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ABSTRACT

The first total synthesis of Ciliatamides A-C was completed, leading to a revision of the reported stereochemistry from (S,S) to the (R,R)
enantiomers. Due to the expedited route, a library of over 50 unnatural ciliatamide analogs was also prepared.

Leishmaniasis is a group of vector-borne diseases, caused
by obligate intramacrophage parasites of the genus Leish-
mania, which is endemic in the tropics.1,2 The disease may
manifest itself as either a cutaneous, a mucosal, a dermal,
or as the deadly visceral variant.3 Second only to malaria,
leishmaniasis afflicts more than 12 million people in 88
countries with an annual death toll exceeding 50,000.1-3 The
current treatments for leishmaniasis are the pentavalent
antimonials 1 and 2, humatin 3, amphotericin B 4, penta-
midine 5, and miltefosine 6 (Figure 1); however, these drugs
possess a number of drawbacks including cardiotoxic effects,
parenteral administration, long treatment regimens, and high
cost.1-3

Earlier this year, Nakao and co-workers reported on the
isolation of three lipopeptides, Ciliatamides A (7), B (8),
and C (9), from the deep sea sponge Aaptos ciliata as the

(S,S)-enantiomers (Scheme 1).4 Importantly, Ciliatamides A
and B demonstrated significant antileishmanial activity and,
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Figure 1. Structures of current antileishmaniasis treatments.
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thus, appeared as ideal targets for total synthesis and further
biological evaluation as 7-9 are chemically far less complex
than current antileishmanials 1-6.1-4 The retro-synthesis of
7-9 (Scheme 1) involved cleavage of the two amide bonds
to provide the (S)-3-aminoazepan-2-one 10 (for 7 and 8) or
the (S)-3-aminopiperid-2-one 11 (for 9), L-N-methyl Phe 12
and either decenoic acid 13 (for 7 and 9) or octanoyl chloride
14 (for 8). Surprisingly, all of the requisite precursors were
commercially available.5

In the event, Boc-L-N-MePhe 15 was coupled to 10 with
PS-DCC and HOBt, followed by treatment with HCl in
dioxane to deliver the free base 19 in 59% yield for the two
steps after ion-exchange chromatography. 19 then underwent
a second amide coupling with 13 to afford 7, or with 14 to
afford 8 in 56 and 58% yields, respectively. Following the
same scheme (Scheme 2),5 but substituting (S)-3-aminopi-

perid-2-one 10 for 11, provided Ciliatamide C (9) in 44%
yield over the three steps. The overall yields were lower than
anticipated due to the physiochemical properties of 7-9, and
poor chromatographic performance of these lipopeptides.

Despite this, the NMR spectra obtained were in complete
accord with those reported by Nakao and co-workers;
however, the original spectra were recorded under very dilute
conditions to minimize conformer populations (see Support-
ing Information).4

On the basis of these results, we then explored a solution
phase parallel synthesis approach for the synthesis of
Ciliatamides A (7) and C (9) employing only polymer-
supported reagents, scavengers and ion-exchange chroma-
tography to avoid either normal or reverse-phase chroma-
tography.6 This strategy afforded improved results, providing
7 and 9 in overall yields in excess of 75% for the three steps
with >95% purity (Scheme 3).5

Due to the expedited route to 7-9, in parallel, we prepared
a 42-member solution phase library of unnatural ciliatamide
analogs 20a-n, 21a-n and 22a-n. The library employed
three scaffolds 18, 19, and the unnatural (R,S) congener of
19, and a collection of 14 different acid chlorides (Figure
2). All final compounds, including additional copies of 7-9
were purified to >98% by mass-directed preparative HPLC
and afforded yields ranging from <5 to 60% for the three
steps; however, we obtained sufficient quantities for biologi-
cal evaluation in every case.5,7

As we were compiling the final characterization data for
7-9, a discrepancy was noted with respect to the reported
optical rotations, [R]D

20 ) +40 (c ) 0.05, MeOH), [R]D
20

) +55 (c ) 0.1, MeOH), [R]D
26 ) +74 (c ) 0.05, MeOH),

for the natural products 7-9, respectively.4 While the 1H
and 13C NMR spectra of our synthetic 7-9 overlaid with
the natural products, the optical rotations were of comparable
magnitude, but opposite sign, that is, [R]D

20 ) -35 (c )
0.05, MeOH), [R]D

20 ) -44 (c ) 0.1, MeOH), [R]D
26 )

-43 (c ) 0.1, MeOH) for synthetic 7-9, respectively.5 On
the basis of these results, we synthesized the four possible
stereoisomers ((S,S), (S,R), (R,S), and (R,R)) of Ciliatamide
A and Ciliatamide B, employing the route depicted in
Scheme 2, and compared NMR spectra and obtained optical

Scheme 1. Structures of Ciliatamides A (7), B (8), and C (9)
and Retrosynthesis

Scheme 2. Synthesis of Ciliatamides A (7), B (8), and C (9)

Scheme 3. Solution Phase Parallel Synthesis of Ciliatamides A
(7) and C (9)
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rotations (Figure 3).5 For Ciliatamide A (7), reported to be
the (S,S)-enantiomer, the NMRs of diasteromeric pairs 23
(S,R) and 24 (R,S), as anticipated, did not match 7; however,
the (R,R)-enantiomer 25 was in complete accord with the
published spectral data and possessed an optical rotation
([R]D

20 )+42 (c ) 0.05, MeOH)) that matched the literature
report as well. Similarly, the (R,R)-enantiomer of Ciliatamide
B (28) and overlaid with the reported NMR spectra of 8 as
well as provided optical rotations in agreement with those
reported by Nakao and co-workers, ([R]D

20 ) +49 (c ) 0.1,
MeOH)) for 28.

Attempts to prepare the (S,R), (R,S) and (R,R) stereoiso-
mers of Ciliatamide C following the route depicted in
Scheme 2 led to significant racemization of the (R)-piperidin-
2-one, which was not observed within the Ciliatamide A and
B series or the (S)-3-aminopiperdin-2-one 11. Therefore, after
several approaches, we developed an alternate route that
avoided racemization and afforded pure stereoisomers (Scheme
4). In this instance, the carbodimide coupling in Scheme 2
was replaced with a HATU/collidine system for the coupling
of pure (S)- or (R)-piperidin-2-one, 10 and 29, respectively,
with either enantiopure Boc-L-N-MePhe 15 or Boc-D-N-
MePhe 30. The milder acidolysis of the Boc deprotection of
31-33 with 5-7% TFA in CH2Cl2 in an ice bath instead of
10 equiv of HCl was used to deliver isomers 34-36. Finally,
a second HATU coupling with decenoic acid provided the
remaining stereoisomers of Ciliatamide C 37 (S,R), 38 (R,S),
and 39 (R,R). As in the case of Ciliatamides A and B, both
NMR spectra and optical rotation ([R]D

20 ) +56 (c ) 0.1,
MeOH)) for 39 confirm a stereochemical reassignment of
the natural product to the (R,R)-enantiomer.

For Ciliatamides A-C, the optical rotations were positive,
and in agreement with the literature report, only when the
unnatural D-MePhe was employed. Nakao and co-workers

utilized Marfey’s analysis8 to establish the L-configuration
of the caprolactams and the MePhe in 7-9; however, the

data presented herein suggests that either the reported optical
rotations were incorrect, or the stereochemical assignments

Figure 2. Three × 14 library of unnatural ciliatamide analogs.

Figure 3. Library of all possible sterosiomers of Ciliatamides A-C
and the corresonding optical rotations.

Scheme 4. Synthesis of the (S,R), (R,S), and (S,S)-stereosiomers
of Ciliatamide C, 37, 38, and 39, respectively
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were incorrect.4 It is also possible that the natural products,
under the forcing acidic conditions of the Marfey’s analysis8

racemized. We have noted that the (R,R)-analogs are prone
to acid catalyzed racemization to the (S,S)-enantiomers. Thus,
based on our data, we propose a stereochemical revision for
Ciliatamides A-C from the (S,S)-7, 8, and 9 to the (R,R)-
25, 28, and 39 (Figure 4).

We are in the process of developing an antileishmanial
assay, which we hope will further validate the stereochemical
reassignment of Ciliatamides A-C based on biological
activity. However, once a validated assay is in place, we
will evaluate all of the unnatural analog ciliatamide libraries
in an attempt to develop structure-activity relationships
(SAR). We are also in the process of identifying discrete

molecular targets, as we have done previously for other
marine natural products,9 for Ciliatamides A-C that might
afford a mechanisitic understanding of their antileishmanial
activities.

In summary, we have completed the first total synthesis
of Ciliatamides A-C, originally reported as as the (S,S)-
enantiomers 7-9, employing both traditional organic syn-
thesis and solution phase parallel synthesis. Based on spectral
and optical rotation data for all the possible stereoisomers
of 7-9, we propose a stereochemical revision for Ciliata-
mides A-C to the (R,R)-enantiomers 25, 28, and 39 respec-
tively. Due to the expedited route, we also prepared a library
of 42 unnatural cilatamide analogs 20a-n, 21a-n, and
22a-n, and when combined with the unnatural stereosi-
omers, the library exceeds 50 unnatural analogs. Assay
development and biological evaluation for both the natural
products and the unnatural ciliatamides are in progress and
will be reported in due course.
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Figure 4. Revised structures of the natural lipopeptides Ciliatamides
A-C after stereochemical revision.
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