LETTERS

Ambiphilic Properties of SF₅CF₂CF₂Br Derived Perfluorinated Radical in Addition Reactions Across Carbon–Carbon Double Bonds

Piotr Dudziński,^{†,‡} Andrej V. Matsnev,[§] Joseph S. Thrasher,[§] and Günter Haufe^{*,†}

[†]Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, D-48149 Münster, Germany

[‡]International Graduate School of Chemistry, University of Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster, Germany [§]Department of Chemistry, Advanced Materials Research Laboratory, Clemson University, 91 Technology Drive, Anderson, South Carolina 29625, United States

Supporting Information

ABSTRACT: The extraordinary properties of the pentafluorosulfanyl (SF₅) group attract attention of organic chemists. While numerous SF₅-substituted compounds have been synthesized, the direct introduction of SF₅(CF₂)_n moieties has remained almost unexplored. Our investigations revealed the ambiphilic character of the SF₅CF₂CF₂ radical. Addition reactions to electron-rich or electron-deficient alkenes profit either from its electrophilic or nucleophilic properties. Thus, the readily available SF₅CF₂CF₂Br proved to be a promising and versatile building block for the introduction of this perfluorinated moiety.

ncorporation of a fluorine atom or fluorinated groups into Lorganic molecules often results in beneficial changes in their physicochemical and biochemical properties.¹ This realization has led to a rapid development of safe and convenient fluorination and trifluoromethylation methods.² Nevertheless, other perfluorinated substituents have also begun to attract increasingly more attention of organic chemists.³ Among them, the pentafluorosulfanyl group (SF_5) deserves special attention.⁴ The most convenient method of introducing this highly lipophilic, bulky and strongly electron-withdrawing substituent into aliphatic compounds involves a radical addition of pentafluorosulfanyl halide (SF₅X, where X = Cl or Br) across multiple bonds.⁵ Aromatic derivatives, however, can be synthesized via oxidative fluorination of the corresponding thiols or disulfides, particularly according to the recent advances by Umemoto.⁶ These chemistries have been well explored leading to syntheses of various SF5-containing compounds such as peptides,⁷ antimalarial agents,⁸ and liquid crystals.⁹ The direct introduction of $SF_5(CF_2)_n$ moieties, however, has remained almost unexplored. Recently, we published the use of SF₅CF₂C-(O)Cl as a versatile building block.¹⁰ Earlier SF₅CF₂CF₂I¹¹ was used for perfluoroalkylation of benzene12 and chain-extension reactions leading to higher perfluorocarbon and partially fluorinated hydrocarbon derivatives.^{11b,13} In this report we present results from an investigation of the reactivity of SF₅CF₂CF₂Br 1 in radical reactions with electronically different alkenes. Compared to its iodine analogue, 1 is more easily accessible by addition of SF₅Br to tetrafluoroethylene (TFE).¹⁴

Because of the σ electron withdrawing effect of the fluorine atom, perfluorinated radicals show electrophilic properties.¹⁵ Therefore, we decided to initially investigate electron-rich

alkenes such as enol ethers as potential reaction partners using triethylborane (Et_3B) as a radical initiator in heptane.

 $SF_5CF_2CF_2Br$ **1** reacted with ethyl vinyl ether and 2-methoxy propene leading to aldehyde **2a** and ketone **2b**, respectively. These volatile products were immediately converted to their phenylhydrazones **2a'** and **2b'** using crude materials, in order to determine the yields and further ensure the structures of the formed products.¹⁶ The reaction with 2,3-dihydrofuran, in turn, resulted in the direct formation of **2c**, which was converted in situ to its isopropyl acetal **2c'** in order to facilitate isolation. Similarly, tetrahydropyran gave the 3-substituted product **2d** in 61% isolated yield (Scheme 1).

The reactions of ethyl prop-1-en-1-yl and but-1-en-1-yl ethers with $SF_5CF_2CF_2Br$ 1 were complete after 4 h giving mixtures of products, which could not be separated. Treatment of the crude products with 2,4-dinitrophenylhydrazine under the aforementioned conditions gave minor amounts of several fluorinated products.

For the reaction of bromide 1 with ethyl vinyl ether (molar ratio 1:1.2), the polarity of the solvent was important. The aldehyde 2a was formed as a major product in heptane (after hydrolysis), along with minor amounts of the corresponding diethyl acetal 3 (ratio 4:1). Executing the same reaction in CH_2Cl_2 resulted in the preferred formation of the acetal 3 (ratio 1.0:1.5). Under these conditions, incomplete consumption of the bromide 1 was observed, while no ethyl vinyl ether remained in the crude reaction mixture (¹H NMR). In the presence of 3 equiv of ethyl vinyl ether, bromide 1 was fully converted, and 3 was

Received: November 18, 2014 Published: February 20, 2015 Scheme 1. Reactions with Enol Ethers and Formation of Hydrazones from the Formed Volatile Ketones

^{*a*}Isolated as 2,4-dinitrophenyl hydrazones 2a' or 2b'. ^{*b*}Isolated as 4:1 mixture with its diethyl acetal 6 (¹⁹F NMR and ¹H NMR). ^{*c*}Isolated yield of the corresponding isopropyl acetal 2c'. ^{*d*}Isolated yield.

isolated exclusively (42% yield). The mechanism¹⁷ depicted in Scheme 2 provides a plausible explanation for the findings.

Scheme 2. Solvent-Dependent Reaction with Ethyl Vinyl Ether

Direct acetal formation can be accomplished by running the reaction in ethanol in the presence of sodium dithionite $(Na_2S_2O_4)$ as a radical initiator (Scheme 3).¹⁸ However, the acetals 3 and 4 were isolated in low yields.

These results encouraged us to investigate reactions of reactive dienes. Under the established conditions norbornadiene underwent transannular π -cyclization,¹⁹ and a 5:6 mixture of products **5a** and **5b** was isolated in 70% yield (Scheme 4). According to the literature, proton signals H–C5 for *endo*-3-halogen and *exo*-5-substituted nortricyclanes are shifted more downfield in comparison to their *exo*-3-halogen and *exo*-5-substituted counterparts.²⁰ Therefore, the signals at 2.35 and 3.16 ppm in

Scheme 4. Transannular π -Cyclization Reaction of Norbornadiene

the ¹H NMR spectrum of the mixture were assigned to H–C5 for **5a** and **5b**, respectively. Moreover, it is also known that the H–C3 signals for halogenated nortricyclanes appear with characteristic shifts at approximately 4.00 ppm.^{20c} Hence, 3.96 and 4.00 ppm signals were assigned to **5a** and **5b**, respectively, which are consistent with the chemical shifts and integrations of the H–C5 signals.

The reaction with (*Z*,*Z*)-cycloocta-1,5-diene, in contrast to the reported addition of SF₅Cl,^{20c} gave no 1,2-addition product but exclusively the transannular π -cyclization product **6** (dr = 14:1), based on NMR spectroscopy (Scheme 5). Incomplete

Scheme 5. Transannular π -Cyclization Reaction of (*Z*,*Z*)-Cycloocta-1,5-diene

conversion of the starting bromide, however, resulted in lower isolated yield (41%), which could not be improved by the addition of larger amounts of Et_3B and/or the diene.

At this point, it has to be mentioned that ordinary alkenes, such as dec-1-ene, cyclohexene, cycloheptene, and norbornene, as well as diallyl ether, and vinyl- or allyl acetate, did not react with the bromide 1 under the aforementioned conditions. 2,5-Dihydrofuran showed low conversion; p-methoxystyrene after low conversion gave a complex mixture of products (NMR), while the *p*-CF₃ analogue did not react. Treatment of allyl acetate with 1 under UV-irradiation and by initiation with $S_2 O_4^{\ 2-}$ or dibenzoyl peroxide gave complex product mixtures. To the best of our knowledge, there is no derivative chemistry known for CF₃CF₂CF₂Br. In contrast, addition reactions of CF₃CF₂CF₂I to a large variety of alkenes, such as different 1-alkenes, cycloalkenes, $\alpha_{,\omega}$ -dienes including norbornadiene as well as allyl- and vinyl acetates, were reported to give addition products in moderate to good yields.²¹ Similar reactions with allyl ethers and specifically substituted allyl alcohols and allyl amines were reported to be low yielding and unselective.²²

Interestingly, the reaction of 1 with 1,3,5-trimethoxybenzene, another electron-rich system, resulted in the formation of $SF_5CF_2CF_2H^{23}$ as the major product. No bromoaryl derivatives were found. In order to ensure that 1,3,5-trimethoxybenzene was not the source of the hydrogen atom, we conducted a control experiment using Et₃B alone. $SF_5CF_2CF_2H$ was formed in 63% NMR yield (Scheme 6).

Scheme 6. Control Experiment Using Et₃B Alone Leading to SF₅CF₂CF₂H Formation

$$\frac{\text{Et}_{3}\text{B} (1.0 \text{ equiv})}{\text{Heptane}} \rightarrow \frac{\text{SF}_{5}\text{CF}_{2}\text{CF}_{2}\text{H}}{(63\% \text{ yield by NMR})}$$

These findings suggest that (under the conditions used) quickly reacting partners are necessary to trap the $SF_5CF_2CF_2$ radical and to prevent the formation of $SF_5CF_2CF_2H$ from Et_3B or the solvent. The formation of $SF_5CF_2CF_2H$ was never detected in reactions of enol ethers or the aforementioned dienes.

Our further investigations focused on the radical conjugate addition of 1 to α_{β} -unsaturated ketones (Scheme 7).²⁴ We

^{*a*}Yields determined by ¹⁹F NMR spectroscopy (*m*-fluorotoluene as an internal standard). ^{*b*}Isolated yields. ^{*c*}Determined by ¹H NMR spectroscopy. ^{*d*}Isolated yield based on ethyl vinyl ketone. ^{*e*}Amount of SF₅CF₂CF₂H formed was not determined.

speculated that the π -donating effect of fluorine would create a partial nucleophilic character of the perfluorinated radical. Again, Et₃B was used as a radical initiator and a Lewis acid.²⁵

A model reaction with 2-cyclohexen-1-one in CH₂Cl₂ resulted in full conversion of the starting material yielding the desired addition product 7b and minor amounts of SF₅CF₂CF₂H (reactions in THF and hexane led to formation of SF₅CF₂CF₂H as the major product). Moreover, the addition product of ethyl radical derived from Et₃B was also observed. The high volatility of 7b resulted in low isolated yield of 15% in comparison to 69% determined by ¹⁹F NMR spectroscopy of the crude reaction mixture. Similar yields were obtained with 2-cyclopenten-1-one and 2-cyclohepten-1-one, which gave products 7a (71% by NMR and 22% isolated yields) and 7c (80% NMR and 34% isolated yields), respectively. The reaction with 1-acetyl-cyclohex-1-ene, in turn, gave the less volatile addition product 7d as an inseparable mixture of cis and trans isomers in a 7:1 ratio (42%) isolated yield due to incomplete consumption of 1). Unfortunately, the closely related 1-cyclohexene-1-carboxaldehyde did not react sufficiently, and the desired product 7e could only be detected with GC/MS analysis. Reactions with 4,4-dimethyl-2cyclohexen-1-one and 3-methyl-2-cyclopeten-1-one to form 7f and 7g could not be realized probably due to steric reasons. Finally, a reaction with ethyl vinyl ketone gave a low yield of volatile product 7h, which could not be isolated. Therefore, the

crude reaction mixture was treated with an EtOH/sat. H₃PO₄ (2:3) solution of 2,4-dinitrophenylhydrazine to give the corresponding hydrazone 7h' in 20% yield. The low yield is a result of a significant formation of SF₅CF₂CF₂H (14%, ¹⁹F NMR spectroscopy) and a competing radical conjugate addition reaction of ethyl vinyl ketone with ethyl radicals derived from Et₃B. The corresponding hydrazone 7h'' (see SI) of the addition product was isolated in 49% yield based on ethyl vinyl ketone. To the best of our knowledge, reactions of CF₃CF₂CF₂I with $\alpha_{,\beta}$ -unsaturated ketones have not been described, while corresponding reactions with acrylates have been investigated.²¹

Finally, we conducted a qualitative competition experiment with an electron-rich and an electron-deficient alkene in order to get information on the relative electrophilic or nucleophilic character of the radical. $SF_5CF_2CF_2Br$ (1.0 equiv) was dissolved in CH₂Cl₂ along with dihydropyran and 2-cyclohexen-1-one (2.0 equiv each), and Et₃B (1.6 equiv) was added dropwise. Only dihydropyran reacted yielding 75% (NMR) of 1d. As expected, the electrophilic properties of the $SF_5CF_2CF_2$ radical predominate, which was also found for the $CF_3CF_2CF_2$ radical.²⁶

In summary, our investigations of the reactivity of $SF_5CF_2CF_2Br$ demonstrate the ambiphilic character of the derived perfluoroalkyl radical. It is noteworthy that bromide **1** reacts readily with alkenes containing either electron-donating or electron-accepting substituents, while ordinary and electron-poor alkenes are inferior reaction partners. These findings can be explained by different stabilizing effects of the substituents on the intermediate radicals (Figure 1).

Figure 1. Ambiphilic properties of $SF_5CF_2CF_2Br$ derived perfluorinated radical. Stabilization of the intermediate radicals through electronaccepting (A) and electron-donating (D) groups.

In conclusion, $SF_5CF_2CF_2Br$ proved to be a promising and versatile starting material for introduction of the new perfluorinated moiety providing potential building blocks for pharmaceuticals and agrochemicals.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures, full spectroscopic data, and copies of the 1 H, 13 C, and 19 F NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs. acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: haufe@uni-muenster.de.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the U.S. National Science Foundation (NSF) (CHE-1124859) and Deutsche Forschungsgemeinschaft (DFG) (Ha 2145/12-1, AOBJ 588585) for financial support. We are also grateful to the NMR group of Organisch-Chemisches Institut for their excellent service. P.D. is thankful to International Graduate School of Chemistry, University of Münster, for support.

DEDICATION

Dedicated to Professor Konrad Seppelt on the occasion of his 70th birthday.

REFERENCES

(1) (a) Kirsch, P. Modern Fluoroorganic Chemistry. Synthesis, Reactivity, Applications, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2014.
(b) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308–319. (c) Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi, C. R. ACS Chem. Biol. 2006, 1, 644–648. (d) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881–1886.

(2) (a) Fluorination: Baudoux, J.; Cahard, D. Org. React. 2008, 69, 1–
326. Trifluoromethylation: (b) Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757–786. (c) Yagupolskii, L. M.; Kondratenko, N. V.; Timofeeva, G. N. J. Org. Chem. USSR 1984, 20, 103–106. (d) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683–730.
(e) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650– 682. (f) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765–825.

(3) (a) Boiko, V. N. Beilstein J. Org. Chem. 2010, 6, 880–921.
(b) Serizawa, H.; Aikawa, K.; Mikami, K. Org. Lett. 2014, 16, 3456–3459.

(4) (a) Altomonte, S.; Zanda, M. J. Fluorine Chem. 2012, 143, 57–93.
(b) Savoie, P. R.; Welch, J. T. Chem. Rev. 2015, 115, 1130–1190.

(5) (a) Dolbier, W. R., Jr.; Ait-Mohand, S.; Schertz, T. D.; Sergeeva, T. A.; Cradlebaugh, J. A.; Mitani, A.; Gard, G. L.; Winter, R. W.; Thrasher, J. S. *J. Fluorine Chem.* **2006**, *127*, 1302–1310. (b) Lim, D. S.; Ngo, S. C.; Lal, S. G.; Minnich, K. E.; Welch, J. T. *Tetrahedron Lett.* **2008**, *49*, 5662–5663.

(6) (a) Bowden, R. D.; Greenhall, M. P.; Moilliet, J. S.; Thomson, J. U.S. Patent 5,741,935, Apr. 21, 1998. (b) Bowden, R. D.; Comina, P. J.; Greenhall, M. P.; Kariuki, B. M.; Loveday, A.; Philp, D. *Tetrahedron* 2000, 56, 3399–3408. (c) Chambers, R. D.; Spink, R. C. H. *Chem. Commun.* 1999, 883–884. (d) Umemoto, T.; Garrick, L. M.; Saito, N. *Beilstein J. Org. Chem.* 2012, *8*, 461–471. (e) Umemoto, T. U.S. Patent 7,592,491, Sep. 22, 2009. (f) Umemoto, T. U.S. Patent 7,820,864, Oct. 26, 2010. (g) Umemoto, T. U.S. Patent 7,851,646, Dec. 14, 2010.

(7) Lim, D. S.; Lin, J.-H.; Welch, J. T. Eur. J. Org. Chem. 2012, 3946-3954.

(8) (a) Wipf, P.; Mo, T.; Geib, S. J.; Caridha, D.; Dow, G. S.; Gerena, L.; Roncal, N.; Milner, E. E. Org. Biomol. Chem. 2009, 7, 4163–4165.
(b) Deng, X.-Y.; Kokkonda, S.; Mazouni, F. E.; White, J.; Burrows, J. N.; Kaminsky, W.; Charman, S. A.; Matthews, D.; Rathod, P. K.; Phillips, M. A. J. Med. Chem. 2014, 57, 5381–5394 and references therein.

(9) Kirsch, P.; Binder, J. T.; Lork, E.; Röschenthaler, G.-V. J. Fluorine Chem. 2006, 127, 610–619.

(10) Matsnev, A. V.; Qing, S.-Y.; Stanton, M. A.; Berger, K. A.; Haufe, G.; Thrasher, J. S. Org. Lett. **2014**, *16*, 2402–2405.

(11) (a) Hutchinson, J. J. Fluorine Chem. 1974, 3, 429-432.
(b) Terjeson, R. J.; Renn, J.; Winter, R.; Gard, G. L. J. Fluorine Chem. 1997, 82, 73-78.

(12) Hodges, A. M.; Winter, R.; Mohtasham, J.; Bailey, P.; Gard, G. L. J. Fluorine Chem. **2001**, 110, 1–4.

(13) Photochemical addition of SF₅CF₂CF₂I to alkenes: (a) Nixon, P. G.; Renn, J.; Terjeson, R. J.; Choi, Y. S.; Winter, R.; Gard, G. L. *J. Fluorine Chem.* **1998**, *91*, 13–18. (b) Nixon, P. G.; Mohtasham, J.; Winter, R.; Gard, G. L.; Twamley, B.; Shreeve, J. M. *J. Fluorine Chem.* **2004**, *128*, 553–560. Indirect introduction of the SF₅CF₂CF₂ moiety by addition of SF₅Br to tetrafluoroethylene derivatives followed by bromine with fluorine substitution: (c) Winter, R. W.; Gard, G. L. *J. Fluorine Chem.* **2002**, *118*, 157–159. (d) Winter, R. W.; Dodean, R.; Smith, J. A.; Anilkumar, R.; Burton, D. J.; Gard, G. L. *J. Fluorine Chem.* **2003**, *122*, 251–253. (e) Winter, R. W.; Dodean, R.; Smith, J. A.; Burton, D. J.; Gard, G. L. *J. Fluorine Chem.* **2005**, *126*, 1202–1214.

(14) Terjeson, R. J.; Gard, G. L. J. Fluorine Chem. 1987, 35, 653-662.

(15) (a) Dolbier, W. R., Jr. Chem. Rev. 1996, 96, 1557–1584. (b) Itoh,
Y.; Houk, K. N.; Mikami, K. J. Org. Chem. 2006, 71, 8918–8925.
(c) Petrik, V.; Cahard, D. Tetrahedron Lett. 2007, 48, 3327–3330.
(d) Tomita, Y.; Ichikawa, Y.; Itoh, Y.; Kawada, K.; Mikami, K. Tetrahedron Lett. 2007, 48, 8922–8925. (e) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 10875–10877.

(16) Plenkiewicz, H.; Dmowski, W.; Lipinski, M. J. Fluorine Chem. 2001, 111, 227–232.

(17) Li, Y.; Liu, J.; Zhang, L.; Zhu, L.; Hu, J. J. Org. Chem. 2007, 72, 5824–5827.

(18) Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao, J.-C.; Gu, Y.-C. Chem. Soc. Rev. 2012, 41, 4536–4559.

(19) Reviews on transannular reactions: (a) Haufe, G.; Mühlstädt, M. Z. Chem. 1979, 19, 170–181. (b) Haufe, G.; Mann, G. Chemistry of Alicyclic Compounds; Studies in Organic Chemistry 38; Elsevier: Amsterdam, The Netherlands, 1989; pp 373–433. (c) Harrowven, D. C.; Pattenden, G. Transannular electrophilic cyclizations. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 3, pp 379–411. (d) Handa, S.; Pattenden, G. Contemp. Org. Synth. 1997, 4, 196–216.

(20) (a) Alvernhe, G.; Anker, D.; Laurent, A.; Haufe, G.; Beguin, C. *Tetrahedron* **1988**, *44*, 3551–3563. (b) Kamigata, N.; Fukushima, T.; Terakawa, Y.; Yoshida, M.; Sawada, H. J. Chem. Soc., Perkin Trans. 1 **1991**, 627–633. (c) Ponomarenko, M. V.; Serguchev, Y. A.; Röschenthaler, G.-V. J. Fluorine Chem. **2010**, 131, 270–273.

(21) (a) Bazhin, D. N.; Gorbunova, T. I.; Zapevalov, A. Y.; Saloutin, V. I. *Russ. Chem. Bull. Int. Ed.* **2007**, *56*, 1534–1536. (b) Iwanaga, H. U.S. Patent 2008/0,001,515 A1, Jan. 3, 2008. (c) Kim, E.; Choi, S.; Kim, H.; Cho, E. J. *Chem.—Eur. J.* **2013**, *19*, 6209–6212.

(22) Review: Brace, N. O. J. Fluorine Chem. 1999, 93, 1-25.

(23) The product was characterized based on ¹⁹F NMR spectroscopy of the crude reaction mixture. The data are consistent with those in the literature: Baba, H.; Kodaira, K.; Nagase, S.; Abe, T. *Bull. Chem. Soc. Jpn.* **1977**, *50*, 2809–2810.

(24) (a) Yajima, T.; Nagano, H.; Saito, C. *Tetrahedron Lett.* **2003**, *44*, 7027–7029. (b) De Schutter, C.; Pfund, E.; Lequeux, T. *Tetrahedron* **2013**, *69*, 5920–5926. Nucleophilic properties of the radical derived from CF₃CF₂CF₂I involved in radical conjugate addition reactions: (c) Qiu, Z.-M.; Burton, D. J. *J. Org. Chem.* **1995**, *60*, 3465–3472. (d) Ueda, M.; Iwasada, E.; Miyabe, H.; Miyata, O.; Naito, T. Synthesis **2010**, 1999–2004. (e) Yajimia, T.; Jahan, I.; Tonoi, T.; Shinmen, M.; Nishikawa, A.; Yamaguchi, K.; Sekine, I.; Nagano, H. *Tetrahedron* **2012**, *68*, 6856–6861. (f) Erdbrink, H.; Peuser, I.; Gerling, U. I. M.; Lentz, D.; Koksch, B.; Czekelius, C. Org. Biomol. Chem. **2012**, *10*, 8583. (g) Yajimia, T.; Yamaguchi, K.; Hirokane, R.; Nagami, E. J. Fluorine Chem. **2013**, *150*, 1–7.

(25) Yoshioka, E.; Kohtani, S.; Sawai, K.; Tanaka, E.; Miyabe, H. J. Org. Chem. 2012, 77, 8588–8604.

(26) (a) Yoshioka, E.; Xin Wang, K.; Kohtani, S.; Miyabe, H. Synlett **2011**, 2085–2089. (b) Yoshioka, E.; Kohtani, S.; Tanaka, E.; Miyabe, H. Synlett **2013**, *24*, 1578–1582.