz, 1H, H3), 7.19 (d. *I* = 2.6 Hz, 1H, H3), 7.15 (d, *I* = 8.4 Hz, 1H, H6), 6.95 (dd, *I* = 8.4, 2.6 Hz, 1H, H5), 6.88 (s, 1H, H6'), 6.55 (s, 1H, H3'), 6.30 (d, *J* = 16.0 Hz, 1H, H2), 4.80 (s, 1H, NH or OH), 4.18 (q, *J* = 7.0 Hz, 2H, COOCH₂CH₃), 4.09 (t, J = 5.6 Hz, 2H, ArOCH₂), 3.30 -3.40 (m, 2H, CH₂NHBoc), 1.9-2.1 (m, 14 H, $3 \times AdCH + ArCH_3 +$ $3 \times AdCH_2 + OCH_2CH_2CH_2N$), 1.76 (br, 6H, $2 \times AdCH_2$), 1.46 (s, 9H, $C(CH_3)_3$), 1.27 (t, J = 7.0 Hz, 3H, $COOCH_2CH_3$) ppm. ¹³C NMR $(100.62 \text{ MHz}, \text{ CDCl}_3)$: δ 166.9 (s), 157.8 (s), 156.0 (s), 153.8 (s), 143.5 (d), 136.0 (s), 134.8 (s), 134.3 (s), 133.5 (s), 132.1 (d), 131.3 (s), 129.4 (d), 118.8 (d), 118.3 (d), 116.4 (d), 111.1 (d), 79.4 (s, C(CH₃)₃), 65.9 (t, OCH₂), 60.3 (q, COOCH₂CH₃), 40.7 (t, 3 × AdCH₂), 38.0 (t, CH₂N), 37.1 (t, 3 × AdCH₂), 36.4 (s, AdC), 29.6 (t, CH₂CH₂₋ CH_2N), 29.0 (d, 3 × AdCH or 3 × $C(CH_3)_3$), 28.4 (q or d, 3 × $C(CH_3)_3$) or $3 \times AdCH$), 19.4 (q, ArCH₃), 14.3 (q, COOCH₂CH₃) ppm. IR (NaCl): v 3315 (m, N-H), 3400-3100 (br, O-H), 2976 (m, C-H), 2903 (m, C-H), 2849 (m, C-H), 1700 (s, C=O), 1683 (s, C=O), 1537 (m), 1395 (m), 1366 (m), 1315 (m), 1272 (m), 1227 (s), 1170 (s), 1040 (m), 858 (m), 727 (s) cm⁻¹. MS (EI): m/z (%) 589 (M⁺, 86), 534 (10), 533 (30), 516 (32), 515 (84), 490 (13), 489 (39), 444 (13), 433 (25), 432 (79), 427 (10), 344 (21), 287 (13), 136 (12), 135 (100), 102 (86), 93 (12). HRMS (EI): calcd for C₃₆H₄₇NO₆, 589.3403; found, 589.3401.

5.7.5. Ethyl (*E*)-3-[4-acetoxy-(2-(3-acetamidopropoxy)-5-(adamant-1-yl)-2-methylbiphenyl-4-yl]acrylate (19b)

To a mixture of **18b** (0.16 g, 0.28 mmol) in EtOH (4.6 mL) was added concentrated HCl (0.46 mL). This mixture was heated at 85 °C for 1 h and then concentrated. The residue containing the primary amine was sequentially treated with CH₂Cl₂ (9.2 mL), pyridine (0.49 mL, 6.07 mmol) and Ac₂O (0.07 mL, 0.72 mmol) and stirred overnight at room temperature before addition of H₂O and extraction with EtOAc $(3\times)$, followed by washing with H₂O, brine and dried (Na₂SO₄). The solvent was removed in vacuo and the residue was crystallized from CH₂Cl₂/MeOH/hexane afford the corresponding acid 19b (0.06 g, 37%) as white solid (mp 215 °C, CH₂Cl₂/MeOH/hexane). ¹H NMR (400.13 MHz, CD₃OD): δ 7.41 (d, J = 16.0 Hz, 1H, H3), 7.27 (d, J = 2.4 Hz, 1H, H3'), 7.11 (d, *J* = 8.6 Hz, 1H, H6'), 7.00 (dd, *J* = 8.6, 2.4 Hz, 1H, H5'), 6.75 (s, 1H, H6'), 6.62 (s, 1H, H3'), 6.34 (d, J = 16.0 Hz, 1H, H2), 4.14 (q, J = 7.1 Hz, 2H, COOCH₂CH₃), 4.09 (t, J = 5.5 Hz, 2H, ArOCH₂), 3.38 (t, J = 6.7 Hz, 2H, CH₂NHAc), 2.12–2.14 (m, 9H, $3 \times AdCH_2 + Ac$), 1.9–2.0 (m, 11H, $3 \times \text{AdCH} + \text{ArCH}_3 + \text{Ac} + \text{OCH}_2\text{CH}_2\text{CH}_2\text{N}$), 1.77 (br, 6H, $3 \times AdCH_2$), 1.24 (t, I = 7.1 Hz, 3H, COOCH₂CH₃) ppm. ¹³C NMR (100.62 MHz, CD₃OD): δ 173.5 (s), 168.8 (s), 160.0 (s), 145.3 (d), 137.9 (s), 135.5 (s), 135.3 (s), 134.1 (s), 133.3 (d), 131.2 (s), 130.0 (d), 119.3 (d), 118.8 (d), 117.9 (d), 112.2 (d), 66.8 (t, ArOCH₂), 61.6 (t, COOCH₂CH₃), 41.8 (t, $3 \times AdCH_2$), 38.3 (t, CH₂NHAc), 37.6 (t, $3 \times AdCH_2$), 37.7 (s, AdC), 30.7 (g, 2x Ac + NAc), 30.3 (t, OCH₂CH₂CH₂NHAc), 22.6 (d, $3 \times$ AdCH), 19.8 (q, ArCH₃), 14.7

(q, COOCH₂CH₃) ppm. IR (NaCl): ν 3392 (m, N–H), 2975 (m, C–H), 2900 (s, C–H), 1746 (m, C=O), 1701 (s, C=O), 1650 (s, C=O), 1556 (s), 1540 (s), 1521 (s), 1493 (s), 1399 (s), 1234 (s), 1178 (s), 730 (s) cm⁻¹. MS (EI): m/z (%) 531 (18), 100 (100). HRMS (EI): calcd for C₃₅H₄₃NO₆, 573.3090; found, 573.3106.

5.7.6. (*E*)-3-[2-(3-Acetamidopropoxy)-3-(adamant-1-yl)-4-hydroxybiphenyl-4-yl]acrylic acid (2c)¹¹

To a stirred suspension of compound **19a** (0.013 g, 0.023 mmol) in MeOH was treated with Na₂CO₃ (0.12 mL, 2 M in H₂O, 0.24 mmol). The mixture was stirred at 70 °C for 3 h, cooled down to room temperature, acidified (10% HCl), and extracted with EtOAc. The combined organic extracts were washed (H₂O, brine), dried (Na₂SO₄), and evaporated. The residue was purified by crystallization (CH₂Cl₂/hexane) to afford 0.006 g (53%) of a white solid (mp: 215 °C) identified as **2c**.¹¹

5.7.7. (*E*)-3-[2-(3-Acetamidopropoxy)-5-(adamant-1-yl)-4hydroxy-2-methylbiphenyl-4-yl]acrylic acid (5c)

To a stirred suspension of compound **19b** (0.03 g, 0.05 mmol) in MeOH was treated with Na₂CO₃ (0.52 mL, 2 M in H₂O, 1.05 mmol). The mixture was stirred at 70 °C for 3 h, cooled down to room temperature, acidified (10% HCl), and extracted with EtOAc. The combined organic extracts were washed (H₂O, brine), dried (Na₂SO₄), and evaporated. The residue was purified by column chromatography on silica gel (90:10 $CH_2Cl_2/MeOH$), to afford 0.015 g (57%) of a white solid identified as **5c**. ¹H NMR (400.13 MHz, CD₃OD): δ 7.36 (d, J = 16.0 Hz, 1H, H3), 7.26 (d, J = 2.5 Hz, 1H, H3), 7.06 (d, J = 8.5 Hz, 1H, H6), 6.97 (dd, J = 8.5, 2.5 Hz, 1H, H5), 6.75 (s, 1H, H6"), 6.60 (s, 1H, H3"), 6.34 (d, J = 16.0 Hz, 1H, H2), 4.08 (t, J = 6.1 Hz, 2H, ArOCH₂), 3.38 (t, J = 6.8 Hz, 2H, CH₂NHAc), 2.11 (s, 6H, $3 \times AdCH_2$), 1.8–2.0 (m, 5H, Ac or $3 \times AdCH$ or $ArCH_3 + -$ ArOCH₂CH₂), 1.94 (s, 3H, ArCH₃ or Ac or $3 \times$ AdCH), 1.89 (s, 3H, $3 \times AdCH$ or $ArCH_3$ or Ac), 1.76 (br, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, CD₃OD): δ 172.0 (s, 2×), 158.0 (s), 155.4 (s), 143.2 (d), 136.3 (s), 134.2 (s), 134.0 (s), 133.4 (s), 131.8 (d), 129.9 (d), 128.3 (d, $2\times$), 117.3 (d), 116.1 (d), 110.7 (d), 65.4 (t, OCH₂), 40.3 (t, $3 \times AdCH_2$), 36.9 (t, $3 \times AdCH_2$), 36.2 (t, CH_2N), 36.1 (s, AdC), 29.2 (d, 3 × AdCH), 28.8 (t, OCH₂CH₂), 21.2 (q, COCH₃), 18.3 (q, ArCH₃). IR (NaCl): v 3388 (m, NH), 3100-2950 (br, O-H), 2972 (s, C-H), 2902 (s, C-H), 1699 (s, C=O), 1650 (s, C=O), 1555 (s), 1539 (s), 1521 (s), 1512 (s), 1493 (s), 1455 (m), 1393 (m), 1051 (m) cm⁻¹. MS (EI): m/z (%) 503 ([M⁺], 13), 135 (8), 101 (9), 100 ([M-C₅H₁₀ON]⁺, 100). HRMS (EI): calcd for C₃₁H₃₇NO₅, 503.2672; found, 503.664.

5.7.8. 5-Bromo-2-[3-adamantan-1-yl-4-(*tert*-butyldimeth ylsilyloxy)phenyl]thiazole (22a)

Following the general procedure for the Suzuki reaction, 2,5dibromothiazole **20** (0.70 g, 2.88 mmol) and boronic acid **16a**¹¹ (1.44 g, 3.74 mmol) were heated in benzene at 90 °C for 12 h. The residue was purified by column chromatography (SiO₂, 99:1 hexane/EtOAc), to give 22a (0.72 g, 50%) as a white powder, mp 150-155 °C (hexane/CHCl₃), 0.11 g (5%) of disubstituted thiazole **21a** as a yellow solid, mp 237–238 $^\circ\text{C}$ (hexane/CHCl_3) and 0.05 g (8%) of starting material. Data for thiazole 22a. ¹H NMR (400.13 MHz, $CDCl_3$): δ 7.77 (d, J = 2.4 Hz, 1H, H2'), 7.66 (s, 1H, H4), 7.53 (dd, *J* = 8.4, 2.4 Hz, 1H, H6'), 6.83 (d, *J* = 8.4 Hz, 1H, H5'), 2.14 (s, 6H, 3 × AdCH₂), 2.09 (s, 3H, 3 × AdCH), 1.78 (s, 6H, $3 \times AdCH_2$), 1.05 (s, 9H, SiC(CH₃)₃), 0.37 (s, 6H, Si(CH₃)₂) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 170.3 (s), 157.0 (s), 144.4 (d), 140.4 (s), 125.7 (s), 125.6 (d), 124.8 (d), 119.4 (d), 106.9 (s), 40.2 (t, 3×), 37.0 (s), 36.9 (t, 3×), 28.9 (q, 3×), 26.4 (d, 3×), 19.0 (s), -3.4 (q, 2×) ppm. IR: v 2905 (m, C-H), 2882 (m, C-H), 2845 (w, C-H), 1597 (w), 1475 (s), 1422 (w), 1272 (s), 1251 (s), 1132 (m), 921 (s), 837 (s), 818 (s), 788 (s), 727 (m) cm⁻¹. MS (ESI⁺): m/z (%)

506 ([M+H]⁺ [⁸¹Br], 25), 504 ([M+H]⁺ [⁷⁹Br], 26), 375 (34), 349 (30), 322 (25), 321 (100), 313 (19), 253 (35), 237 (28), 195 (63). HRMS (ESI⁺): calcd for C₂₅H₃₅⁸¹BrNOSSi [M+H]⁺ 506.1368 and C₂₅-H₃₅⁷⁹BrNOSSi [M+H]⁺ 504.1386; found: 506.1392 and 504.1397. Elem. Anal. calcd for C₂₅H₃₄BrNOSSi: C, 59.91; H, 6.79; N, 2.78; found: C, 58.87; H, 6.28; N, 2.78. Data for thiazole 21a. ¹H NMR (400.13 MHz, CDCl₃): δ 7.86 (s, 1H, ArH), 7.84 (s, 1H, ArH), 7.65 (d, J = 8.1 Hz, 1H, ArH), 7.43 (s, 1H, H4), 7.31 (d, J = 8.1 Hz, 1H, ArH), 6.84 (app. t, J = 7.1, 2H, H5' + H5"), 2.18 (s, 6H, 3 × AdCH₂), 2.16 (s, 6H, $3 \times AdCH_2$), 2.11 (s, 6H, 6xAdCH), 1.80 (s, 12H, $6xAdCH_2$), 1.07 (s, 18H, $2xSiC(CH_3)_3$), 0.38 (s, 12H, $4 \times Si(CH_3)_2$) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 166.8 (s), 156.5 (s), 154.9 (s), 140.2 (s), 140.1 (s), 138.7 (s), 137.6 (d), 126.4 (s), 126.0 (d), 125.6 (d), 124.6 (d), 124.5 (d), 123.9 (s), 119.4 (d), 119.3 (d), 40.3 (t, 3×), 40.2 (t, 3×), 37.0 (t, 3×), 36.9 (s, 2×), 29.0 (d, 6×), 26.4 (q, 6×), 19.0 (s, 2×), -3.3 (q, 2×), -3.4 (q, 2×) ppm. IR: v 2902 (m, C-H), 2850 (w, C-H), 1601 (w), 1486 (m), 1447 (w), 1391 (w), 1264 (s), 1122 (w), 920 (s), 866 (s), 837 (s), 815 (s), 788 (s), 742 (m) cm⁻¹. MS (ESI⁺): m/z (%) 766 ([M+H]⁺, 30), 566 (12), 484 (100), 433 (26), 396 (26), 391 (34), 379 (27), 365 (29), 363 (18), 359 (23), 358 (16), 343 (89), 341 (29), 317 (18), 247 (14). HRMS (ESI⁺): calcd for $C_{47}H_{68}NO_2SSi_2$ [M+H]⁺ 766.4504; found: 766.4500.

5.7.9. 5-Bromo-2-[3-adamantan-1-yl-6-methyl-4-(*tert*-butyldi methylsilyloxy)phenyl]thiazole (22b)

Following the general procedure for the microwave-assisted Suzuki reaction, 2,5-dibromothiazole **20** (0.22 g, 0.90 mmol) and boronic acid **16b**³² (0.40 g, 1.0 mmol) were heated at 90 °C for 10 min. The residue was purified by column chromatography (SiO₂, 99:1 hexane/EtOAc), to give 0.27 g of a yellow oil (a mixture of mono- and disubstituted thiazole derivatives), which was used in the next step without further purification.

5.7.10. 2-(Adamantan-1-yl)-4-(5-bromothiazol-2-yl)phenol (23a)

In accordance with the general procedure for the cleavage of silyl ethers, ether **22a** (0.35 g, 0.69 mmol) gave, after purification by column chromatography (SiO₂, from 80:20 hexane/EtOAc to 100% EtOAc), 0.25 g (91%) of phenol 23a as a white solid, mp 280-281 °C (hexane/CH₂Cl₃). ¹H NMR (400.13 MHz, DMSO-*d*₆): δ 10.02 (s, 1H, OH), 7.85 (s, 1H, H4'), 7.63 (d, J = 2.1 Hz, 1H, H3), 7.53 (dd, *J* = 2.1, 8.3 Hz, 1H, H5), 6.87 (d, *J* = 8.3 Hz, 1H, H6), 2.09 (s, 6H, $3 \times AdCH_2$), 2.05 (s, 3H, $3 \times AdCH$), 1.73 (s, 6H, $3 \times AdCH_2$) ppm. ^{13}C NMR (100.62 MHz, DMSO- d_6): δ 169.6 (s), 158.7 (s), 144.6 (d), 136.2 (s), 125.0 (d), 124.2 (d), 123.5 (s), 116.9 (d), 106.1 (s), 39.5 (t, 3×), 36.4 (t, 3×), 36.2 (s), 28.2 (d, 3×) ppm. IR: v 3500-3300 (br, O-H), 2898 (m, C-H), 2847 (m, C-H), 1595 (m), 1489 (m), 1412 (m), 1375 (m), 1271 (m), 1244 (s), 1125 (m), 999 (w), 816 (s) cm⁻¹. MS (ESI⁺): *m*/*z* (%) 392 ([M+H]⁺ [⁸¹Br], 100), 390 ([M+H]⁺ [⁷⁹Br], 94), 349 (31), 321 (89), 279 (29), 253 (58). HRMS (ESI⁺): calcd for C₁₉H₂₁⁸¹BrNOS [M+H]⁺ 392.0502 and C₁₉H₂₁⁷ BrNOS [M+H]⁺, 390.0522; found: 392.0484 and 390.0508.

5.7.11. 2-(Adamantan-1-yl)-4-(5-bromothiazol-2-yl)-5methylphenol (23b)

In accordance with the general procedure for the cleavage of silyl ethers, the mixture obtained above gave, after purification by column chromatography (SiO₂, from 80:20 hexane/EtOAc to 100% EtOAc), 0.11 g (30%, two steps) of phenol **23b** as a white so-lid, mp 237–238 °C (hexane/CH₂Cl₂), and the disubstituted thiazole **21b** (0.03 g, 5% two steps) as a white solid, mp 237–238 °C. Data for **23b**: ¹H NMR (400.13 MHz, DMSO-*d*₆): δ 9.86 (s, 1H, OH), 7.91 (s, 1H, H4'), 7.44 (s, 1H, H3), 6.71 (s, 1H, H6), 2.40 (s, 3H, ArCH₃), 2.05 (s, 6H, 3 × AdCH₂), 2.02 (s, 3H, 3 × AdCH), 1.71 (s, 6H, 3 × AdCH₂) ppm. ¹³C NMR (100.62 MHz, DMSO-*d*₆): δ

169.3 (s), 157.7 (s), 144.1 (d), 134.5 (s), 133.9 (s), 127.8 (d), 122.7 (s), 119.2 (d), 106.9 (s), 39.8 (t, 3×), 36.5 (t, 3×), 35.9 (s), 28.3 (d, 3×), 20.7 (q) ppm. IR: v 3500-3300 (br, O-H), 2900 (s, C-H), 2843 (m, C-H), 1606 (m), 1494 (m), 1444 (m), 1392 (s), 1244 (s), 1120 (s), 999 (m), 845 (s) cm⁻¹. MS (ESI⁺): *m*/*z* (%) 406 ([M+H]⁺ [⁸¹Br], 92), 404 ([M+H]⁺ [⁷⁹Br], 100), 363 (16), 359 (8), 321 (9), 319 (66), 309 (9), 241 (11), 210 (13), 192 (7). HRMS (ESI⁺): calcd for C_{20-} $H_{23}^{81}BrNOS$ [M+H]⁺ 406.0657 and $C_{20}H_{23}^{79}BrNOS$ [M+H]⁺, 404.06782; found: 406.0655 and 404.0675. Data for thiazole **21b.** ¹H NMR (400.13 MHz, DMSO- d_6): δ 9.81 (s, 1H, OH), 9.61 (s, 1H, OH), 7.83 (s, 1H, H4), 7.62 (s, 1H), 7.18 (s, 1H), 6.82 (s, 2H; H5' + H5"), 2.60 (s, 9H, 3 × AdCH₂ + ArCH₃), 2.57 (s, 3H, ArCH₃), 2.37 (s, 3H, $3 \times$ AdCH), 2.2–2.1 (m, 6H, $3 \times$ AdCH₂), 2.12 (s, 3H, $3 \times AdCH$), 1.81 (s, 12H, $6xAdCH_2$) ppm. ¹³C NMR $(100.62 \text{ MHz}, \text{DMSO-}d_6)$: δ 166.2 (s), 157.0 (s), 156.1 (s), 140.1 (d), 137.0 (s), 134.2 (s), 133.9 (s), 133.7 (s), 133.6 (s), 128.4 (d), 127.8 (d), 123.3 (s), 120.4 (s), 119.2 (d), 118.6 (d), 39.9 (t, $3 \times$), 39.8 (t, $3 \times$), 36.6 (t, $3 \times$), 35.9 (s), 35.8 (s), 28.3 (d, $6 \times$), 20.9 (q), 20.2 (q) ppm. IR: v 3500-3000 (br, O-H), 2900 (s, C-H), 2848 (m, C-H), 1602 (w), 1562 (w), 1494 (w), 1449 (w), 1393 (s), 1239 (s), 1120 (s) cm⁻¹. MS (ESI⁺): m/z (%) 566 ([M+H]⁺, 100), 363 (8), 186 (13). HRMS (ESI⁺): calcd for $C_{37}H_{44}NO_2S$ [M+H]⁻ 566.3087: found: 566.3083.

5.7.12. 5-Bromo-2-[3-adamantan-1-yl-4-[(2-methoxyethoxy) methoxy]phenyl]thiazole (23c)

According to the general procedure for the protection of phenols with MEMCl, 23a (0.09 g, 0.23 mmol) gave, after purification by column chromatography (SiO2, 85:15 hexane/EtOAc), compound **23c** (0.10 g, 88%) as a white solid, mp 125–126 °C (hexane/CHCl₃). ¹H NMR (400.13 MHz, CDCl₃): δ 7.78 (d, I = 2.3 Hz, 1H, H2'), 7.67 (s, 1H, H4), 7.61 (dd, J = 8.6, 2.3 Hz, 1H, H6'), 7.20 (d, J = 8.6 Hz, 1H, H5'), 5.37 (s, 2H, OCH₂O), 3.9-3.8 (m, 2H, OCH2), 3.6-3.5 (m, 2H, OCH2), 3.40 (s, 3H, OCH3), 2.13 (s, 6H, 3 × AdCH₂), 2.09 (s, 3H, 3 × AdCH), 1.78 (s, 6H, 3 × AdCH₂).ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 170.1 (s), 158.3 (s), 144.5 (d), 139.3 (s), 126.6 (s), 125.2 (d), 125.0 (d), 114.8 (d), 107.2 (s), 93.2 (t), 71.5 (t), 68.0 (t), 59.1 (q), 40.5 (t, $3\times$), 37.2 (s), 37.0 (t, $3\times$), 28.9 (d, 3×) ppm. IR: v 2898 (m, C-H), 2849 (w, C-H), 1597 (w), 1472 (m), 1223 (m), 1096 (s), 980 (s), 846 (m), 814 (m) cm⁻¹. MS (ESI⁺): m/z (%) 480 ([M+H]⁺ [⁸¹Br], 100), 478 ([M+H]⁺ [⁷⁹Br], 99), 402 (7), 401 (10), 400 (41), 324 (4). HRMS (ESI⁺): calcd for C₂₃H₂₉⁸¹⁻ BrNO₃S [M+H]⁺ 480.1025, and C₂₃H₂₉⁷⁹BrNO₃S 478.1046; found: 480.1020 and 478.1039.

5.7.13. 5-Bromo-2-[5-adamantan-1-yl-4-[(2-methoxy ethoxy)methoxy]-2-methylphenyl]thiazole (23d)

According to the general procedure for the protection of phenols with MEMCl, 23b (0.04 g, 0.10 mmol) gave, after purification by column chromatography (SiO₂, 85:15 hexane/EtOAc), compound **23d** (0.03 g, 66%) as a colorless oil. ¹H NMR (400.13 MHz, CDCl₃): δ 7.73 (s, 1H, H6'), 7.55 (s, 1H, H4), 7.05 (s, 1H, H3'), 5.36 (s, 2H, OCH₂O), 3.9-3.8 (m, 2H, OCH₂), 3.6-3.5 (m, 2H, OCH₂), 3.41 (s, 3H, OCH₃), 2.51 (s, 3H, ArCH₃), 2.10 (s, 6H, $3 \times AdCH_2$), 2.07 (s, 3H, $3 \times AdCH$), 1.77 (s, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 169.7 (s), 157.3 (s), 143.8 (d), 136.5 (s), 135.3 (s), 128.5 (d), 125.7 (s), 117.2 (d), 108.0 (s), 93.1 (t), 71.5 (t), 67.9 (t), 59.0 (q), 40.6 (t, 3×), 37.0 (t, 3×), 36.8 (s), 28.9 (d, 3×), 21.0 (q) ppm. IR: v 2900 (s, C-H), 2847 (m, C-H), 1604 (w), 1490 (m), 1450 (m), 1360 (m), 1242 (m), 1220 (m), 1097 (s), 1015 (s), 990 (s), 923 (m), 847 (m) cm⁻¹. MS (ESI⁺): m/*z* (%) 494 ([M+H]⁺ [⁸¹Br], 100), 492 ([M+H]⁺ [⁷⁹Br], 94), 418 (5), 416 (5). HRMS (ESI⁺): calcd for C₂₄H₃₁⁸¹BrNO₃S [M+H]⁺ 494.1182, and $C_{24}H_{31}^{79}BrNO_3S$ [M+H]⁺ 492.1189; found: 494.1178 and 492.1199.

5.7.14. Methyl (E)-3-[2-(3-adamantan-1-yl-4-hydroxyphenyl) thiazol-5-yl]acrylate (24a)

Following the general procedure for the Heck reaction with methyl acrylate, bromide 23a (0.09 g, 0.24 mmol) gave, after purification by column chromatography (SiO₂, 80:20 hexane/EtOAc), 0.06 g (68%) of ester 24a as a yellow solid, mp 240-241 °C (hexane/CHCl₃). ¹H NMR (400.13 MHz, CD₃OD): δ 7.95 (s, 1H, H4'), 7.86 (d, J = 15.6 Hz, 1H, H3), 7.78 (d, J = 2.3 Hz, 1H, H2"), 7.63 (dd, J = 8.4, 2.3 Hz, 1H, H6"), 6.81 (d, J = 8.4 Hz, 1H, H5"), 6.26 (d, J = 15.6 Hz, 1H, H2), 3.78 (s, 3H, OCH₃), 2.20 (s, 6H, 3 × AdCH₂), 2.08 (s, 3H, $3 \times$ AdCH), 1.83 (s, 6H, $3 \times$ AdCH₂) ppm. ¹³C NMR (100.62 MHz, CD₃OD): δ 173.4 (s), 168.6 (s), 161.2 (s), 148.3 (d), 138.6 (s), 135.8 (d), 134.8 (s), 127.1 (d), 127.0 (d), 125.5 (s), 119.8 (d), 118.0 (d), 52.4 (q), 41.5 (t, 3×), 38.3 (t, 3×), 38.2 (s), 30.7 (d, 3×) ppm. IR: v 2901 (m, C-H), 2877 (m, C-H), 2847 (m, C-H), 1720 (s, C=O), 1624 (m), 1600 (m), 1433 (m), 1359 (s), 1331 (m), 1269 (s), 1235 (s), 1167 (s), 1151 (s), 1120 (s), 959 (m), 819 (s) cm⁻¹. MS (ESI⁺): m/z (%) 396 ([M+H]⁺, 100), 349 (6), 321 (8), 253 (6), 203 (7), 201 (8). HRMS (ESI⁺): calcd for C₂₃H₂₆NO₃₋ S [M+H]⁺ 396.1628; found: 396.1623.

5.7.15. Methyl (*E*)-3-[2-(5-adamantan-1-yl-4-hydroxy-2-methylphenyl)thiazol-5-yl]acrylate (24b)

Following the general procedure for the Heck reaction with methyl acrylate, bromide 23b (0.10 g, 0.25 mmol) gave, after purification by column chromatography (SiO₂, 80:20 hexane/EtOAc), 0.06 g (56%) of ester 24b as a yellow solid, mp 200-201 °C (hexane/CHCl₃). ¹H NMR (400.13 MHz, CDCl₃): δ 7.93 (s, 1H, H4'), 7.82 (d, J = 15.6 Hz, 1H, H3), 7.63 (s, 1H, H6"), 6.52 (s, 1H, H3"), 6.38 (s, 1H, OH), 6.22 (d, J = 15.6 Hz, 1H, H2), 3.82 (s, 3H, OCH₃), 2.44 (s, 3H, ArCH₃), 2.11 (s, 6H, 3 × AdCH₂), 2.07 (s, 3H, 3 × AdCH), 1.76 (s, 6H, $3 \times \text{AdCH}_2$) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 170.9 (s), 167.0 (s), 156.6 (s), 146.1 (d), 135.7 (s), 134.7 (s), 134.5 (d), 134.1 (s), 129.5 (d), 124.4 (s), 119.8 (d), 118.9 (d), 51.9 (q), 40.4 (t, 3×), 36.9 (t, 3×), 36.4 (s), 28.9 (d, 3×), 20.9 (q) ppm. IR: v 3500-3200 (br, O-H), 2902 (m, C-H), 2847 (m, C-H), 1693 (s, C=O), 1622 (s), 1606 (m), 1453 (m), 1435 (m), 1383 (s), 1331 (s), 1175 (s), 1126 (m), 953 (s), 842 (s) cm⁻¹. MS (ESI⁺): m/z (%) 410 ([M+H]⁺, 100), 210 (3), 143 (7). HRMS (ESI⁺): calcd for C₂₄H₂₈NO₃S [M+H]⁺ 410.1784; found: 410.1779.

5.7.16. Methyl (*E*)-3-[2-(3-adamantan-1-yl-4-[(2-methoxy ethoxy)methoxy]phenyl)thiazol-5-yl]acrylate (24c)

According to the general procedure for the protection of the phenols with MEMCl, phenol 24a (0.05 g, 0.13 mmol) gave, after purification by column chromatography (SiO₂, 80:20 hexane/ EtOAc), compound **24c** (0.05 g, 70%) as a yellow oil. ¹H NMR (400.13 MHz, CDCl₃): δ 7.88 (s, 2H, H4' + H2"), 7.79 (d, J = 15.6 Hz, 1H, H3), 7.72 (dd, J = 8.6, 2.2 Hz, 1H, H6"), 7.21 (d, J = 8.6 Hz, 1H, H5"), 6.19 (d, J = 15.6 Hz, 1H, H2), 5.38 (s, 2H, OCH₂O), 3.9–3.8 (m, 2H, OCH₂), 3.80 (s, 3H, OCH₃), 3.6-3.5 (m, 2H, OCH₂), 3.40 (s, 3H, OCH₃), 2.15 (s, 6H, 3 × AdCH₂), 2.10 (s, 3H, 3 × AdCH), 1.79 (s, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 170.6 (s), 166.8 (s), 158.8 (s), 147.0 (d), 139.3 (s), 134.4 (d), 133.7 (s), 126.5 (s), 125.9 (d), 125.7 (d), 118.9 (d), 114.9 (d), 93.2 (t), 71.5 (t), 68.1 (t), 59.1 (q), 51.8 (q), 40.5 (t, 3×), 37.2 (s), 37.0 (t, 3×), 29.0 (d, 3×) ppm. IR: v 2903 (s, C-H), 2849 (m, C-H), 1716 (s, C=O), 1623 (s), 1493 (w), 1424 (m), 1327 (m), 1224 (s), 1164 (s), 1102 (m), 982 (s) cm⁻¹. MS (ESI⁺): *m*/*z* (%) 484 ([M+H]⁺, 100), 321 (5). HRMS (ESI⁺): calcd for C₂₇H₃₄NO₅S [M+H]⁺ 484.2152; found: 484.2136.

5.7.17. Methyl (E)-3-[2-(5-adamantan-1-yl-4-[(2-methoxy ethoxy)methoxy]-2-methylphenyl)thiazol-5-yl]acrylate (24d)

According to the general procedure for the protection of the phenols with MEMCl, phenol **24b** (0.03 g, 0.08 mmol) gave, after purification by column chromatography (SiO_2 , 80:20

hexane/EtOAc), compound **24d** (0.03 g, 78%) as a yellow oil. ¹H NMR (400.13 MHz, CDCl₃) δ 7.93 (s, 1H, H4'), 7.81 (d, *J* = 15.6 Hz, 1H, H3), 7.69 (s, 1H, H6"), 7.06 (s, 1H, H3"), 6.21 (d, *J* = 15.6 Hz, 1H, H2), 5.37 (s, 2H, OCH₂O), 3.9–3.8 (m, 2H, OCH₂), 3.80 (s, 3H, OCH₃), 3.6–3.5 (m, 2H, OCH₂), 3.41 (s, 3H, OCH₃), 2.58 (s, 3H, ArCH₃), 2.11 (s, 6H, 3 × AdCH₂), 2.08 (s, 3H, 3 × Ad), 1.77 (s, 6H, 3 × AdCH₂) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 170.3 (s), 166.8 (s), 157.6 (s), 146.3 (d), 136.6 (s), 135.9 (s), 134.4 (d), 134.2 (s), 128.9 (d), 125.6 (s), 118.9 (d), 117.3 (d), 93.0 (t), 71.5 (t), 68.0 (t), 59.0 (q), 51.8 (q), 40.6 (t, 3×), 37.0 (t, 3×), 36.8 (s), 28.9 (d, 3×), 21.4 (q) ppm. IR: v 2902 (s, C–H), 2848 (m, C–H), 1718 (s, C=O), 1624 (s), 1503 (m), 1447 (m), 1432 (m), 1327 (m), 1217 (s), 1160 (s), 1122 (m), 1098 (m), 1016 (s), 989 (s), 847 (m), 752 (s) cm⁻¹.

5.7.18. (*E*)-3-[2-(3-Adamantan-1yl-4-hydroxyphenyl)thiazol-5-yl]acrylic acid (7a)

In accordance with the general procedure for the hydrolysis of esters, ester 24a (0.01 g, 0.04 mmol) gave, after crystallization, 0.01 g (95%) of acid 7a as a yellow solid, mp 284 °C (dec) (hexane/CH₂Cl₂). ¹H NMR (400.13 MHz, DMSO- d_6): δ 10.16 (s, 1H, OH), 8.11 (s, 1H, H4'), 7.78 (d, J = 15.6 Hz, 1H, H3), 7.72 (s, 1H, H2"), 7.63 (d, *J* = 7.6 Hz, 1H, H6"), 6.90 (d, *J* = 7.6 Hz, 1H, H5"), 6.16 (d, /=15.6 Hz, 1H, H2), 3.4-3.2 (br, OH) 2.10 (s, 6H, $3 \times AdCH_2$), 2.06 (s, 3H, $3 \times AdCH$), 1.74 (s, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, DMSO-*d*₆): δ 169.8 (s), 167.0 (s), 159.2 (s), 147.5 (d), 136.3 (s), 133.8 (d), 133.0 (s), 125.6 (d), 125.0 (d), 123.7 (s), 120.1 (d), 117.0 (d), 39.6 (t, 3×), 36.5 (t, 3×), 36.3 (s), 28.3 (d, 3×) ppm. IR: v 3500-3000 (s, O-H), 2900 (m, C-H), 2848 (w, C-H), 1682 (m, C=O), 1619 (s), 1599 (s), 1385 (s), 1322 (m), 1251 (s), 1179 (s), 1149 (s), 1120 (s), 963 (s), 823 (s) cm⁻¹. MS (ESI⁺): *m*/*z* (%) 382 ([M+H]⁺, 100), 375 (20), 321 (27), 253 (53). HRMS (ESI⁺): calcd for $C_{22}H_{24}NO_{3}S$ [M+H]⁺ 382.1471; found: 382.1464. Elem. Anal. Calcd for C₂₂H₂₃NO₃S ¹/₂[CH₃)₂SO] C, 65.69; H, 6.32; N, 3.33; found: C, 65.73; H, 5.78; N, 2.94.

5.7.19. (*E*)-3-[2-(5-Adamantan-1-yl-4-hydroxy-2-methylphenyl) thiazol-5-yl]acrylic acid (7b)

In accordance with the general procedure for the hydrolysis of esters, ester 24b (0.03 g, 0.07 mmol) gave, after crystallization, 0.02 g (76%) of acid **7b** as a yellow solid, mp 164–165 °C (hexane/CH₂Cl₂). ¹H NMR (400.13 MHz, CD₃OD): δ 7.96 (s, 1H, H4'), 7.82 (d, / = 15.6 Hz, 1H, H3), 7.53 (s, 1H, H6"), 6.65 (s, 1H, H3"), 6.21 (d, J = 15.6 Hz, 1H, H2), 2.46 (s, 3H, ArCH₃), 2.14 (s, 6H, $3 \times AdCH_2$), 2.04 (s, 3H, $3 \times AdCH$), 1.79 (s, 6H, $3 \times AdCH_2$) ppm. ^{13}C NMR (100.62 MHz, CD_3OD): δ 172.9 (s), 169.7 (s), 159.8 (s), 147.3 (d), 136.9 (s), 136.0 (s), 135.8 (d), 135.5 (s), 130.2 (d), 124.6 (s), 120.9 (d), 120.4 (d), 41.6 (t, 3×), 38.3 (t, 3×), 37.8 (s), 30.7 (d, 3×), 21.4 (q) ppm. IR: v 3500-3000 (s, O-H), 2901 (s, C-H), 2848 (w, C-H), 1684 (s, C=O), 1606 (s), 1449 (m), 1382 (s), 1361 (m), 1222 (s), 1159 (s), 1125 (s), 964 (m), 851 (m), 754 (s) cm⁻¹. MS (ESI⁺): *m*/*z* (%) 396 ([M+H]⁺, 100), 326 (4), 148 (5), 143 (4). HRMS (ESI⁺): calcd for C₂₃H₂₆NO₃S [M+H]⁺ 369.1628; found: 396.1624. Elem. Anal. Calcd for C23H25NO3S C, 69.84; H, 6.37; N, 3.54; found: C, 69.52; H, 6.15; N, 3.37.

5.7.20. (*E*)-3-[2-(3-Adamantan-1-yl-4-[(2-methoxyethoxy) methoxy]phenyl)thiazol-5-yl]acrylic acid (7c)

In accordance with the general procedure for the hydrolysis of esters, ester **24c** (0.05 g, 0.10 mmol) gave, after crystallization, 0.04 g (91%) of acid **7c** as a yellow solid, mp 232–233 °C (hexane/ CH₂Cl₂). ¹H NMR (400.13 MHz, CDCl₃): δ 7.93 (s, 1H, H4'), 7.9–7.8 (m, 2H, H3 + H2"), 7.74 (d, *J* = 8.4 Hz, 1H, H6"), 7.22 (d, *J* = 8.4 Hz, 1H, H5"), 6.19 (d, *J* = 15.5 Hz, 1H, H2), 5.39 (s, 2H, OCH₂O), 3.9–3.8 (m, 2H, OCH₂), 3.6–3.5 (m, 2H, OCH₂), 3.40 (s, 3H, OCH₃), 2.15 (s, 6H, 3 × AdCH₂), 2.10 (s, 3H, 3 × AdCH), 1.79 (s, 6H,

3 × AdCH₂) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 171.3 (s), 170.3 (s), 158.9 (s), 147.7 (d), 139.3 (s), 136.4 (d), 133.4 (s), 126.3 (s), 126.0 (d), 125.8 (d), 118.0 (d), 114.9 (d), 93.1 (t), 71.5 (t), 68.1 (t), 59.1 (q), 40.5 (t, 3×), 37.2 (s), 37.0 (t, 3×), 28.9 (d, 3×) ppm. IR: v 2901 (s, C–H), 2848 (m, C–H), 1699 (s, C=O), 1616 (m), 1497 (m), 1271 (m), 1222 (s), 1147 (s), 1101 (s), 987 (s), 855 (m) cm⁻¹. MS (ESI⁺): m/z (%) 470 ([M+H]⁺, 100). HRMS (ESI⁺): calcd for C₂₆H₃₂NO₅S [M+H]⁺ 470.1996; found: 470.1991. Elem. Anal. Calcd for C₂₆H₃₁NO₅S ½H₂O C, 65.25; H, 6.74; N, 2.93; found: C, 65.55; H, 6.29; N, 2.69.

5.7.21. (*E*)-3-[2-(5-Adamantan-1-yl-4-[(2-methoxyethoxy) methoxy]-2-methylphenyl)thiazol-5-yl]acrylic acid (7d)

In accordance with the general procedure for the hydrolysis of esters, ester 24d (0.03 g, 0.06 mmol) gave, after crystallization, 0.02 g (92%) of acid **7d** as a vellow solid. mp 169–170 °C (hexane/CH₂Cl₂). ¹H NMR (400.13 MHz, CDCl₃): δ 7.99 (s. 1H, H4'). 7.90 (d, / = 15.6 Hz, 1H, H3), 7.70 (s, 1H, H6"), 7.07 (s, 1H, H3"), 6.22 (d, J = 15.6 Hz, 1H, H2), 5.38 (s, 2H, OCH₂O), 3.9-3.8 (m, 2H, OCH₂), 3.6-3.5 (m, 2H, OCH₂), 3.42 (s, 3H, OCH₃), 2.57 (s, 3H, ArCH₃), 2.12 (s, 6H, $3 \times AdCH_2$), 2.08 (s, 3H, $3 \times AdCH$), 1.78 (s, 6H, $3 \times \text{AdCH}_2$) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 171.1 (s), 171.0 (s), 157.7 (s), 146.8 (d), 136.7 (s), 136.3 (d), 136.0 (s), 134.0 (s), 129.0 (d), 125.4 (s), 118.5 (d), 117.4 (d), 93.1 (t), 71.5 (t), 68.0 (t), 59.0 (q), 40.6 (t, 3×), 37.0 (t, 3×), 36.8 (s), 29.0 (d, 3×), 21.5 (q) ppm. IR: v 2900 (s, C-H), 2850 (m, C-H), 1689 (s, C=O), 1618 (s), 1323 (m), 1268 (m), 1220 (s), 1100 (s), 1017 (s), 993 (s), 963 (m), 847 (m) cm⁻¹. MS (ESI⁺): *m*/*z* (%) 484 ([M+H]⁺, 100), 408 (4). HRMS (ESI⁺): calcd for C₂₇H₃₄NO₅S [M+H]⁺ 484.2152; found: 484.2143. Elem. Anal. calcd for C₂₇H₃₃NO₅S: C, 67.05; H, 6.88; N, 2.90; found: C, 66.91; H, 6.48; N, 2.84.

5.7.22. Methyl 4-[2-(3-adamantan-1-yl-4-hydroxyphenyl) thiazol-5-yl]benzoate (25a)

Following the general procedure for the microwave-assisted Suzuki reaction, bromothiazole 23a (0.02 g, 0.05 mmol) and 4-(methoxycarbonyl)phenylboronic acid (0.01 g. 0.08 mmol) were heated at 120 °C for 10 min. The residue was purified by column chromatography (SiO₂, 70:30 hexane/EtOAc), to give 25a (0.02 g, 78%) as a yellow solid, mp >300 °C (hexane/CHCl₃). ¹H NMR (400.13 MHz, DMSO- d_6): δ 10.06 (s, 1H, OH), 8.36 (s, 1H, H4'), 8.00 (s, 2H, H2 + H6), 7.84 (s, 2H, H3 + H5), 7.73 (s, 1H, H2"), 7.64 (d, / = 7.1 Hz, 1H, H6"), 6.90 (d, / = 7.1, 1H, H5"), 3.87 (s, 3H, OCH₃), 2.12 (s, 6H, $3 \times AdCH_2$), 2.06 (s, 3H, $3 \times AdCH$), 1.74 (s, 6H, $3 \times \text{AdCH}_2$) ppm. ¹³C NMR (100.62 MHz, DMSO- d_6): δ 168.4 (s), 165.7 (s), 158.8 (s), 141.2 (d), 136.3 (s), 135.6 (s), 135.5 (s), 130.1 (d, 2×), 128.6 (s), 126.1 (d, 2×), 125.2 (d), 124.7 (d), 123.9 (s), 117.0 (d), 52.2 (q), 36.5 (t, 3×), 36.3 (t, 3×), 28.3 (d, 3×) ppm. IR: v 3600-3000 (br, O-H), 2900 (m, C-H), 2878 (m, C-H), 1701 (s, C=0), 1601 (s), 1392 (s), 1287 (s), 1271 (s), 1183 (s), 1111 (m), 1005 (s), 824 (s), 767 (s) cm⁻¹. MS (ESI⁺): m/z (%) 446 ([M+H]⁺, 100), 210 (9), 192 (9). HRMS (ESI⁺): calcd for C₂₇H₂₈NO₃S [M+H]⁺ 446.1784; found: 446.1782. Elem. Anal. Calcd for C₂₇H₂₇-NO₃S C, 67.05; H, 6.88; N, 2.90; found: C, 66.91; H, 6.48; N, 2.84.

5.7.23. Methyl 4-[2-(5-adamantan-1-yl-4-hydroxy-2-meth ylphenyl)thiazol-5-yl]benzoate (25b)

Following the general procedure for the microwave-assisted Suzuki reaction, bromothiazole **23b** (0.04 g, 0.10 mmol) and 4-(methoxycarbonyl)phenylboronic acid (0.03 g, 0.15 mmol) were heated at 120 °C for 10 min. The residue was purified by column chromatography (SiO₂, 70:30 hexane/EtOAc), to give **25b** (0.02 g, 53%) as a yellow solid, mp 210–215 °C (hexane/CHCl₃). ¹H NMR (400.13 MHz, DMSO- d_6): δ 9.88 (s, 1H, OH), 8.39 (s, 1H, H4'), 7.99 (d, *J* = 8.4 Hz, 2H, H2 + H6), 7.83 (d, *J* = 8.4 Hz, 2H, H3 + H5), 7.60 (s, 1H, H6"), 6.75 (s, 1H, H3"), 3.87 (s, 3H, OCH₃), 2.51 (s, 3H, ArCH₃), 2.09 (s, 6H, 3 × AdCH₂), 2.04 (s, 3H, 3 × AdCH), 1.73 (s, 6H, 3 × AdCH₂) ppm. ¹³C NMR (100.62 MHz, DMSO-*d*₆): δ 168.3 (s), 165.7 (s), 157.7 (s), 140.6 (d), 136.0 (s), 135.6 (s), 134.7 (s), 133.9 (s), 130.0 (d, 2×), 128.6 (s), 128.1 (d), 126.2 (d, 2×), 122.9 (s), 119.4 (d), 52.2 (q), 39.9 (t, 3×), 36.6 (t, 3×), 35.9 (s), 28.4 (d, 3×), 21.1 (q) ppm. IR: *v* 3300–3000 (br, O–H), 2902 (m, C–H), 2881 (m, C–H), 1708 (s, C=O), 1603 (m), 1435 (m), 1402 (m), 1278 (s), 1248 (m), 1183 (m), 1107 (m), 1021 (s), 1001 (s), 765 (s) cm⁻¹. MS (ESI⁺): *m/z* (%) 460 ([M+H]⁺, 100), 397 (14), 379 (18), 359 (16), 327 (16), 326 (55), 319 (33). HRMS (ESI⁺): calcd for C₂₈H₃₀. NO₃S [M+H]⁺ 460.1941; found: 460.1937.

5.7.24. Methyl 4-[2-(3-adamantan-1-yl-4-[(2-methoxyethoxy) methoxy]phenyl)thiazol-5-yl]benzoate (25c)

Following the general procedure for the microwave-assisted Suzuki reaction, bromothiazole 23c (0.03 g, 0.06 mmol) and 4-(methoxycarbonyl)phenylboronic acid (0.02 g, 0.09 mmol) were heated at 120 °C for 10 min. The residue was purified by column chromatography (SiO₂, 75:25 hexane/EtOAc), to give **25c** (0.02 g, 61%) as a yellow solid, mp 157-158 °C (hexane/CHCl₃). ¹H NMR $(400.13 \text{ MHz}, \text{ CDCl}_3)$: δ 8.07 (s, 1H, H4'), 8.06 (d, I = 8.2 Hz, 2H,H2 + H6), 7.89 (d, *J* = 1.8 Hz, 1H, H2"), 7.74 (dd, *J* = 8.5, 1.8 Hz, 1H, H6"), 7.66 (d, *I* = 8.2 Hz, 2H, H3 + H5), 7.22 (d, *I* = 8.5 Hz, 1H, H5"), 5.38 (s, 2H, OCH₂O), 3.94 (s, 3H, OCH₃), 3.9-3.8 (m, 2H, OCH₂), 3.6–3.5 (m, 2H, OCH₂), 3.40 (s, 3H, OCH₃), 2.16 (s, 6H, $3 \times AdCH_2$), 2.10 (s, 3H, $3 \times AdCH$), 1.79 (s, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 169.0 (s), 166.5 (s), 158.4 (s), 140.2 (d), 139.2 (s), 136.9 (s), 136.0 (s), 130.4 (d, 2×), 129.3 (s), 126.8 (s), 126.1 (d, 2×), 125.4 (d), 125.3 (d), 114.9 (d), 93.2 (t), 71.5 (t), 68.0 (t), 59.1 (q), 52.2 (q), 40.5 (t, 3×), 37.2 (s), 37.0 (t, 3×), 29.0 (d, 3×) ppm. IR: v 2874 (m, C-H), 2846 (w, C-H), 1717 (s, C=O), 1603 (m), 1434 (m), 1385 (m), 1275 (s), 1220 (m), 1184 (m), 1106 (s), 1071 (m), 979 (s), 836 (s) cm⁻¹. MS (ESI⁺): *m*/*z* (%) 534 ([M+H]⁺, 100). HRMS (ESI⁺): calcd for C₃₁H₃₆NO₅S [M+H]⁺ 534.2309; found: 534.2296.

5.7.25. Methyl 4-[2-(5-adamantan-1-yl-4-[(2-methoxyethoxy) methoxy]-1-methylphenyl)thiazol-5-yl]benzoate (25d)

Following the general procedure for the microwave-assisted Suzuki reaction, bromothiazole 23d (0.03 g, 0.06 mmol) and 4-(methoxycarbonyl)phenylboronic acid (0.02 g, 0.09 mmol) were heated at 120 °C for 10 min. The residue was purified by column chromatography (SiO₂, 80:20 hexane/EtOAc and SiO₂-C₁₈, 5:95 CH_2Cl_2/CH_3CN), to give **25d** (0.02 g, 61%) as a yellow solid, mp 116–117 °C (hexane/CHCl₃). ¹H NMR (400.13 MHz, CDCl₃): δ 8.12 (s, 1H, H4'), 8.07 (d, J = 8.6 Hz, 2H, H2 + H6), 7.69 (s, 1H, H6"), 7.67 (d, J = 8.6 Hz, 2H, H3 + H5), 7.08 (s, 1H, H3"), 5.38 (s, 2H, OCH₂-O), 3.94 (s, 3H, OCH₃), 3.9-3.8 (m, 2H, OCH₂), 3.6-3.5 (m, 2H, OCH2), 3.42 (s, 3H, OCH3), 2.60 (s, 3H, ArCH3), 2.13 (s, 6H, $3 \times AdCH_2$), 2.08 (s, 3H, $3 \times AdCH$), 1.78 (s, 6H, $3 \times AdCH_2$) ppm. ^{13}C NMR (100.62 MHz, CDCl₃): δ 168.6 (s), 166.6 (s), 157.3 (s), 139.6 (d), 137.5 (s), 136.5 (s), 136.0 (s), 135.5 (s), 130.4 (d, $2 \times$), 129.3 (s), 128.7 (d), 126.2 (d, 2×), 125.9 (s), 117.3 (d), 93.1 (t), 71.5 (t), 68.0 (t), 59.1 (q), 52.2 (q), 40.7 (t, 3×), 37.0 (t, 3×), 36.8 (s), 29.0 (d, 3×), 21.3 (q) ppm. IR: v 2899 (m, C-H), 2848 (w, C-H), 1713 (s, C=O), 1603 (m), 1444 (m), 1271 (s), 1239 (m), 1161 (s), 1110 (s), 1018 (m), 979 (s), 848 (s), 770 (s) cm⁻¹. MS (ESI⁺): m/z (%) 548 ([M+H]⁺, 100). HRMS (ESI⁺): calcd for C₃₂H₃₈NO₅S [M+H]⁺ 548.2465; found: 548.2452.

5.7.26. 4-[2-(3-Adamantan-1-yl-4-hydroxyphenyl)thiazol-5-yl] benzoic acid (8a)

According to the general procedure for the hydrolysis of esters, **25a** (0.01 g, 0.02 mmol) gave, after crystallization, acid **8a** (0.09 g, 99%) as a yellow solid, mp >310 °C (hexane/CHCl₃). ¹H NMR (400.12 MHz, DMSO- d_6): δ 10.06 (s, 1H, OH), 8.35 (s, 1H, H4'),

7.99 (d, J = 8.2 Hz, 2H, H2 + H6), 7.82 (d, J = 8.2 Hz, 2H, H3 + H5), 7.74 (d, J = 1.4 Hz, 1H, H2″), 7.64 (dd, J = 8.3, 1.4 Hz, 1H, H6″), 6.90 (d, J = 8.3 Hz, 1H, H5″), 2.11 (s, 6H, 3 × AdCH₂), 2.06 (s, 3H, 3 × AdCH), 1.74 (s, 6H, 3 × AdCH₂) ppm. ¹³C NMR (100.62 MHz, DMSO-*d*₆): δ 168.2 (s), 166.8 (s), 158.8 (s), 141.0 (d), 136.3 (s), 135.7 (s), 135.2 (s), 130.2 (d, 2×), 129.8 (s), 126.1 (d, 2×), 125.2 (d), 124.7 (d), 123.9 (s), 117.0 (d), 39.7 (t, 3×), 36.5 (t, 3×), 36.3 (s), 28.3 (d, 3×) ppm. IR: ν 3582 (w, O–H), 3400–2800 (br, O–H), 2898 (m, C–H), 2877 (m, C–H), 2849 (m, C–H), 1681 (s, C=O), 1604 (s), 1425 (m), 1391 (s), 1297 (s), 1250 (m), 1187 (m), 1100 (m), 817 (m), 766 (m) cm⁻¹. MS (ESI⁺): m/z (%) 432 ([M+H]⁺, 100). HRMS (ESI⁺): calcd for C₂₆H₂₆NO₃S [M+H]⁺ 432.1628; found: 432.1624. Elem. Anal. calcd for C₂₆H₂₅NO₃S·1/2H₂O C, 70.88; H, 5.95; N, 3.18; found: C, 71.19; H, 5.44; N, 3.29.

5.7.27. 4-[2-(5-Adamantan-1-yl-4-hydroxy-2-methylphenyl) thiazol-5-yl]benzoic acid (8b)

According to the general procedure for the hydrolysis of esters, 25b (0.02 g, 0.05 mmol) gave, after crystallization, acid 8b (0.02 g, 77%) as a yellow solid, mp >300 °C (hexane/CHCl₃). ¹H NMR (400.13 MHz, DMSO-d₆): δ 9.87 (s, 1H, OH), 8.39 (s, 1H, H4'), 7.99 (d, J = 8.3 Hz, 2H, H2 + H6), 7.83 (d, J = 8.2 Hz, 2H, H3 + H5), 7.59 (s, 1H, H6"), 6.75 (s, 1H, H3"), 2.50 (s, 3H, ArCH₃), 2.09 (s, 6H, $3 \times AdCH_2$), 2.04 (s, 3H, $3 \times AdCH$), 1.73 (s, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, DMSO- d_6): δ 168.1 (s), 166.8 (s), 157.6 (s), 140.4 (d), 136.2 (s), 135.2 (s), 134.7 (s), 133.9 (s), 130.2 (d, 2×), 129.8 (s), 128.1 (d), 126.1 (d, 2×), 122.9 (s), 119.4 (d), 39.9 (t, 3×), 36.6 (t, 3×), 35.9 (s), 28.3 (d, 3×), 21.1 (q) ppm. IR: v 3400-3000 (br, O-H), 2902 (m, C-H), 2874 (m, C-H), 2849 (m, C-H), 1697 (s, C=O), 1605 (s), 1388 (s), 1259 (s), 1234 (s), 1180 (m), 1124 (m), 1020 (m), 976 (s), 850 (s), 773 (s) cm⁻¹. MS (ESI⁺): m/z(%) 446 ([M+H]⁺, 100), 373 (11), 331 (29), 327 (19), 326 (91). HRMS (ESI⁺): calcd for C₂₇H₂₈NO₃S [M+H]⁺ 446.1784; found: 446.1785. Calcd for C₂₇H₂₇NO₃S·1/5H₂O C, 64.91; H, 6.66; N, 2.80; found: C, 65.35; H, 6.29; N, 2.69.

5.7.28. 4-[2-(3-Adamantan-1-yl-4-[(2-methoxyethoxy)methoxy] phenyl)thiazol-5-yl]benzoic acid (8c)

According to the general procedure for the hydrolysis of esters, **25c** (0.01 g, 0.02 mmol) gave, after crystallization, acid **8c** (0.09 g, 99%) as a white solid, mp 275 –276 °C (hexane/CHCl₃). ¹H NMR (400.13 MHz, DMSO- d_6): δ 8.40 (s, 1H, H4'), 8.00 (d, I = 8.5 Hz, 2H, H2 + H6), 7.84 (d, / = 8.5 Hz, 2H, H3 + H5), 7.83 (d, / = 2.3 Hz, 1H, H2"), 7.78 (dd, *J* = 8.6, 2.3 Hz, 1H, H6"), 7.19 (d, *J* = 8.6 Hz, 1H, H5"), 5.39 (s, 2H, OCH₂O), 3.8–3.7 (m, 2H, OCH₂), 3.5–3.4 (m, 2H, OCH_2), 3.24 (s, 3H, OCH_3), 2.12 (s, 6H, $3 \times AdCH_2$), 2.08 (s, 3H, $3 \times AdCH), 1.76$ (s, 6H, $3 \times AdCH_2) ppm. <math display="inline">^{13}C$ NMR (100.62 MHz, DMSO-d₆): 167.5 (s), 166.8 (s), 157.8 (s), 141.2 (d), 138.4 (s), 136.5 (s), 135.0 (s), 130.2 (d, 2×), 130.0 (s), 126.2 (d, 2×), 125.9 (s), 125.3 (d), 124.5 (d), 114.9 (d), 92.9 (t), 71.0 (t), 68.0 (t), 58.1 (q), 39.9 (t, $3 \times$), 36.7 (s), 36.4 (t, $3 \times$), 28.3 (d, $3 \times$) ppm. IR: v 2902 (m, C-H), 2848 (w, C-H), 1690 (w, C=O), 1585 (m), 1546 (s), 1415 (s), 1223 (s), 1101 (s), 983 (s), 849 (m), 785 (s) cm⁻¹. MS (ESI⁺): *m*/*z* (%) 559 ([M+K+H]⁺, 82), 520 ([M+H]⁺, 100), 459 (16), 455 (9), 445 (9), 415 (17), 401 (9), 371 (8), 210 (21). HRMS (ESI⁺): calcd for $C_{30}H_{34}NO_5S$ [M+H]⁺ 520.2152; found: 520.2145. Calcd for C₃₀H₃₃NO₅S·1/2 [CH₃)₂SO] C, 66.64; H, 5.51; N, 2.51; found: C, 66.12; H, 5.51; N, 2.62.

5.7.29. 4-[2-(5-Adamantan-1-yl-4-[(2-methoxyethoxy) methoxy]-2-methylphenyl)thiazol-5-yl]benzoic acid (8d)

According to the general procedure for the hydrolysis of esters, **25d** (0.02 g, 0.03 mmol) gave, after crystallization, acid **8d** (0.01 g, 94%) as a yellow solid, mp 235–236 °C (hexane/CHCl₃). ¹H NMR (400.13 MHz, DMSO-*d*₆): δ 8.43 (s, 1H, H4'), 7.99 (d, *J* = 8.4 Hz, 2H, H2 + H6), 7.84 (d, *J* = 8.4 Hz, 2H, H3 + H5), 7.66 (s, 1H, H6"),

7.04 (s, 1H, H3"), 5.37 (s, 2H, OCH₂O), 3.8–3.7 (m, 2H, OCH₂), 3.5– 3.4 (m, 2H, OCH₂), 3.25 (s, 3H, OCH₃), 2.56 (s, 3H, ArCH₃), 2.08 (s, 6H, $3 \times AdCH_2$), 2.05 (s, 3H, $3 \times AdCH$), 1.74 (s, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, DMSO-*d*₆): δ 167.4 (s), 166.8 (s), 156.7 (s), 140.5 (d), 136.9 (s), 135.8 (s), 135.0 (s, 2×), 130.2 (d, 2×), 130.0 (s), 127.9 (d), 126.2 (d, 2×), 124.9 (s), 117.3 (d), 92.8 (t), 71.0 (t), 68.0 (t), 58.1 (q), 38.1 (t, 3×), 36.5 (t, 3×), 36.3 (s), 28.4 (d, 3×), 21.3 (q) ppm. IR: ν 3500–3200 (br, OH), 2900 (m, C– H), 2879 (m, C–H), 2849 (m, C–H), 1683 (s, C=O), 1604 (s), 1441 (m), 1426 (m), 1299 (m), 1225 (m), 1099 (s), 1016 (s), 984 (s), 845 (m), 767 (s) cm⁻¹. MS (ESI⁺): *m/z* (%) 534 ([M+H]⁺, 100), 319 (6), 210 (4). HRMS (ESI⁺) calcd for C₃₁H₃₆NO₅S [M+H]⁺ 534.2309; found: 534.2303. Elem. Anal. calcd for C₃₁H₃₅NO₅S: C, 69.77; H, 6.61; N, 2.62; found: C, 69.52; H, 6.26; N, 2.59.

5.7.30. 5-Bromo-2-[3-adamantan-1-yl-4-(*tert*-butyldimeth ylsilyloxy)phenyl]-3-methoxypyrazine (27a)

Following the general procedure for the Suzuki reaction, pyrazine **26** (0.50 g, 1.59 mmol) and boronic acid $16a^{11}$ (0.80 g, 2.07 mmol) were heated in benzene at 50 °C for 12 h. The residue was purified by column chromatography (C_{18} -SiO₂, 100% CH₃CN) and crystallized, to give 27a (0.64 g, 76%) as a white powder, mp 143–144 °C (hexane/CHCl₃). ¹H NMR (400.13 MHz, CDCl₃): δ 8.28 (s, 1H, H6), 7.94 (d, *J* = 2.3 Hz, 1H, H2'), 7.78 (dd, *J* = 8.5, 2.3 Hz, 1H, H6'), 6.86 (d, J = 8.5 Hz, 1H, H5'), 4.06 (s, 3H, OCH₃), 2.15 (s, 6H, 3 × AdCH₂), 2.08 (s, 3H, 3 × AdCH), 1.78 (s, 6H, 3 × AdCH₂), 1.05 (s, 9H, SiC(CH₃)₃), 0.37 (s, 6H, Si(CH₃)₂) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 156.6 (s), 156.1 (s), 141.7 (s), 139.4 (s), 137.6 (d), 132.6 (s), 128.3 (d), 127.3 (d), 126.7 (s), 118.7 (d), 54.5 (q), 40.2 (t, $3\times$), 37.0 (t, $3\times$), 36.9 (s), 28.9 (q, $3\times$), 26.3 (d, $3\times$), 18.9 (s), -3.5 (q, 2×) ppm. IR: v 2904 (s, C-H), 2853 (m, C-H), 1600 (m), 1522 (w), 1492 (m), 1419 (m), 1357 (s), 1248 (s), 1144 (s), 900 (s) cm⁻¹. MS (ESI⁺): *m/z* (%) 531 ([M+H]⁺ [⁸¹Br], 35), 530 $([M]^+ [^{81}Br], 97), 529 ([M+H]^+ [^{79}Br], 34), 528 ([M]^+ [^{79}Br], 94),$ 473 ([M-^tBu]⁺, 100), 353 (16), 351 (34), 349 (20), 135 (93), 73 (20). HRMS (ESI⁺): calcd for C₂₇H₃₇⁸¹BrN₂O₂Si [M]⁺ 530.1787 and C₂₇H₃₇⁷⁹BrN₂O₂Si [M]⁺ 528.1808; found: 530.1786 and 528.1791.

5.7.31. 5-Bromo-2-[5-adamantan-1-yl-2-methyl-4-(*tert*-butyldimethylsilyloxy)phenyl]-3-methoxypyrazine (27b)

Following the general procedure for the Suzuki reaction, pyrazine **26** (0.36 g, 1.15 mmol) and boronic acid **16b**³² (0.51 g, 1.26 mmol) were heated in benzene at 50 °C for 12 h. The residue was purified by column chromatography (SiO₂, 97:3 hexane/EtOAc and C_{18} -SiO₂, 95:5 CH₃CN/CH₂Cl₂), to give **27b** (0.18 g, 30%) as a foam. ¹H NMR (400.13 MHz, CDCl₃): δ 8.32 (s, 1H, H6), 7.20 (s, 1H, H6'), 6.70 (s, 1H, H3'), 4.00 (s, 3H, OCH₃), 2.13 (s, 3H, ArCH₃), 2.11 (s, 6H, $3 \times AdCH_2$), 2.05 (s, 3H, $3 \times AdCH$), 1.76 (s, 6H, 3 × AdCH₂), 1.07 (s, 9H, OSiC(CH₃)₃), 0.38 (s, 6H, OSi(CH₃)₂) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 157.3 (s), 155.3 (s), 143.9 (s), 137.4 (d), 137.0 (s), 134.9 (s), 134.0 (s), 128.9 (d), 126.5 (s), 120.9 (d), 54.6 (q), 40.4 (t, $3 \times$), 37.0 (t, $3 \times$), 36.6 (s), 29.0 (d, $3 \times$), 26.4 (q, 3×), 19.3 (q), 18.9 (s), -3.4 (q, 2×) ppm. IR: v 2900 (m, C–H), 2850 (m, C-H), 1605 (w), 1525 (w), 1497 (w), 1456 (m), 1420 (m), 1357 (s), 1251 (s), 1155 (s), 900 (s), 837 (s), 782 (s) cm^{-1} . MS (ESI⁺): *m*/*z* (%) 545 ([M+H]⁺ [⁸¹Br], 100), 543 ([M+H]⁺ [⁷⁹Br], 97), 279 (7). HRMS (ESI⁺): calcd for C₂₈H₄₀⁸¹BrN₂O₂Si [M+H]⁺ 545.2016 and C₂₈H₄₀⁷⁹BrN₂O₂Si [M+H]⁺ 543.2037; found: 545.2010 and 543.2030.

5.7.32. Methyl (*E*)-3-[5-(3-adamantan-1-yl-4-hydroxyphenyl)-6-methoxypyrazin-2-yl]acrylate (28a)

Following the general procedure for the Heck reaction, bromide **27a** (0.50 g, 0.95 mmol) gave, after purification by column chromatography (SiO₂, 70:30 hexane/EtOAc) and crystallization, 0.27 g (67%) of ester **28a** as a yellow solid, mp 245–246 °C (hexane/

MeOH/THF) and 75 mg (19%) of deprotected starting pyrazine 29a as a yellowish solid, mp 203–204 °C (hexane/MeOH/THF). Data for methyl (*E*)-3-[5-(3-adamantan-1-yl-4-hydroxyphenyl)-6methoxypyrazin-2-yl]acrylate (28a). ¹H NMR (400.13 MHz. DMSO- d_6): δ 9.88 (br, 1H), 8.48 (s, 1H, H3'), 7.98 (d, J = 2.1 Hz, 1H, H2"), 7.86 (dd, J = 8.5, 2.1 Hz, 1H, H6"), 7.68 (d, J = 15.5 Hz, 1H, H3), 6.89 (d, J = 15.5 Hz, 1H, H2), 6.87 (d, J = 8.5 Hz, 1H, H5"), 4.02 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 2.10 (s, 6H, 3 × AdCH₂), 2.04 (s, 3H, 3 \times AdCH), 1.73 (s, 6H, 3 \times AdCH₂) ppm. ^{13}C NMR $(100.62 \text{ MHz}, \text{ DMSO-}d_6)$: δ 166.1 (s), 158.1 (s), 156.2 (s), 144.0 (s), 140.8 (s), 139.9 (d), 137.3 (d), 135.2 (s), 128.0 (d), 127.7 (d), 125.4 (s), 121.0 (d), 115.9 (d), 53.4 (q), 51.6 (q), 39.8 (t, 3×), 36.5 (t, 3×), 36.3 (s), 28.3 (d, 3×) ppm. IR: v 3300-3100 (br, O-H), 2900 (m, C-H), 2847 (w, C-H), 1712 (s, C=O), 1645 (w), 1532 (w), 1602 (w), 1449 (m), 1370 (s), 1162 (s), 1122 (m), 972 (m) cm⁻¹. MS (FAB⁺): *m*/*z* (%) 421 ([M+H]⁺, 100), 420 ([M]⁺, 70), 419 (15), 307 (25), 289 (14), 155 (26), 154 (83). HRMS (FAB⁺): calcd for C₂₅H₂₈N₂O₄ [M]⁺, 420.2049; found: 420.2050. Data for 5-bromo-2-[3-adamantan-1-yl-4-hydroxyphenyl]-3-methoxypyrazine **29a.** ¹H NMR (400.13 MHz, CDCl₃): δ 8.28 (s, 1H, H6), 7.93 (d, *J* = 2.0 Hz, 1H, H2'), 7.76 (dd, *J* = 8.3, 2.1 Hz, 1H, H6'), 6.68 (d, I = 8.3 Hz, 1H, H5', 5.36 (br. s, OH), 4.06 (s, 3H, OCH₃), 2.16 (s, 6H, $3 \times AdCH_2$), 2.09 (s, 3H, $3 \times AdCH$), 1.78 (s, 6H, $3 \times AdCH_2$) ppm. 13 C NMR (100.62 MHz, CDCl₃): δ 156.8 (s), 156.0 (s), 141.7 (s), 137.5 (d), 136.4 (s), 132.8 (s), 128.4 (d), 127.8 (d), 127.0 (s), 116.6 (d), 54.7 (q), 40.4 (t, 3×), 37.0 (t, 3×), 36.9 (s), 29.0 (d, 3×) ppm. IR: v 3400-3100 (br, O-H), 2902 (w, C-H), 2882 (w, C-H), 2847 (w), 1599 (m), 1461 (m), 1409 (s), 1357 (s), 1284 (m), 1225 (s), 1177 (s), 1146 (s), 912 (s), 875 (m), 823 (m), 753 (s), 732 (s) cm⁻¹. MS (ESI⁺): m/z (%) 417 ([M+H]⁺[⁸¹Br], 100), 415 ([M+H]⁺[⁷⁹Br], 95), 359 (10), 279 (4), 201 (24). HRMS (ESI⁺): calcd for C₂₁H₂₄⁸¹BrN₂O₂ [M+H]⁺ 417.0998 and C₂₁H₂₄⁷⁹BrN₂O₂ [M+H]⁺ 415.1016; found: 417.1000 and 415.1030. Elem. Anal. calcd for C21H24 BrN2O2: C, 60.73; H, 5.58; N, 6.71; found: C, 60.84; H, 5.60; N, 6.71.

5.7.33. Methyl (*E*)-3-[5-(5-adamantan-1-yl-4-hydroxy-2-methylphenyl)-6-methoxypyrazin-2-yl]acrylate (28b)

Following the general procedure for the Heck reaction, bromide **27b** (0.09 g, 0.17 mmol) gave, after purification by column chromatography (SiO₂, 70:30 hexane/EtOAc), 0.04 g (57%) of ester **28b** as a yellow oil. ¹H NMR (400.13 MHz, CDCl₃): δ 8.25 (s, 1H, H3'), 7.68 (d, J = 15.4 Hz, 1H, H3), 7.22 (s, 1H, H6''), 7.04 (d, J = 15.4 Hz, 1H, H2), 6.49 (s, 1H, H3''), 4.00 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 2.11 (s, 9H, ArCH₃ + 3 × AdCH₂), 2.05 (s, 3H, 3 × AdCH), 1.75 (s, 6H, 3 × AdCH₂) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 167.1 (s), 157.6 (s), 155.5 (s), 147.5 (s), 142.9 (s), 139.8 (d), 136.5 (d), 135.6 (s), 133.9 (s), 129.0 (d), 127.1 (s), 122.6 (d), 118.6 (d), 53.7 (q), 51.9 (q), 40.5 (t, 3×), 37.0 (t, 3×), 36.4 (s), 29.0 (d, 3×), 19.1 (q) ppm. IR: v 3600–3100 (br, O–H), 2908 (s, C–H), 2852 (m, C–H), 1720 (s, C=O), 1448 (s), 1365 (s), 1328 (s), 1227 (m), 1185 (m), 1142 (m), 756 (m) cm⁻¹. MS (ESI⁺): m/z (%) 435 ([M+H]⁺, 100). HRMS (ESI⁺): calcd for C₂₆H₃₁N₂O₄ [M+H]⁺ 435.2278; found: 435.2268.

5.7.34. Methyl (*E*)-3-[5-(3-adamantan-1-yl-4-[(2-methoxy ethoxy)methoxy]phenyl)-6-methoxypyrazin-2-yl]acrylate (28c)

According to the general procedure for the protection of the phenols with MEMCl, phenol **28a** (0.29 g, 0.70 mmol) gave, after purification by column chromatography (SiO₂, 70:30 hexane/EtOAc), compound **28c** (0.32 g, 92%) as a white solid, mp 145–146 °C (hexane/MeOH/THF). ¹H NMR (400.13 MHz, DMSO-*d*₆): δ 8.54 (s, 1H, H3'), 8.02 (s, 1H, H2"), 7.96 (d, *J* = 8.6 Hz, 1H, ArH), 7.72 (d, *J* = 15.6 Hz, 1H, H3), 7.14 (d, *J* = 8.6 Hz, 1H, ArH), 6.94 (d, *J* = 15.6 Hz, 1H, H2), 5.38 (s, 2H, OCH₂O), 4.04 (s, 3H, OCH₃), 3.79 (t, *J* = 3.9 Hz, 2H, O(CH₂)₂O), 3.76 (s, 3H, OCH₃), 3.51 (t, *J* = 3.9 Hz, 2H, O(CH₂)₂O), 3.76 (s, 6H, 3 × AdCH₂), 2.06

(s, 3H, $3 \times AdCH$), 1.75 (s, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, DMSO-*d*₆): δ 166.1 (s), 157.1 (s), 156.4 (s), 143.6 (s), 141.5 (s), 139.9 (d), 137.4 (d), 137.3 (s), 128.2 (d), 127.6 (s), 127.5 (d), 121.6 (d), 113.7 (d), 92.8 (t), 70.9 (t), 67.9 (t), 58.0 (q), 53.6 (q), 51.7 (q), 40.1 (t, $3 \times$), 36.6 (t, $3 \times$), 36.4 (s), 28.3 (d, $3 \times$) ppm. IR: ν 2899 (w, C–H), 2850 (w, C–H), 1721 (w, C=O), 1641 (m), 1600 (w), 1522 (w), 1443 (w), 1361 (m), 1224 (m), 1158 (m), 1112 (s), 979 (s) cm⁻¹. MS (FAB⁺): *m/z* (%) 509 ([M+H]⁺, 100), 508 ([M]⁺, 46), 433 (12), 307 (11), 155 (15), 154 (46). HRMS (FAB⁺): calcd for C₂₉H₃₇N₂O₆ [M+H]⁺, 509.2652; found: 509.2660.

5.7.35. Methyl (*E*)-3-[5-(5-adamantan-1-yl-4-[(2-methoxy ethoxy)methoxy]-2-methylphenyl)-6-methoxypyrazin-2-yl] acrylate (28d)

According to the general procedure for the protection of the phenols with MEMCl, phenol 28b (0.02 g, 0.05 mmol) gave, after purification by column chromatography (SiO₂, 70:30 hexane/ EtOAc), compound **28d** (0.02 g, 87%) as a yellow oil. ¹H NMR (400.13 MHz, CDCl₃): δ 8.26 (s, 1H, H3'), 7.67 (d, I = 15.3 Hz, 1H, H3), 7.23 (s, 1H, H6"), 7.06 (s, 1H, H3"), 7.04 (d, J = 15.3 Hz, 1H, H2), 5.35 (s, 2H, OCH₂O), 4.00 (s, 3H, OCH₃), 3.9-3.8 (m, 2H, OCH₂), 3.85 (s, 3H, OCH₃), 3.6-3.5 (m, 2H, OCH₂), 3.41 (s, 3H, OCH₃), 2.18 (s, 3H, ArCH₃), 2.10 (s, 6H, 3 × AdCH₂), 2.04 (s, 3H, $3 \times AdCH$), 1.75 (s, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 167.0 (s), 157.5 (s), 157.1 (s), 147.5 (s), 142.9 (s), 139.8 (d), 136.7 (d), 135.9 (s), 135.8 (s), 128.5 (d), 128.3 (s), 122.6 (d), 116.3 (d), 93.2 (t), 71.6 (t), 67.8 (t), 59.0 (q), 53.7 (q), 51.9 (q), 40.7 (t, 3×), 37.1 (t, 3×), 36.8 (s), 29.0 (d, 3×), 19.5 (q) ppm. IR: v 2921 (s, C-H), 2853 (m, C-H), 1722 (s, C=O), 1449 (s), 1362 (s), 1323 (m), 1229 (m), 1162 (m), 1015 (m), 981 (m) cm⁻¹. MS (ESI⁺): *m*/*z* (%) 523 ([M+H]⁺, 100), 435 (3). HRMS (ESI⁺): calcd for C₃₀H₃₉N₂O₆ [M+H]⁺ 523.2803; found: 523.2787.

5.7.36. (*E*)-3-[5-(3-Adamantan-1-yl-4-hydroxyphenyl)-6-meth oxypyrazin-2-yl]acrylic acid (9a)

In accordance with the general procedure for the hydrolysis of esters, ester 28a (0.18 g, 0.42 mmol) gave, after crystallization, acrylic acid **9a** (0.12 g, 73%) as a yellow solid, mp 256–257 °C (hexane/THF). ¹H NMR (400.13 MHz, CD₃OD): δ 8.23 (s, 1H, H3'), 7.97 (d, J = 1.8 Hz, 1H, H2"), 7.80 (dd, J = 8.4, 1.8 Hz, 1H, H6"), 7.64 (d, *I* = 15.4 Hz, 1H, H3), 6.93 (d, *I* = 15.4 Hz, 1H, H2), 6.78 (d, I = 8.4 Hz, 1H, H5''), 4.08 (s, 3H, OCH₃), 2.20 (s, 6H, 3 × AdCH₂), 2.06 (s, 3H, 3 \times AdCH), 1.82 (s, 6H, 3 \times AdCH₂) ppm. ^{13}C NMR (100.62 MHz, CD₃OD): δ 169.9 (s), 159.7 (s), 158.4 (s), 146.5 (s), 143.3 (s), 141.1 (d), 137.8 (d), 137.2 (s), 129.5 (d), 129.4 (d), 127.3 (s), 123.7 (d), 116.9 (d), 54.1 (q), 41.5 (t, 3×), 38.3 (t, 3×), 38.1 (s), 30.6 (d, 3×) ppm. IR: v 3500-3100 (br, O-H), 2900 (m, C-H), 2848 (w, C-H), 1683 (s, C=O), 1632 (w), 1601 (w), 1524 (w), 1444 (m), 1359 (s), 1298 (m), 1227 (s), 1177 (m), 1125 (m), 973 (w) cm⁻¹. MS (FAB⁺): m/z (%) 407 ([M+H]⁺, 100), 406 ([M]⁺, 69). HRMS (FAB⁺): calcd for C₂₄H₂₇N₂O₄ [M+H]⁺, 407.1971; found: 407.1966. Purity: 96% (RP HPLC, gradient from 50:50 to 0:100 H₂O/ CH_3CN , 1 mL/min).

5.7.37. (*E*)-3-[5-(5-Adamantan-1-yl-4-hydroxy-2-methylphenyl) -6-methoxypyrazin-2-yl]acrylic acid (9b)

In accordance with the general procedure for the hydrolysis of esters, ester **28b** (0.02 g, 0.05 mmol) gave, after crystallization, acrylic acid **9b** (0.017 g, 84%) as a yellow solid, mp 168–169 °C (hexane/CH₂Cl₂). ¹H NMR (400.13 MHz, CD₃OD): δ 8.27 (s, 1H, H3'), 7.69 (d, *J* = 15.5 Hz, 1H, H3), 7.07 (s, 1H, H6''), 7.01 (d, *J* = 15.5 Hz, 1H, H2), 6.63 (s, 1H, H3''), 4.01 (s, 3H, OCH₃), 2.15 (s, 6H, 3 × AdCH₂), 2.07 (s, 3H, ArCH₃), 2.03 (s, 3H, 3 × AdCH), 1.79 (s, 6H, 6xAdCH₂) ppm. ¹³C NMR (100.62 MHz, CD₃OD): δ 169.8 (s), 159.4 (s), 158.6 (s), 149.3 (s), 145.1 (s), 141.0 (d), 137.2 (d), 136.7 (s), 135.0 (s), 129.6 (d), 127.3 (s), 124.8 (d), 119.0 (d), 54.3 (q),

41.7 (t, $3 \times$), 38.4 (t, $3 \times$), 37.8 (s), 30.7 (d, $3 \times$), 19.4 (q) ppm. IR: ν 3500–2800 (br, O–H), 2904 (s, C–H), 2851 (m, C–H), 1692 (s, C=O), 1449 (s), 1364 (s), 1235 (m), 1184 (m), 1142 (m) cm⁻¹. MS (ESI⁺): m/z (%) 421 ([M+H]⁺, 100), 394 (4), 359 (6), 201 (26). HRMS (ESI⁺): calcd for C₂₅H₂₉N₂O₄ [M+H]⁺ 421.2122; found: 421.2114. Purity: 98% (RP HPLC, gradient from 50:50 to 0:100 H₂O/CH₃CN, 1 mL/min).

5.7.38. (*E*)-3-(5-(3-Adamantan-1-yl-4-[(2-methoxy ethoxy)methoxy]phenyl)-6-methoxypyrazin-2-yl)acrylic acid (9c)

In accordance with the general procedure for the hydrolysis of esters, ester 28c (0.18 g, 0.36 mmol) gave, after crystallization, acrylic acid 9c (0.11 g, 62%) as a yellow solid, mp 215-216 °C (hexane/THF). ¹H NMR (400.13 MHz, DMSO- d_6): δ 8.51 (s, 1H, H3'), 8.02 (s, 1H, H2"), 7.96 (d, J = 8.6 Hz, 1H, ArH), 7.63 (d, J = 15.5 Hz, 1H, H3), 7.13 (d, *J* = 8.6 Hz, 1H, ArH), 6.87 (d, *J* = 15.5 Hz, 1H, H2), 5.38 (s, 2H, OCH₂O), 4.03 (s, 3H, OCH₃), 3.79 (t, *J* = 4.4 Hz, 2H, O(CH₂)₂O), 3.51 (t, J = 4.4 Hz, 2H, O(CH₂)₂O), 3.24 (s, 3H, O(CH₂)₂- OCH_3), 2.10 (s, 6H, 3 × AdCH₂), 2.06 (s, 3H, 3 × AdCH), 1.75 (s, 6H, $3 \times \text{AdCH}_2$) ppm. ¹³C NMR (100.62 MHz, DMSO- d_6): δ 167.0 (s), 157.1 (s), 156.4 (s), 143.3 (s), 141.8 (s), 139.2 (d), 137.3 (s), 137.2 (d), 128.1 (d), 127.6 (s), 127.5 (d), 123.2 (d), 113.7 (d), 92.7 (t), 70.9 (t), 67.9 (t), 58.0 (q), 53.5 (q), 40.1 (t, $3 \times$), 36.6 (t, $3 \times$), 36.4 (s), 28.3 (d, $3\times$) ppm. IR: v 3100–2800 (br, O–H), 1682 (s, C=0), 1630 (w), 1598 (w), 1523 (w), 1443 (w), 1361 (m), 1300 (m), 1223 (m), 1115 (s), 979 (s) cm⁻¹. MS (FAB⁺): m/z (%) 495 ([M+H]⁺, 100), 494 ([M]⁺, 43), 419 ([M - OCH₂CH₂OCH₃]⁺, 14), 176 (12). HRMS (FAB⁺): calcd for C₂₈H₃₅N₂O₆ [M+H]⁺, 495.2495; found: 495.2502. Purity: 98% (RP HPLC, gradient from 50:50 to 0:100 H₂O/CH₃CN, 1 mL/min).

5.7.39. (*E*)-3-[5-(5-Adamantan-1-yl-4-[(2-methoxyethoxy) methoxy]-2-methylphenyl)-6-methoxypyrazin-2-yl]acrylic acid (9d)

In accordance with the general procedure for the hydrolysis of esters, ester 28d (0.02 g, 0.04 mmol) gave, after crystallization, acrylic acid 9d (0.015 g, 65%) as a yellow solid, mp 107-108 °C (hexane/CH₂Cl₂). ¹H NMR (400.13 MHz, CD₃OD): δ 8.28 (s, 1H, H3'). 7.62 (d, J = 16.0 Hz, 1H, H3), 7.15 (s, 1H, H6"), 7.05 (s, 1H, H3"), 7.05 (d, J = 16.0 Hz, 1H, H2), 5.36 (s, 2H, OCH₂O), 4.02 (s, 3H, OCH₃), 3.9-3.8 (m, 2H, OCH₂), 3.6-3.5 (m, 2H, OCH₂), 3.37 (s, 3H, OCH₃), 2.14 (s, 6H, 3 × AdCH₂), 2.13 (s, 3H, ArCH₃), 2.05 (s, 3H, $3 \times AdCH$), 1.81 (s, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, CD₃OD): δ 170.9 (s), 159.3 (s), 158.4 (s), 148.3 (s), 145.9 (s), 139.6 (d, $2\times$), 137.1 (d+2s, $3\times$), 129.7 (s), 129.5 (d), 117.4 (d), 94.6 (t), 73.0 (t), 69.3 (t), 59.3 (q), 54.3 (q), 42.1 (t, 3×), 38.3 (t, 3×), 38.1 (s), 30.7 (d, 3×), 19.7 (q) ppm. IR: v 3500-2800 (br, O-H), 2904 (s, C-H), 2851 (m, C-H), 1699 (m, C=O), 1642 (w), 1449 (m), 1361 (s), 1234 (s), 1182 (s), 1139 (m), 1017 (s), 980 (m) cm⁻¹. MS (ESI⁺): m/z (%) 509 ([M+H]⁺, 100), 421 (8), 201 (10). HRMS (ESI⁺): calcd for $C_{29}H_{37}N_2O_6$ [M+H]⁺ 509.2646; found: 509.2659.

5.7.40. 5-Bromo-2-[3-adamantan-1-yl-4-phenol]-3-methoxy pyrazine (29a)

In accordance with the general procedure for the cleavage of the silyl ethers, ether **27a** (0.23 g, 0.44 mmol) gave, after purification by column chromatography (SiO₂, from 90:10 hexane/EtOAc), 0.14 g (83%) of phenol **29a** as a yellow solid, mp 203–204 °C (CHCl₃/hexane). Spectroscopic data matched those showed above.

5.7.41. 5-Bromo-2-[5-adamantan-1-yl-4-hydroxy-2-meth ylphenyl]-3-methoxypyrazine (29b)

In accordance with the general procedure for the cleavage of the silyl ethers, ether **27b** (0.08 g, 0.15 mmol) gave, after purification

by column chromatography (SiO₂, from 90:10 hexane/EtOAc), 0.04 g (63%) of phenol **29b** as a yellow oil. ¹H NMR (400.13 MHz, CDCl₃): δ 8.31 (s, 1H, H4), 7.16 (s, 1H, H6'), 6.47 (s, 1H, H3'), 3.98 (s, 3H, OCH₃), 2.09 (s, 6H, $3 \times AdCH_2$), 2.07 (s, 3H, ArCH₃), 2.04 (s, 3H, $3 \times AdCH$), 1.75 (s, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 157.4 (s), 155.4 (s), 143.8 (s), 137.2 (d), 135.3 (s), 134.2 (s), 134.0 (s), 128.8 (d), 126.3 (s), 118.5 (d), 54.6 (q), 40.4 (t, $3 \times$), 37.0 (t, $3 \times$), 36.4 (s), 29.0 (d, $3 \times$), 19.0 (q) ppm. IR: v 3400–3100 (br, 0–H), 2906 (s, C–H), 2852 (s, C–H), 1609 (m), 1526 (m), 1456 (s), 1401 (s), 1364 (s), 1225 (s), 1155 (s), 1008 (m), 894 (s), 757 (s) cm⁻¹. MS (ESI⁺): m/z (%) 431 ([M+H]⁺[⁸¹Br], 100), 429 ([M+H]⁺[⁷⁹Br], 100). HRMS (ESI⁺): calcd for C₂₂H₂₆⁸¹BrN₂O₂ [M+H]⁺ 431.1153 and C₂₂H₂₆⁷⁹BrN₂O₂ [M+H]⁺ 429.1172; found: 431.1142 and 429.1168.

5.7.42. 5-Bromo-2-[3-adamantan-1-yl-4-[(2-methoxyethoxy) methoxy]phenyl]-3-methoxypyrazine (29c)

According to the general procedure for the protection of the phenols with MEMCl, phenol 29a (0.04 g, 0.10 mmol) gave, after purification by column chromatography (SiO₂, 80:20 hexane/ EtOAc), compound 29c (0.04 g, 89%) as a vellow solid, mp 93-94 °C (hexane/EtOAc). ¹H NMR (400.13 MHz, CDCl₃): δ 8.29 (s, 1H, H6), 7.94 (d, *J* = 2.2 Hz, 1H, H2'), 7.86 (dd, *J* = 8.6, 2.2 Hz, 1H, H6'), 7.22 (d, J = 8.6 Hz, 1H, H5'), 5.38 (s, 2H, OCH₂O), 4.05 (s, 3H, OCH₃), 3.9–3.8 (m, 2H, OCH₂), 3.6–3.5 (m, 2H, OCH₂), 3.40 (s, 3H, OCH₃), 2.15 (s, 6H, $3 \times AdCH_2$), 2.08 (s, 3H, $3 \times AdCH$), 1.78 (s, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 157.6 (s), 156.7 (s), 141.6 (s), 138.4 (s), 137.6 (d), 132.9 (s), 127.9 (d), 127.8 (d), 127.7 (s), 114.0 (d), 93.1 (t), 71.5 (t), 67.9 (t), 59.0 (q), 54.6 (q), 40.5 (t, $3 \times$), 37.2 (s), 37.0 (t, $3 \times$), 29.0 (d, $3 \times$) ppm. IR: v 2906 (m, C-H), 2885 (m, C-H), 1599 (w), 1520 (m), 1456 (m), 1418 (m), 1356 (s), 1219 (s), 1146 (s), 1100 (s), 1004 (s), 909 (s), 830 (m) cm⁻¹. MS (ESI⁺): *m*/*z* (%) 505 ([M+H]⁺[⁸¹Br], 96), 503 ([M+H]⁺[⁷⁹Br], 100), 430 (7), 429 (24), 427 (27), 209 (8), 192 (7). HRMS (ESI⁺): calcd for C₂₅H₃₂⁸¹BrN₂O₄ [M+H]⁺ 505.1525 and C₂₅₋ $H_{32}^{79}BrN_2O_4$ [M+H]⁺ 503.1540; found: 505.1513 and 503.1534. Elem. Anal. calcd for C₂₅H₃₁BrN₂O₄: C, 59.64; H, 6.21; N, 5.56; found: C. 59.10: H. 5.84: N. 5.41.

5.7.43. 5-Bromo-2-[5-adamantan-1-yl-4-[(2-methoxyethoxy) methoxy]-2-methylphenyl]-3-methoxypyrazine (29d)

According to the general procedure for the protection of the phenols with MEMCl, phenol 29b (0.02 g, 0.05 mmol) gave, after purification by column chromatography (SiO₂, 95:5 hexane/ EtOAc), compound **29d** (0.023 g, 99%) as a colourless oil. ¹H NMR (400.13 MHz, CDCl₃): δ 8.32 (s, 1H, H6), 7.18 (s, 1H, H6'), 7.05 (s, 1H, H3'), 5.35 (s, 2H, OCH₂O), 3.99 (s, 3H, OCH₃), 3.9–3.8 (m, 2H, OCH₂), 3.6-3.5 (m, 2H, OCH₂), 3.41 (s, 3H, OCH₃), 2.15 (s, 3H, ArCH₃), 2.09 (s, 6H, $3 \times AdCH_2$), 2.05 (s, 3H, $3 \times AdCH$), 1.75 (s, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 157.3 (s), 157.0 (s), 143.8 (s), 137.5 (d), 136.0 (s), 135.6 (s), 134.3 (s), 128.4 (d), 127.5 (s), 116.3 (d), 93.2 (t), 71.6 (t), 67.8 (t), 59.0 (q), 54.6 (q), 40.7 (t, $3 \times$), 37.1 (t, $3 \times$), 36.8 (s), 29.0 (d, $3 \times$), 19.4 (q) ppm. IR: v 2904 (s, C-H), 2852 (m, C-H), 1526 (m), 1455 (m), 1421 (m), 1361 (s), 1232 (m), 1155 (s), 1100 (m), 1012 (s), 890 (m) cm⁻¹. MS (ESI⁺): *m*/*z* (%) 519 ([M+H]⁺[⁸¹Br], 100), 517 ([M+H]⁺[⁷⁹Br], 97), 476 (7), 431 (4), 429 (4). HRMS (ESI⁺): calcd for C₂₆H₃₄⁸¹BrN₂O₄ [M+H]⁺ 519.1676 and C₂₆H₃₄⁷⁹BrN₂O₄ [M+H]⁺ 517.1696; found: 519.1656 and 517.1686.

5.7.44. Methyl 4-[5-(3-adamantan-1-yl-4-hydroxyphenyl)-6methoxypyrazin-2-yl]benzoate (30a)

Following the general procedure for the Suzuki reaction, bromopyrazine **29a** (0.04 g, 0.10 mmol) and 4-(methoxycarbonyl)phenylboronic acid (0.03 g, 0.14 mmol) were heated in 1,4-dioxane at 120 °C for 12 h. The residue was purified by column

chromatography (SiO₂, 80:20 hexane/EtOAc), to give **30a** (0.03 g, 58%) as a yellow powder, mp 269–270 °C (hexane/CHCl₃). ¹H NMR (400.13 MHz, DMSO- d_6): δ 9.80 (s, 1H, OH), 8.92 (s, 1H, H3'), 8.28 (d, *J* = 8.5 Hz, 2H, H2 + H6), 8.07 (d, *J* = 8.5 Hz, 2H, H3 + H5), 8.01 (d, J = 2.0 Hz, 1H, H2"), 7.87 (dd, J = 8.4, 2.1 Hz, 1H, H6"), 6.87 (d, J = 8.4 Hz, 1H, H5"), 4.09 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 2.12 (s, 6H, $3 \times AdCH_2$), 2.05 (s, 3H, $3 \times AdCH$), 1.74 (s, 6H, $3 \times \text{AdCH}_2$) ppm. ¹³C NMR (100.62 MHz, DMSO- d_6): δ 165.9 (s), 157.8 (s), 156.1 (s), 143.4 (s), 141.8 (s), 140.1 (s), 135.3 (s), 133.2 (d), 129.9 (s), 129.7 (d, 2×), 127.8 (d), 127.6 (d), 126.4 (d, 2×), 125.6 (s), 116.0 (d), 53.5 (q), 52.2 (q), 39.9 (t, 3×), 36.6 (t, 3×), 36.3 (s), 28.4 (d, 3×) ppm. IR: v 3300-3000 (br, O-H), 2899 (m, C-H), 2846 (m, C-H), 1723 (s, C=O), 1599 (m), 1449 (m), 1434 (m), 1409 (s), 1368 (s), 1270 (s), 1220 (s), 1190 (s), 1110 (s), 771 (m) cm⁻¹. MS (ESI⁺): *m*/*z* (%) 471 ([M+H]⁺, 79), 379 (14), 369 (19), 355 (17), 353 (100), 317 (21), 279 (21), 275 (52), 259 (12), 210 (33). HRMS (ESI⁺): calcd for C₂₉H₃₁N₂O₄ [M+H]⁺ 471.2278; found: 471.2274.

5.7.45. Methyl 4-[5-(3-adamantan-1-yl-4-[(2methoxyethoxy)methoxy]phenyl)-6-methoxypyrazin-2yl]benzoate (30c)

Following the general procedure for the Suzuki reaction, bromopyrazine **29c** (0.05 g, 0.10 mmol) and 4-(methoxycarbonyl)phenylboronic acid (0.03 g, 0.14 mmol) were heated in 1,4-dioxane at 120 °C for 12 h. The residue was purified by column chromatography (SiO₂, from 85:15 to 75:25 hexane/EtOAc), to give **30c** (0.03 g, 66%) as a yellow powder, mp 125-126 °C (hexane/CHCl₃). ¹H NMR (400.13 MHz, CDCl₃): δ 8.74 (s, 1H, H3'), 8.15 (s, 4H, H2 + H3 + H5 + H6), 8.07 (d, J = 2.2 Hz, 1H, H2"), 7.98 (dd, J = 8.6, 2.2 Hz, 1H, H6"), 7.24 (d, J = 8.6 Hz, 1H, H5"), 5.39 (s, 2H, OCH₂O), 4.14 (s, 3H, OCH₃), 3.95 (s, 3H, OCH₃), 3.9-3.8 (m, 2H, OCH₂), 3.6-3.5 (m, 2H, OCH₂), 3.41 (s, 3H, OCH₃), 2.18 (s, 6H, 3 × AdCH₂), 2.10 (s, 3H, 3 × AdCH), 1.79 (s, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, CDCl₃): δ 166.7 (s), 157.5 (s), 156.9 (s), 144.9 (s), 142.4 (s), 140.5 (s), 138.3 (s), 133.0 (d), 130.5 (s), 130.0 (d, 2×), 128.5 (s), 128.1 (d), 128.0 (d), 126.3 (d, 2×), 114.0 (d), 93.1 (t), 71.5 (t), 67.9 (t), 59.0 (q), 53.6 (q), 52.2 (q), 40.6 (t, $3 \times$), 37.2 (s), 37.0 (t, $3 \times$), 29.0 (d, $3 \times$) ppm. IR: v 2898 (m, C-H), 2852 (w, C-H), 1719 (s, C=O), 1603 (w), 1444 (m), 1360 (m), 1269 (s), 1114 (s), 1028 (m), 984 (s), 820 (m) cm⁻¹. MS (ESI⁺): m/z (%) 559 ([M+H]⁺, 100). HRMS (ESI⁺): calcd for C₃₃H₃₉N₂O₆ [M+H]⁺ 559.2803; found: 559.2791. Elem. Anal. Calcd for C₃₃H₃₈N₂O₆ C, 70.95; H, 6.86; N, 5.01; found: C, 71.08; H, 6.38; N, 4.99.

5.7.46. 4-(5-(3-Adamantan-4-hydroxyphenyl)pyrazin-2-yl)benzoic Acid (10a)

In accordance with the general procedure for the hydrolysis of esters, ester 30a (0.01 g, 0.02 mmol) gave, after crystallization, acid **10a** (0.09 g, 99%) as a white solid, mp 301–302 °C (hexane/ CHCl₃). ¹H NMR (400.13 MHz, DMSO- d_6): δ 9.82 (s, 1H, OH), 8.94 (s, 1H, H3'), 8.29 (d, J = 7.0 Hz, 2H, H2+H6), 8.07 (d, *J* = 7.0 Hz, 2H, H3 + H5), 8.01 (s, 1H, H2"), 7.88 (d, *J* = 7.8 Hz, 1H, H6"), 6.88 (d, J = 7.8 Hz, 1H, H5"), 4.11 (s, 3H, OCH₃), 2.13 (s, 6H, $3 \times AdCH_2$), 2.06 (s, 3H, $3 \times AdCH$), 1.75 (s, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, DMSO- d_6): δ 167.0 (s), 157.7 (s), 156.2 (s), 143.7 (s, 2×), 141.7 (s), 139.7 (s), 135.3 (s), 133.1 (d), 129.9 $(d, 2\times)$, 127.8 (d), 127.5 (d), 126.3 (d, $2\times$), 125.6 (s), 116.0 (d), 53.6 (q), 39.9 (t, $3 \times$), 36.6 (t, $3 \times$), 36.4 (s), 28.4 (d, $3 \times$) ppm. IR: v 3531 (m, OH), 3300-2700 (br, O-H), 2902 (s, C-H), 2848 (m, C-H), 1677 (s, C=O), 1604 (m), 1529 (m), 1426 (m), 1409 (s), 1359 (s), 1290 (s), 1215 (s), 1118 (s), 862 (s), 841 (s), 776 (s) cm⁻¹. MS (ESI⁺): m/z (%) 457 ([M+H]⁺, 100), 359 (5), 348 (4). HRMS (ESI⁺): calcd for $C_{28}H_{29}N_2O_4$ [M+H]⁺ 457.2122; found: 457.2117.

5.7.47. 4-[5-(3-Adamantan-1-yl-4-[(2-methoxyethoxy) methoxy]phenyl)6-methoxypyrazin-2-yl]benzoic acid (10c)

In accordance with the general procedure for the hydrolysis of esters, ester **30c** (0.03 g, 0.06 mmol) gave, after crystallization, acid **10c** (0.03 g, 93%) as a yellow solid, mp 252–253 °C (hexane/CHCl₃). ¹H NMR (400.13 MHz, DMSO- d_6): δ 8.95 (s, 1H, H3'), 8.28 (d, J = 8.4 Hz, 2H, H4+H6), 8.07 (d, J = 8.4 Hz, 2H, H3 + H5), 8.04 (d, J = 2.1 Hz, 1H, H2"), 7.97 (dd, J = 8.8, 2.0 Hz 1H, H6"), 7.14 (d, J = 8.8 Hz, 1H, H5"), 5.37 (s, 2H, OCH₂O), 4.10 (s, 3H, OCH₃), 3.8-3.7 (m, 2H, OCH₂), 3.5-3.4 (m, 2H, OCH₂), 3.25 (s, 3H, OCH₃), 2.11 (s, 6H, $3 \times AdCH_2$), 2.06 (s, 3H, $3 \times AdCH$), 1.75 (s, 6H, $3 \times AdCH_2$) ppm. ¹³C NMR (100.62 MHz, DMSO-*d*₆): δ 167.0 (s), 156.9 (s), 156.3 (s), 144.3 (s), 141.2 (s), 139.6 (s), 137.4 (s), 133.2 (d), 131.4 (s), 129.9 (d, 2×), 127.9 (d), 127.8 (s), 127.4 (d), 126.4 $(d, 2\times)$, 113.8 (d), 92.8 (t), 71.0 (t), 67.9 (t), 58.1 (q), 53.6 (q), 40.2 (t, 3×), 36.7 (s), 36.5 (t, 3×), 28.4 (d, 3×) ppm. IR: v 3500-3000 (br, O-H), 2900 (m, C-H), 2848 (m, C-H), 1681 (m, C=O), 1603 (w), 1442 (m), 1361 (m), 1301 (m), 1215 (m), 1116 (s), 1026 (m), 972 (s), 821 (m) cm⁻¹. MS (ESI⁺): m/z (%) 545 ([M+H]⁺, 100), 413 (30), 245 (40). HRMS (ESI⁺): calcd for C₃₂H₃₇N₂O₆ [M+H]⁺ 545.2646; found: 545.2641. Elem. Anal. calcd for C₃₂H₃₆N₂O₆: C, 70.57; H, 6.66; N, 5.14; found: C, 70.46; H, 6.68; N. 5.00.

5.8. Biology

5.8.1. Kinase assays

Kinase activity was measured using a LANCE Ultra time-resolved fluorescence resonance energy transfer (TR-FRET) assay and purified recombinant IKKs (Carna Biosciences). Kinases were diluted in kinase buffer (50 mM Hepes pH 7.4, 10 mM MgCl₂, 1 mM EGTA, 2 mM DTT, and 0.01% Tween-20) to a final concentration of 4 nM (IKKα), 1 nM (IKKβ), or 2 nM (IKKε). 50 nM Ulight-Iκϖ $B\alpha$ and Ulight-rpS6 (Perkin Elmer) were used as peptide substrates for IKK α/β and IKK ϵ , respectively. All assays were performed with an ATP concentration close to the apparent K_m for each enzyme (1.25 μ M for IKK α/β and 5 μ M for IKK ϵ). After 1 h (IKK β) or 2 h incubation (IKK α/ϵ) at room temperature, the reaction was stopped by addition of 20 mM EDTA in LANCE detection buffer, containing 2 nM Europium-labelled phospho-specific antibody (Perkin Elmer). Two hours later, the TR-FRET signals at 615 and 665 nm were measured upon excitation at 340 nm with a 50 µs delay in a Victor V multilabel reader. LANCE counts were normalized following Perkin Elmer's instructions. IC₅₀ values for active compounds were determined using a 8 point titration experiment and GraphPrism software.

5.8.2. Cell proliferation assay

A luminescence based CellTiter-GLO assay (Promega) was used to determine the ATP levels as a measure of cell viability. Jurkat cells were grown in RPMI supplemented with 10% heat inactivated FBS. Cells were seeded the day before treatment in medium containing 0.5% FBS in a 384 well CulturPlate (Perkin Elmer) at a density of 10,000 cells per well (400,000 cells/mL). Cells were treated with increasing concentrations of the compounds in triplicate points. Control cells were treated with the same amount of solvent, DMSO, up to 0.1% v/v. After 24 h of treatment, a CellTiter-GLO assay was carried out following the manufacturer's instructions. A parallel CellTiter-GLO assay was performed at time 0 to determine cell growth and distinguish between inhibition of cell growth (cytostatic effect) versus induction of cell killing (cytotoxic effect).

5.8.3. DEVDase assay

Jurkat cells (20,000 per well) were seeded in 0.5% FBS-RPMI in a 384 well black OptiPlate. Following a 4 h incubation with 5 μ M of test compounds, cells were lysed for 15 min (25 mM PIPES pH 7,

25 mM KCl, 5 mM EGTA, 1 mM DTT, 10 μ M cytochalasin B, 0.5% NP-40, and a mixture of protease inhibitors consisting of 1 mM PMSF, 1 μ g/mL leupeptine, and 1 μ g/mL aprotinin) and DEVDase activity was measured following addition of an equal volume of 2× caspase buffer (50 mM HEPES pH 7.4, 100 mM NaCl, 1 mM EDTA, 5 mM DTT, 0.1% CHAPS and 10% sucrose) containing 100 μ M of Ac-DEVD-AFC (Assay Biotechnology) essentially as described.²⁷ The emission at 510 nm was measured upon excitation at 390 nm every two minutes continuously for 1 h in a Victor 2 multilabel reader set at 37 °C and the slope of the linear part of the plot was calculated as a measure of DEVDase activity. The activity in untreated cells was measured as basal activity.

5.8.4. RAR/RXR transactivation assay

Gal4-RARa or Gal4-RXRa were transfected into HEK-293-luciferase reporter cells that express the luciferase gene under the control of 5 copies of an UAS element. HEK-293-luc cells were seeded in 96 well plates (30,000 cells per well) the day before transfection. Cells were transfected following a standard calcium phosphate DNA precipitation protocol using 10 ng Gal4-RARa or Gal4-RXRa vector together with 2 ng of β -galactosidase expression vector (50 ng total amount of DNA per well). Expression vectors have been described elsewhere.²⁷ Sixteen hours after transfection, cells were washed with PBS, replenished with fresh medium supplemented with 5% charcoal-treated FBS, and left to recover for 2 h prior to stimulation with 4 µM of the test compounds. As control, cells were stimulated with $1 \mu M$ atRA (Gal4-RAR α), $1 \mu M$ CD3254 (Gal4-RXR α), or solvent (0.1% v/v DMSO) for basal activity. Cells were harvested 6 h (RARa) or 24 h (RXRa) after ligand stimulation and luciferase and β-galactosidase activities were measured using a Dual-Light chemiluminiscence assay system (Applied Biosystems) following the manufacturer's instructions. Normalized luciferase/β-galactosidase ratio was used to calculate the liganddependent RAR/RXR transactivation activity as fold induction over control non-stimulated cells. In a separate experiment, we tested the ability of compounds to function as RAR/RXR antagonists by stimulating cells with 0.1 uM atRA or 0.1 uM CD3254 in the absence or in the presence of 4 uM of the AdArs. Luciferase activity was normalized by β-galactosidase activity following background subtraction, and all activities were represented as percentage of control cells stimulated in the presence of atRA or CD3254.

5.8.5. RXR LBD-coactivator peptide recruitment assay

We used two different TR-FRET-based homogeneous assays to evaluate the interactions of recombinant GST-RXR^a LBD with fluorescein labeled D22 coactivator peptide (Fl-LPYEGSLLLKLLRAP-VEEV) (Life Technologies) and with biotinylated SRC-1-676-700 peptide (CPSSHSSLTERHKILHRLLQEGSPS-K-biotin) (AnaSpec). In both assays, 5 nM GST-RXR LBD (Life Technologies) was incubated at room temperature with 150 nM coactivator peptide in a 20 µl final volume of binding buffer (25 mM Hepes pH 7.4 100 mM NaCl₂, 0.025% BSA, 5% glycerol, 0.005% Tween-20 and 2.5 mM DTT). Increasing concentrations of ligand or solvent control ($\leq 1\%$ DMSO v/v) were included as indicated. For detection, 2 nM Terbium labeled anti-GST antibody (Life Technologies) was included in the Fl-D22 reaction and the TR-FRET signal was measured at 495 nm and 520 nm after 4 h of incubation at RT. The 520/495 ratio was calculated for each sample as a direct measure of RXR_α-D22 interaction. Alternatively, 2 nM Eu-W1024-labeled anti-GST antibody (Perkin Elmer) together with 37.5 nM (4:1 biotin/streptavidin ratio) streptavidin conjugated SureLight-allophycocyanin (Perkin Elmer) were included in the binding reaction with biotin-SRC-1 peptide. The TR-FRET signal at 615 nm and 665 nm were measured after 4 h of incubation and the 665/615 ratio was used as RXRα-SRC-1 binding. To compare the results from different experiments, the percentage of change (Delta F%)

with respect to negative control samples containing no GST-RXR α was used as defined by CisBio:

Delta
$$F\% = \frac{\text{Ratio of sample} - \text{ratio of negative control}}{\text{Ratio of negative control}} \times 100$$

Acknowledgements

This work was supported by funds from the Spanish MICINN (SAF2010-17935-FEDER), Xunta de Galicia (Grant 08CSA052383PR from DXI+D+i; Consolidación 2006/15 from DXPCTSUG; INBIOMED-FEDER 'Unha maneira de facer Europa'), EU (FP7/REG-POT-2012-2013.1] under grant agreement No. 316265, BIOCAPS), and NIH grant (CA133475, to F.J.P.).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmc.2014.01.006.

References and notes

- 1. Liu, J.; Obando, D.; Liao, V.; Lifa, T.; Codd, R. Eur. J. Med. Chem. 2011, 46, 1949.
- 2. Wanka, L.; Iqbal, K.; Schreiner, P. R. Chem. Rev. 2013, 113, 3516.
- 3. Altucci, L.; Gronemeyer, H. Nature Rev Cancer 2001, 1, 181.
- 4. Piedrafita, F. J.; Ortiz, M. A. Curr. Cancer Ther. Rev. 2006, 2, 185.
- 5. Dawson, M. I.; Fontana, J. A. Mini-Rev. Med. Chem. 2010, 10, 455.
- Germain, P.; Chambon, P.; Eichele, G.; Evans, R. M.; Lazar, M. A.; Leid, M.; de Lera, A. R.; Lotan, R.; Mangelsdorf, D. J.; Gronemeyer, H. *Pharmacol. Rev.* 2006, 58, 760.
- Germain, P.; Chambon, P.; Eichele, G.; Evans, R. M.; Lazar, M. A.; Leid, M.; de Lera, A. R.; Lotan, R.; Mangelsdorf, D. J.; Gronemeyer, H. *Pharmacol. Rev.* 2006, 58, 712.
- 8. Laudet, V.; Gronemeyer, H. *The Nuclear Receptor Facts Book*; Academic Press: San Diego, 2002.
- Dawson, M. I.; Hobbs, P. D.; Peterson, V. J.; Leid, M.; Lange, C. W.; Feng, K. C.; Chen, G.; Gu, J.; Li, H.; Kolluri, S. K.; Zhang, X.; Zhang, Y.; Fontana, J. A. Cancer Res. 2001, 61, 4723.
- Zhang, Y.; Dawson, M. I.; Mohammad, R.; Rishi, A. K.; Farhana, L.; Feng, K. C.; Leid, M.; Peterson, V.; Zhang, X. K.; Edelstein, M.; Eilander, D.; Biggar, S.; Wall, N.; Reichert, U.; Fontana, J. A. Blood 2002, 100, 2917.
- Dawson, M. I.; Harris, D. L.; Liu, G.; Hobbs, P. D.; Lange, C. W.; Jong, L.; Bruey-Sedano, N.; James, S. Y.; Zhang, X.-K.; Peterson, V. J.; Leid, M.; Farhana, L.; Rishi, A. K.; Fontana, J. A. J. Med. Chem. 2004, 47, 3518.
- 12. Farhana, L.; Dawson, M. I.; Leid, M.; Wang, L.; Moore, D. D.; Liu, G.; Xia, Z.; Fontana, J. A. *Cancer Res.* **2007**, *67*, 318.
- Farhana, L.; Dawson, M. I.; Xu, L.; Dannenberg, J.-H.; Fontana, J. A. Mol. Cancer Ther. 2009, 8, 1625.
- Adachi, H.; Adams, A.; Hughes, F. M.; Zhang, J.; Cidlowski, J. A.; Jetten, A. M. Cell Death Differ. 1998, 5, 973.
- Zhang, Y.; Dawson, M. I.; Ning, Y.; Polin, L.; Parchment, R. W.; Corbett, T.; Mohamed, A. N.; Feng, K. C.; Farhana, L.; Rishi, A. K.; Hogge, D.; Leid, M.;

Peterson, V. J.; Zhang, X. K.; Muhammad, R.; Lu, J. S.; Willman, C.; VanBuren, E.; Biggar, S.; Edelstein, M.; Eilander, D.; Fontana, J. A. *Blood* **2003**, *102*, 3743.

- Lopez-Hernandez, F. J.; Ortiz, M. A.; Bayon, Y.; Piedrafita, F. J. Cell Death Differ. 2004, 11, 154.
- Marchetti, P.; Zamzami, N.; Joseph, B.; Schraen-Maschke, S.; Mereau-Richard, C.; Costantini, P.; Metivier, D.; Susin, S. A.; Kroemer, G.; Formstecher, P. Cancer Res. 1999, 59, 6257.
- Lopez-Hernandez, F. J.; Ortiz, M. A.; Bayon, Y.; Piedrafita, F. J. Mol. Cancer Ther. 2003, 2, 255.
- 19. Chun, K. H.; Pfahl, M.; Lotan, R. Oncogene 2005, 24, 3669.
- 20. Luo, J.-L.; Kamata, H.; Karin, M. J. Clin. Invest. 2005, 115, 2625.
- 21. Kim, H. J.; Hawke, N.; Baldwin, A. S. Cell Death Differ. 2006, 13, 738.
- 22. Karin, M.; Yamamoto, Y.; Wang, Q. M. Nat. Rev. Drug Disc. 2004, 3, 17.
- Coish, P. D. G.; Wickens, P. L.; Lowinger, T. B. Expert Opin. Ther. Patents 2006, 16, 1.
 Suzuki, J.; Ogawa, M.; Muto, S.; Itai, A.; Isobe, M.; Hirata, Y.; Nagai, R. Expert Opin. Invest. Drugs 2011, 20, 395.
- 25. Bayón, Y.; Ortiz, M. A.; López-Hernández, F. J.; Gao, F.; Karin, M.; Pfahl, M.; Piedrafita, F. J. *Mol. Cell. Biol.* **2003**, *23*, 1061.
- Lorenzo, P.; Alvarez, R.; Ortiz, M. A.; Alvarez, S.; Piedrafita, F. J.; de Lera, A. R. J. Med. Chem. 2008, 51, 5431.
- Lorenzo, P.; Ortiz, M. A.; Álvarez, R.; Piedrafita, F. J.; de Lera, Á. R. ChemMedChem 2013, 8, 1184.
- 28. Farhana, L.; Dawson, M. I.; Fontana, J. A. Cancer Res. 2005, 65, 4909.
- 29. Jin, F.; Liu, X.; Zhou, Z.; Yue, P.; Lotan, R.; Khuri, F. R.; Chung, L. W. K.; Sun, S.-Y. *Cancer Res.* 2005, 65, 6354.
- Farhana, L.; Dawson, M. I.; Xia, Z.; Aboukameel, A.; Xu, L.; Liu, G.; Das, J. K.; Hatfield, J.; Levi, E.; Mohammad, R.; Fontana, J. A. *Mol. Cancer Ther.* 2010, 9, 2903.
- Farhana, L.; Dawson, M. I.; Murshed, F.; Fontana, J. A. Cell Death Differ. 2011, 18, 164.
- Pérez-Rodríguez, S.; Ortiz, M. A.; Pereira, R.; Rodríguez-Barrios, F.; de Lera, A. R.; Piedrafita, F. J. Eur. J. Med. Chem. 2009, 44, 2434.
- Pfahl, M.; Tachdjian, C.; Cow, C. N.; Spruce, L. W.; Gianchino, A. F.; Kaspar, A. A.; Zapf, J. W. WO2004066952, 2004; *PCT Int. Appl.* 2004.
- 34. Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry; Pergamon Press: Oxford, 2000.
- de Meijere, A.; Diederich, F. Metal-catalyzed Cross-coupling Reactions, 2nd. ed.; Wiley-VCH: Weinheim, 2004.
- Pereira, R.; Gaudon, C.; Iglesias, B.; Germain, P.; Gronemeyer, H.; de Lera, A. R. Bioorg. Med. Chem. Lett. 2006, 16, 49.
- Pereira, R.; Furst, A.; Iglesias, B.; Germain, P.; Gronemeyer, H.; de Lera, A. R. Org. Biomol. Chem. 2006, 4, 4514.
- 38. Garg, N. K.; Sarpong, R.; Stoltz, B. M. J. Am. Chem. Soc. 2002, 124, 13179.
- Garçía, I.; Khanwalkar, H.; Pereira, R.; Erb, C.; Voegel, J. J.; Collette, P.; Mauvais, P.; Bourguet, W.; Gronemeyer, H.; de Lera, A. R. *ChemBioChem* **2009**, *10*, 1252.
- 40. Stanetty, P.; Schnürch, M.; Mihovilovic, M. D. J. Org. Chem. 2006, 71, 3754.
- 41. Jeffery, T. Tetrahedron 1996, 52, 10113.
- Valoum, V.; Pérez, E.; Germain, P.; Rodríguez-Barrios, F.; Manzo, F.; Kammerer, S.; Lemaire, G.; Hirsch, O.; Royer, C. A.; Gronemeyer, H.; de Lera, A. R.; Bourguet, W. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 17323.
- 43. Dawson, M. I.; Xia, Z.; Liu, G.; Fontana, J. A.; Farhana, L.; Patel, B. B.; Arumugarajah, S.; Bhuiyan, M.; Zhang, X. K.; Han, Y. H.; Stallcup, W. B.; Fukushi, J. I.; Mustelin, T.; Tautz, L.; Su, Y.; Harris, D. L.; Waleh, N.; Hobbs, P. D.; Jong, L.; Chao, W. r.; Schiff, L. J.; Sani, B. P. J. Med. Chem. 2007, 50, 2622.
- 44. Xu, G.; Lo, Y.-C.; Li, Q.; Napolitano, G.; Wu, X.; Jiang, X.; Dreano, M.; Karin, M.; Wu, H. *Nature* **2011**, 472, 325.
- Liu, S.; Misquitta, Y. R.; Olland, A.; Johnson, M. A.; Kelleher, K. S.; Kriz, R.; Lin, L. L.; Stahl, M.; Mosyak, L. J. Biol. Chem. 2013, 288, 22758.

1302