ORGANOMETALLICS

Dinuclear Triazole-Derived Janus-Type N-Heterocyclic Carbene Complexes of Palladium: Syntheses, Isomerizations, and Catalytic Studies toward Direct C5-Arylation of Imidazoles

Shuai Guo and Han Vinh Huynh*

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 11 7543, Republic of Singapore

Supporting Information

ABSTRACT: The dipalladium triazolidine-diylidene complex *alltrans*-[PdBr₂(CH₃CN)]₂(μ -ditz) (1) (ditz = 1,2,4-trimethyltriazolidine-3,5-diylidene) was synthesized via *in situ* deprotonation of the precursor salt with a basic metal precursor. Ligand replacements of *all-trans*-1 with monodentate or chelating phosphines afforded the dicarbene-bridged complexes *all-cis*-[PdBr₂-(PPh₃)]₂(μ -ditz) (2) and [PdBr(DPPP)]₂(μ -ditz)Br₂ (3), respectively. Bromido substitution of *all-cis*-2 gave tetra-acetato complex *all-cis*-[Pd(CH₃COO)₂(PPh₃)]₂(μ -ditz) (4) with retention of the configuration as the predominant product. In addition, monop-

alladium triazolin-5-ylidene complexes trans-[PdBr₂(CH₃CN)(tazy)] (6, tazy =1,4-dimethyltriazolin-5-ylidene), cis-[PdBr₂(PPh₃)(tazy)] (7), [PdBr(DPPP)(tazy)]Br (8), and cis-[Pd(CH₃COO)₂(PPh₃)(tazy)] (9) were also synthesized as the respective mononuclear equivalents for comparison. A comparative catalytic study revealed the general superiority of dinuclear complexes 1–4 over their respective mononuclear counterparts 6–9 in the direct C5-arylation reaction of 1-methylimidazoles. Overall, mixed dicarbene/diphosphine complex 3 showed the best catalytic performance.

INTRODUCTION

N-Heterocyclic carbenes (NHCs) have evolved to become universal ligands in organometallic chemistry.¹ Various monodentate NHCs and diNHCs incorporating two mutually linked carbene donors have been extensively investigated. The latter have been exploited as bridging or chelating ligands in their transition metal complexes.² In addition, the application of homo- and heterobimetallic diNHC complexes in cooperative catalysis has also received increasing interest.³

Recently, we⁴ also became interested in the Janus-type diNHC ligand⁵ 1,2,4-trimethyltriazolidine-3,5-diylidene (ditz, Figure 1), which was introduced by the group of Bertrand⁶ and employed by Peris and co-workers in catalysis.³ The ditz ligand features two C_{carbene} donors within a single five-membered triazole ring. This unique structural feature renders the two bound metal centers spatially proximate with a fixed distance of only ca. 6 Å,^{3a-j} which cannot be achieved by any other diNHC ligand known so far.

Figure 1. 1,2,4-Trimethyltriazolidine-3,5-diylidene (ditz) and its reported dipalladium complexes of the general formula $[PdX_2L]_2(\mu$ -ditz).

Although, triazolidine-diylidene ligands have been applied as a bridging ligands in a couple of transition metal complexes, very few dipalladium ditz complexes have been disclosed^{3e-g,4a} (I/II, Figure 1), including the heterotetra(carbene) complexes $[PdX_2(^{i}Pr_2-bimy)]_2(\mu-ditz)$ (II, X = Br, CH₃COO, CF₃COO, $^{i}Pr_2-bimy = 1,3$ -diisopropylbenzimidazolin-2-ylidene) previously reported by us.^{4a}

Theoretically, four isomers are possible for complexes of the general formula $[PdX_2L]_2(\mu$ -ditz). These include *all-trans, cis*-*trans, all-cis*-*syn,* and *all-cis*-*anti* configurations, respectively (Chart 1). However, the known dipalladium triazolidine-diylidene complexes (*vide supra*) are dominantly *all-trans*-configured, with both of the Pd(II) centers surrounded by *trans*-oriented ancillary ligands.

An earlier study has revealed that *trans*-oriented Pd(II) mixed carbene/phosphine complexes of the general formula *trans*- $[PdX_2(NHC)(PR_3)]$ (X = halido ligand) slowly isomerize to the electronically preferred *cis* form due to the "transphobia effect".⁷ Furthermore, *cis*-configured NHC complexes have also been reported to undergo faster catalyst initiation than their direct *trans* isomers.⁸ Thus, with the objective to broaden the structural diversity of dipalladium triazolidine-diylidene complexes, particularly to gain access to *all-cis*-oriented isomers, mono- and diphosphines were employed as supporting ligands in this work. The catalytic behavior of the complexes toward

Received: February 7, 2014 Published: April 10, 2014

Chart 1. Possible Isomers of $[PdX_2L]_2(\mu$ -ditz) Complexes

direct C5-arylation of 1-methylimidazoles was also examined. Lastly, to provide insights on potential catalytic cooperativity effects of the two diNHC-bridged Pd(II) centers, we also report the synthesis and a comparative catalytic study of monopalladium triazolin-5-ylidene complexes as mononuclear equivalents.

RESULTS AND DISCUSSION

Although, the dipalladium ditz complex *all-trans*-[PdCl₂-(CH₃CN)]₂(μ -ditz) of type I (Figure 1) has been reported,^{3e} its potential use for further ligand substitution reactions remains unexplored, although the labile acetonitrile ligands in complexes of this type are predestined to undergo displacement. Thus, as a good starting point for us, the analogous *all-trans*-[PdBr₂(CH₃CN)]₂(μ -ditz) complex was synthesized. To be consistent with our previous study and for the purpose of comparison,^{4a,7b,c} bromido coligands were chosen. The palladation reaction of dicationic salt ditz·(H⁺BF₄⁻)₂ (A),^{4a,9} two equivalents of Pd(OAc)₂, and excess KBr in CH₃CN, following the reported procedure for the chlorido analogue *all-trans*-[PdCl₂(CH₃CN)]₂(μ -ditz),^{3e} afforded *all-trans*-[PdBr₂(CH₃CN)₂]₂(μ -ditz) (1) in a decent yield of 72% (Scheme 1).

Scheme 1. Synthesis of Dipalladium Acetonitrile Complex *all-trans-*1

In the ¹H NMR spectrum of *all-trans-***1**, the absence of the downfield resonance characteristic for NCHN protons provided the first evidence of the successful metalation. The three *N*-methyl groups of the triazolidine-diylidene ligand give two singlets with very close chemical shifts at 4.31 and 4.25 ppm with an intensity ratio of 1:2, suggesting a 2-fold symmetry of *all-trans-***1** in solution.

The formation of *all-trans*-1 was further corroborated by its ¹³C NMR spectrum, which displays the carbene signal at 160.6 ppm, falling in the range typically observed for Pd(II) acetonitrile complexes.^{3e,7c} In addition, a dominant peak at m/z 749 was observed in the ESI-MS spectrum of *all-trans*-1, arising from the $[M + Na]^+$ cationic species.

Complex *all-trans*-1 is readily soluble in CH_3CN , less soluble in chlorinated solvents, and insoluble in nonpolar solvents such as diethyl ether and *n*-hexane. This compound is fairly airstable, and no decomposition to palladium black was observed

in CH₃CN upon standing for a couple of days. Several attempts to obtain single crystals of good quality for X-ray diffraction study were to no avail. However, the analogous tetrachlorido complex A (*vide supra*) was reported to adopt an *all-trans*-configuration.

Complex all-trans-1 can serve as a precursor for further ligand replacement reactions and was treated with two equivalents of PPh₃ in CH₃CN with the aim to access the mixed dicarbene/phosphine complex $[PdBr_2(PPh_3)]_2(\mu$ -ditz) (2, Scheme 2). It is known that mixed NHC/phosphine

Scheme 2. Synthesis and Isomerization Process of di-Pd(II) ditz/PPh₃ Complex 2

complexes of the type *trans*- $[PdX_2(NHC)(PR_3)]$ (X = halido ligand) slowly convert to the preferred *cis*-configured isomer (*vide supra*).⁷ Such isomerization processes have not been studied for dipalladium complexes yet. To provide insight into the potential isomerization process in the case of the more complicated dipalladium mixed dicarbene/bis(phosphine) complex **2** described herein, a NMR tube reaction in CD₃CN was carried out. The interconversion of isomers can be monitored by ¹H NMR spectroscopy as depicted in Figure 2.

The ¹H NMR signals for the *N*-CH₃ groups of the triazolidinedividene ligand are good indicators for the isomerization process. Facile ligand substitution is accomplished quickly in only 5 min, and two new sets of resonance, assigned to *all-trans-2* and *cis-trans-2*, respectively, emerged (Figure 2).

Figure 2. Time-dependent ¹H NMR spectra showing the isomerization process of di-Pd(II) mixed ditz/PPh₃ complex 2 in CD_3CN . The former gives two singlets with an intensity ratio of 1:2, in line with a 2-fold symmetry of this isomer. As expected, such symmetry is absent in the latter mixed *cis-trans* form, which is corroborated by three singlets with an integration ratio of 1:1:1. Notably, the isomer all-trans-2 was almost fully consumed in only 45 min, suggesting that this isomer is thermodynamically unfavorable. This is due to the transphobia effect, which is expressed here as the difficulty to place two strong phosphine donors trans to the dicarbene in the all-trans-2 isomer. In contrast, the cis-trans-2 form is slightly more preferred, and the corresponding signals almost disappeared after only ca. 7 h. Finally, signals due to all-cis-2 become dominant, indicating it as the most thermodynamically stable species. It should be noted that this isomerization process can be accelerated at elevated temperature. Heating the reaction mixture in CH₃CN at 80 °C for only ca. 2 h leads to a complete conversion to the all-cis isomer.

Complex *all-cis*-**2** was isolated as yellow solid, which is readily soluble in polar solvents such as DMSO, CH_3CN , and CH_2Cl_2 , but less soluble in $CHCl_3$ and insoluble in nonpolar solvents, such as diethyl ether and *n*-hexane. In the ¹H NMR spectrum of *all-cis*-**2**, the *N*-methyl groups of triazolidine-diylidene ligand give two singlets at 4.08 and 2.96 ppm, which are upfield shifted in comparison to those in *all-trans*-**1**. This is probably due to the shielding effect of the phenyl rings of the *cis*-standing PPh₃ ligands. Only one singlet at 28.0 ppm is observed in the ³¹P NMR spectrum, supporting the existence of a single isomer. The formation of *all-cis*-**2** was also verified by its ¹³C NMR spectrum, which displays the carbene signal at 176.7 ppm. A base peak at m/z 1120 is found in the positive mode ESI-MS spectrum of *all-cis*-**2**, arising from the cationic species $[M - Br + CH_3OH]^+$.

The identity of *all-cis*-**2** was also confirmed by X-ray diffraction analysis on the single crystals obtained by slow evaporation of a concentrated CH_2Cl_2/n -hexane solution. The molecular structure is depicted in Figure 3, and selected crystallographic data are listed in Table SI-1 (see Supporting Information).

The dinuclear complex contains two essentially square planar palladium centers, each of which is coordinated by one PPh₃ ligand and two bromido ligands in a cis-fashion and linked by a triazolidine-diylidene bridge. The two sterically demanding PPh₃ ligands adopt an *anti*-configuration with respect to the diNHC plane to avoid intramolecular repulsion. The fivemembered dicarbene ring is oriented almost perpendicularly to the PdCPBr₂ coordination planes with an average dihedral angle of \sim 77°. The Pd–C_{carbene}(ditz) bond lengths of 1.968(5) and 1.976(5) Å in all-cis-2 are found to be markedly shorter compared to those (cf. 2.026(7), 2.034(7) Å) in the previously reported hetero(tetra)carbene counterpart all-trans-[PdBr2- $({}^{i}Pr_{2}-bimy)]_{2}(\mu-ditz)$ of type II (Figure 1).^{4a} This observation is attributed to the stronger trans-influence exerted by the ⁱPr₂-bimy carbene ligand in the latter. Owing to the same reason, the interpalladium distance of 5.969 Å in all-cis-2 is also pronouncedly shorter than that in all-trans-[PdBr₂(ⁱPr₂bimy)]₂(μ -ditz).^{4a'} To the best of our knowledge, complex all-cis-2 is the first dipalladium triazolidine-diylidene complex adopting an *all-cis*-configuration.

To further explore the structural diversity of ditz-bridged dipalladium complexes, the reactivity of *all-trans*-1 toward diphosphine ligands was examined. Hence, the precursor complex *all-trans*-1 was treated with two equivalents of the DPPP ligand (DPPP = 1,3-bis(diphenylphosphino)propane), affording the desired bis(diphosphine) complex $[PdBr(DPPP)]_2(\mu-ditz)Br_2$.

Figure 3. Molecular structure of *all-cis-***2** showing 50% probability ellipsoids. Hydrogen atoms, solvent molecules, and disordered atoms are omitted for clarity. Selected bond lengths [Å] and angles [deg]: Pd1–C1 1.968(5), Pd1–P1 2.2663(15), Pd1–Br1 2.4496(7), Pd1–Br2 2.4701(7), Pd2–C2 1.976(5), Pd2–P2 2.2693(14), Pd2–Br4 2.4568(7), Pd2–Br3 2.4598(7); C1–Pd1–P1 94.07(15), C1–Pd1–Br1 176.10(15), P1–Pd1–Br1 86.72(4), C1–Pd1–Br2 85.08(14), P1–Pd1–Br2 178.19(5), Br1–Pd1–Br2 94.24(2), C2–Pd2–P2 92.58(15), C2–Pd2–Br4 174.09(15), P2–Pd2–Br4 92.27(4), C2–Pd2–Br3 84.60(14), P2–Pd2–Br3 177.09(4), Br4–Pd2–Br3 90.50(2).

Scheme 3. Synthesis of Dipalladium(II) Mixed Dicarbene/ Diphosphine Complex 3

(3) as an off-white solid in a high yield of 85% (Scheme 3). Attempts to synthesize analogous bis(DPPF) complex (DPPF = 1,1'-bis(diphenylphosphino)ferrocene) gave multiple inseparable products.

Complex 3 is readily soluble in polar solvents such as DMSO and DMF and less soluble in CH_2Cl_2 . In the ³¹P NMR spectrum of 3 recorded in d_6 -DMSO, two sharp doublets at 9.68 and -1.85 ppm with a coupling constant of ²J(P-P) = 35 Hz are found. These resonances are in good agreement with the data found for other palladium(II)-DPPP complexes.¹⁰ The ¹H NMR spectrum displays only one set of signals, suggesting the free rotation of Pd-C_{carbene} bonds. The three *N*-methyl groups of the triazolidine-diylidene bridge give two singlets at 3.89 and 3.16 ppm with an intensity ratio of 1:2. The carbene signal is found at 178.4 ppm in the ¹³C NMR spectrum of complex 3. ESI-MS spectrometry further supports the formation of 3, by dominant peaks at m/z 658 and 1389, arising from the dicationic species $[M - 2Br]^{2+}$ and the monocationic species $[M - Br]^+$, respectively.

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a concentrated solution of **3** in CH_2Cl_2 . The molecular structure is depicted in Figure 4. The dinuclear complex contains two *anti*-oriented [PdBr(DPPP)] fragments, which are linked by a triazolidine-3,5-diylidene ligand. Two PdCBrP₂ coordination planes are almost perpendicular to the dicarbene ring with an average dihedral angle of ~82°. The average P–Pd–P angle (91.84°) in the six-membered

Figure 4. Molecular structure of **3** showing 50% probability ellipsoids. Hydrogen atoms, solvent molecules, and bromide anions are omitted for clarity. Selected bond lengths [Å] and angles [deg]: Pd1–C1 2.038(5), Pd1–P2 2.2670(13), Pd1–P1 2.3074(13), Pd1–Br1 2.4795(6), Pd2–C2 2.023(5), Pd2–P4 2.2646(13), Pd2–P3 2.3032(13), Pd2–Br2 2.4608(6); C1–Pd1–P2 92.53(13), C1– Pd1–P1 170.87(14), P2–Pd1–P1 90.36(5), C1–Pd1–Br1 84.99(13), P2–Pd1–Br1 176.05(4), P1–Pd1–Br1 91.63(4), C2– Pd2–P4 90.35(13), C2–Pd2–P3 176.17(14), P4–Pd2–P3 93.31(5), C2–Pd2–Br2 84.36(13), P4–Pd2–Br2 173.67(4), P3–Pd2–Br2 91.92(4).

palladacycles falls in the range of diphosphine bite angles typically observed in Pd(II) DPPP complexes.¹¹ As expected, the bond lengths of Pd1–P1 and Pd2–P3 are markedly longer than those of Pd1–P2 and Pd2–P4, respectively, due to the *trans*-influence of dicarbene ligand. Lastly, the interpalladium distance of 6.080 Å is longer than that in complex *all-cis-2*, probably due to the repulsion of the two bulky diphosphine ligands.

Our previous study has revealed that palladium carbene complexes with labile acetato coligands are superior catalyst precursors compared to those with halido coligands.^{4a,12} Thus, tetrabromido complex *all-cis-***2** was treated with four equivalents of silver acetate, affording the tetra-acetato complex *all-cis*-[Pd- $(O_2CCH_3)_2(PPh_3)]_2(\mu$ -ditz) (*all-cis-***4**) as the major product along with minor amounts of another inseparable isomer, *cis-trans*-[Pd($O_2CCH_3)_2(PPh_3)]_2(\mu$ -ditz) (*cis-trans-***4**) in a ratio of ~3:1, as indicated by ¹H NMR spectroscopy (Scheme 4).

The ¹H NMR spectrum of the major product *all-cis-4* shows two singlets at 1.69 and 1.42 ppm for the four CH₃ groups of the acetato ligands. The two sets of *N*-CH₃ groups of the dicarbene ligand resonate at 4.27 and 3.10 ppm in an intensity ratio of 1:2, respectively. As expected, the two *cis*-standing PPh₃ ligands give only one singlet at 25.2 ppm in the ³¹P NMR spectrum of *all-cis-4*.

The formation of the *cis-trans* isomer, as the minor product, was clearly verified by the three singlets at 4.14, 3.32, and 2.97 ppm of equal intensity observed for the inequivalent *N*-CH₃ groups of the dicarbene ligand. The absence of the 2-fold

symmetry for this isomer is further corroborated by ³¹P NMR spectroscopy, which displays two singlets at 25.3 and 23.9 ppm for the two inequivalent phosphine ligands. The ¹³C NMR signals due to the carbene donors and the carbonyl groups of *all-cis-* and *cis-trans-4* fall in a narrow range (171.8–178.0 ppm) and have not been assigned further.

The formation of complex 4 bearing acetato ligands is also supported by ESI mass spectrometry with dominant peaks at m/z 1026 for $[M - CH_3COO]^+$ species.

¹H NMR spectroscopy monitoring of 4 reveals insignificant change of the isomeric ratio. Due to the more labile nature of acetato coligands, complex 4 is less stable in contrast to the bromido precursor *all-cis-2*. Slow decomposition of 4 to palladium black was observed in solution upon standing for 1 d.

Attempts to prepare the diphosphine-acetato complex [Pd-(OAc)(DPPP)]₂(μ -ditz)(OAc)₂ (5) using complex 3 as the precursor failed (Scheme 5). Instead, fast decomposition to

Scheme 5. Attempt to Synthesize Diphosphine-acetato Complex 5

palladium black was observed. The increased steric repulsion brought about by more bulky acetato versus bromido coligands in an already crowded complex may account for the instability of complex **5**.

Synthesis of Mononuclear Equivalents. Previous work^{3,4a} has suggested that the catalytic performance could be enhanced as a result of synergistic effects between two catalytically active metal centers linked by a triazolidine-divlidene ligand. To examine the potential cooperativity exerted by the two linked Pd(II) centers in the ditz complexes described herein, their corresponding mononuclear equivalents were synthesized. It should be noted that an earlier study on the electronic communication across triazolidine-divlidene employed 1,3-dibutylimidazolin-2-ylidene as the supporting ligand in the mononuclear counterparts.^{3h} However, this imidazolebased carbene is not a suitable monocarbene equivalent due to its much stronger donating ability and different sterical demand compared to trimethyltriazolidine-diylidene studied herein, which is known to be a rather weak donor.^{4a,7c} In contrast, triazolin-5-ylidene, as one of the weakest NHCs^{7c} and therefore closest to the ditz, was selected as a monocarbene equivalent.

As shown in Scheme 6, the triazolium precursor salt tazy- H^+I^- (**B**, tazy = 1,4-dimethyl-1,2,4-triazolin-5-ylidene) was prepared via a slightly modified approach¹³ by methylation of 1-methyltriazole with iodomethane. To avoid ligand scrambling in the subsequent metalation step, salt **B** was subjected to an anion metathesis reaction with NaBF₄. Similar to bis-(acetonitrile) complex *all-trans*-1, the monopalladium complex *trans*-[PdBr₂(CH₃CN)(tazy)] (**6**) was prepared in a good yield

of 76% by reaction of salt C, $Pd(OAc)_2$, and excess KBr in CH_3CN .

Complex *trans*-6 can be exploited as a precursor, and ligand replacement reactions employing PPh₃ and DPPP ligands gave the complexes *cis*- $[PdBr_2(PPh_3)(tazy)]$ (7) and [PdBr(DPPP)(tazy)]Br (8) in decent yields of 87% and 81%, respectively (Scheme 7). Bromido abstraction of *cis*-7 was achieved by using

Scheme 7. Synthesis of Mono-Pd(II) Triazolin-5-ylidene Complexes *cis-7*, 8, and *cis-9*

2 equiv of AgO_2CCH_3 , affording the desired mixed phosphine/ acetato complex *cis*-9.

All the newly synthesized mono-Pd(II) triazolin-5-ylidene complexes **6–9** were identified by multinuclei NMR spectroscopy and further corroborated by ESI-mass spectrometry. In addition, the formation of *cis*-7 was confirmed by X-ray diffraction analysis on the single crystals obtained by slow evaporation of a concentrated CH_2Cl_2/n -hexane solution. The solid-state molecular structure is depicted in Figure 5. As expected, it exhibits square planar geometry with the palladium center surrounded by PPh₃, one triazolin-5-ylidene ligand, and two *cis*oriented bromido coligands. Comparison of *cis*-7 with its dinuclear counterpart *all-cis*-2 revealed that all the key bond parameters are essentially equal within 3σ .

Catalytic Study. Arylated imidazoles are known to exhibit a variety of interesting biological properties,¹⁴ and they can be accessed via transition metal-catalyzed arylation from imidazoles and aryl halides. In this regard, a few well-defined pre-catalysts¹⁵ have been reported, but surprisingly NHCs have rarely been exploited as ancillary ligands in such arylation catalysis.^{15a,b} In a preliminary study, direct C5-arylation of 1-methylimidazoles was attempted using all the triazolidine-3,5-diylidene and triazolin-5-ylidene complexes described herein as catalyst precursors.

The arylation of 1-methylimidazole with 4-bromoacetophenone at 2.5 mol % catalyst loading (based on Pd) and a reaction time of 18 h at 140 °C was chosen as a standard test reaction to compare the performance of different precatalysts (Table 1).

All the newly synthesized complexes proved to be catalytically active in this regioselective arylation reaction. It should be

P1 P1 P1 P1 P1 Br2 Br1

Figure 5. Molecular structure of *cis*-7 showing 50% probability ellipsoids. Hydrogen atoms, solvent molecules, and bromide anions are omitted for clarity. Selected bond lengths [Å] and angles [deg]: Pd1–C1 1.988(5), Pd1–P1, 2.2686(14), Pd1–Br2 2.4510(7), Pd1–Br1 2.4758(7); C1–Pd1–P1 93.19(14), C1–Pd1–Br2 176.18(14), P1–Pd1–Br2 90.36(4), C1–Pd1–Br1 85.26(14), P1–Pd1–Br1 178.32(4), Br2–Pd1–Br1 91.16(2), N2–C1–N1 104.5(4).

noted that a previous computational study reported that the free energy of activation for C–H functionalization of 1-methylimidazoles follows the order C4 \gg C2 \geq C5.¹⁶ Due to the comparable energy for C2–H and C5–H activation, the formation of C2,C5-diarylated imidazoles was commonly observed in the previously reported catalytic systems. Interestingly, in all the entries of Table 1, C5-monoarylated imidazole was afforded as the predominant product and only a negligible amount of C2,C5-diarylated product was found.

Dipalladium(II) triazolidine-3,5-diylidene complexes are found to be generally superior compared to their mononuclear equivalents (entries 1–8), which supports a potential synergistic effect by the two palladium centers linked by the triazolidine-diylidene ligand. To quantify and compare the cooperative effects, the cooperativity index (*a*) proposed by Jones and James¹⁷ was calculated using eqs 1 and 2 and is listed in Table 1. In our cases, A_O and A_P were taken as the yields obtained in the dinuclear and mononuclear systems, respectively. The highest index value a = 0.67 obtained from entries 3 and 4 revealed the strongest synergistic effect in mixed dicarbene/bis(phosphine) complex *all-cis-2*. However, the relationship between the cooperativity effect and the ancillary ligands remains to be explored in the future.

$$\bar{A} = \frac{A_{\rm p}}{n} \tag{1}$$

$$a = \frac{A_{\rm O} - A_{\rm P}}{\overline{A}} \tag{2}$$

Among all the precatalysts, mixed dicarbene/diphosphine complex **3** and mixed dicarbene/monophosphine complex **4** with acetato coligands are found to be the two best catalytic performers. Nevertheless, when a more challenging substrate, 4-chloroacetophenone, was used, a dramatic decrease of the yield was observed (entry 3 vs 9, entry 4 vs 10). The yields, however, can be slightly improved by using TBAB (TBAB = tetrabutylammonium bromide) as an additive (entries 9 and 10 vs entries 11 and 12). Here, complex **3** performs slightly better compared to acetato complex **4** (entry 11 vs entry 12).

Table 1. Direct C5-Arylation Reaction of 1-Methylimidazole Catalyzed by Complexes 1-4 and $6-9^a$

^{*a*}Reaction conditions generally not optimized. Reaction conditions: 0.5 mmol of aryl halide, 0.75 mmol (1.5 equiv) of 1-methylimidazole, 1.25 mol % of dipalladium precatalysts or 2.5 mol % of monopalladium precatalysts, 1.0 mmol (2.0 equiv) of KOAc, DMA (1 mL), 140 °C, 18 h. ^{*b*}GC yields using naphthalene as internal standards in an average of two runs. ^{*c*}With addition of 0.1 mmol (20% equiv) of $[N(n-C_4H_9)_4]Br.$

Using complex 3 as the best performer, a selection of electronically and sterically varied aryl halides as well as heteroaryl halides were examined in a small substrate scope study. The results are summarized in Table 2. Moderate yields can be achieved in nearly all the entries. Electron-deficient aryl

Table 2. Direct C5-Arylation Reaction Catalyzed by Complexes 3^a

^{*a*}Reaction conditions: 0.5 mmol of aryl halide, 0.75 mmol (1.5 equiv) of 1-methylimidazole, 1.25 mol % of **3**, 1.0 mmol (2.0 equiv) of KOAc, 140 °C, 18 h. ^{*b*}Isolated yields in an average of two runs. ^cWith addition of 0.1 mmol (20% equiv) of $[N(n-C_4H_9)_4]Br$.

halides seem to be more suitable compared to the electron-rich ones (entries 1-3). The S-donor of 2-bromothiophene does not undermine the catalytic activity (entry 5). The reaction in entry 6 is rather sluggish where the more challenging substrate 2-bromopyridine with a stronger N-donor was exploited.

CONCLUSION

We have synthesized a series of new dipalladium(II) complexes (1-4) with a Janus-type triazolidine-dividene linker and mono/diphosphines as ancillary ligands. It has been demonstrated that CH₃CN-coordinated complex all-trans-[PdBr₂- $(CH_3CN)]_2(\mu$ -ditz) (1) is a suitable precursor for the further ligand replacement reactions. In the case of mixed dicarbene/ bis(phosphine) complex $[PdBr_2(PPh_3)]_2(\mu$ -ditz) (2), the *all-cis* isomer is found to be thermodynamically favorable, which has been confirmed by NMR spectroscopy and X-ray diffraction analysis. Bromido substitution of all-cis-2 with AgO₂CCH₂ furnished the tetra-acetato complex $[Pd(CH_3COO)_2(PPh_3)]_2$ - $(\mu$ -ditz) (4), with the *all-cis* isomer as the predominant product, but the cis-trans form was also detected in small amounts. All the dipalladium triazolidine-divlidene complexes proved to be active in direct catalytic C5-arylation of 1-methylimidazoles and show superior performance in comparison to their mononuclear equivalents, indicating a cooperativity effect of the two bridged Pd centers. Current work in our laboratory is focused on broadening the ancillary ligand diversity of dipalladium triazolidine-divlidene complexes and extending their scope to metallo-supramolecular carbene chemistry.

EXPERIMENTAL SECTION

General Considerations. Unless otherwise stated, all manipulations were carried out without taking precautions to exclude air and moisture. All chemicals and solvents were used as received without further purification if not mentioned otherwise. Precursor salts 1,2,4-trimethyl-1,2,4-triazolium tetrafluoroborate (A) and 1,4-dimethyl-1,2,4-triazolium iodide (B) were synthesized as reported.^{4a,13} Triazolium iodide salt B was converted to its tetrafluoroborate analogue C via salt metathesis reaction by stirring with NaBF₄ in acetone overnight at ambient temperature. ¹H, ¹³C, ¹⁹F, and ³¹P NMR spectra were recorded on 300 and 500 MHz spectrometers, and the chemical shifts (δ) were internally referenced to the residual solvent signals relative to tetramethylsilane (¹H and ¹³C) or externally to 85% H₃PO₄ (³¹P) and CF₃CO₂H (¹⁹F). ESI mass spectra were measured using a LCQ spectrometer. Elemental analyses were performed on a Vario Micro Cube elemental analyzer at the Department of Chemistry, National University of Singapore.

Synthesis of *all-trans*-[PdBr₂(CH₃CN)]₂(μ -ditz) (1). 1,2,4-Trimethyl-1,2,4-triazolium tetrafluoroborate (A) (77 mg, 0.27 mmol), Pd(OAc)₂ (124 mg, 0.55 mmol), and KBr (297 mg, 2.5 mmol) were mixed in CH₃CN (10 mL). The reaction mixture was stirred and heated at 60 °C for 6 h. The resulting suspension was cooled and filtered through Celite. The filtrate was collected and concentrated. Column chromatography (SiO₂) followed by *n*-hexane precipitation gave the product as a yellow solid (141 mg, 0.194 mmol, 72%). ¹H NMR (500 MHz, CD₃CN): δ 4.31 (s, 3 H, NCH₃), 4.25 (s, 6 H, NCH₃), 1.94 (s, CH₃CN). ¹³C{¹H} NMR (125.76 MHz, CD₃CN): δ 160.6 (NCN), 118.3 (CH₃CN), 41.6 (NCH₃), 38.8 (NCH₃), 1.38 (CH₃CN). Anal. Calcd for C₉H₁₅Br₄N₅Pd₂: C, 14.90; H, 2.08; N, 9.65. Found: C, 14.74; H, 2.14; N, 9.57. MS(ESI): *m*/z 749 [M + Na]⁺.

Synthesis of *all-cis*-[PdBr₂(PPh₃)]₂(μ -ditz) (2). Complex *all-trans*-[PdBr₂(CH₃CN)]₂(μ -ditz) (1) (73 mg, 0.1 mmol) and PPh₃ (53 mg, 0.2 mmol) were mixed in CH₃CN (10 mL). The reaction mixture was stirred and heated at 80 °C overnight. All the volatiles were removed *in vacuo*, and the yellow residue was washed with diethyl ether (3 × 5 mL). Column chromatography (SiO₂) gave the product as a yellow solid (110 mg, 0.094 mmol, 94%). ¹H NMR (300 MHz,

CD₂Cl₂): δ 7.52–7.49 (m, 30 H, Ar–H), 4.08 (s, 3 H, NCH₃), 2.96 (s, 6 H, NCH₃). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂): δ 176.7 (NCN), 134.8 (d, Ar–C, ²*J*(P,C) = 19 Hz), 132.0 (d, Ar–C, ⁴*J*(P,C) = 3 Hz), 129.4 (d, Ar–C, ¹*J*(P,C) = 54 Hz), 129.3 (d, Ar–C, ³*J*(P,C) = 11 Hz), 41.4 (NCH₃), 36.5 (NCH₃). ³¹P{¹H} NMR (121.49 MHz, CD₂Cl₂): δ 28.0 (s, PPh₃). Anal. Calcd for C₄₁H₃₉Br₄N₃P₂Pd₂: C, 42.15; H, 3.37; N, 3.60. Found: C, 42.37; H, 3.77; N, 3.42. MS(ESI): *m*/*z* 1121 [M – Br + CH₃OH]⁺.

Synthesis of [PdBr(DPPP)]₂(µ-ditz)Br₂ (3). Complex all-trans- $[PdBr_2(CH_3CN)]_2(\mu-ditz)$ (1) (73 mg, 0.1 mmol) and 1,3-bis-(diphenylphosphino)propane (83 mg, 0.2 mmol) were mixed, and CH₃CN (10 mL) was added. The reaction mixture was stirred overnight at ambient temperature, yielding a pale yellow suspension. All the volatiles were removed in vacuo, and the residue was washed with diethyl ether $(3 \times 5 \text{ mL})$ followed by ice-cold acetone $(2 \times 3 \text{ mL})$. The residue was dried in vacuo, yielding an off-white solid. Crystallization from a concentrated CH₂Cl₂ solution afforded the analytically pure product (125 mg, 0.085 mmol, 85%). ¹H NMR (500 MHz, DMSO- d_6): δ 8.09 (br, s, 4 H, Ar–H), 7.73–7.69 (m, 6 H, Ar–H), 7.56-7.35 (m, 21 H, Ar-H), 7.21 (br, s, 9 H, Ar-H), 3.89 (s, 3 H, NCH₃), 3.18 (s, 6 H, NCH₃), 2.82, 2.58, 1.21 (br m, 12 H, PCH₂ and PCH₂CH₂). ¹³C NMR (125.76 MHz, DMSO-d₆): 178.4 (d, NCN, ${}^{2}J(P,C) = 151 \text{ Hz}$, 134.4, 134.3, 134.0, 133.9, 132.8, 132.6, 132.2, 131.9, 131.5, 131.4, 130.9, 130.5, 129.8, 129.7, 129.1, 129.0, 128.3, 128.0, 127.8, 125.9, 125.5 (Ar-C), 36.9, 30.7 (NCH₃), 23.8, 23.5, 22.2, 21.9, 17.6 (PCH₂ and PCH₂CH₂). ³¹P{¹H} NMR (202.45 MHz, DMSO- d_6): δ 9.7, -1.9 (d, PPh₂(CH₂)₃PPh₂, ²J(P,P) = 35 Hz). Anal. Calcd for C₅₉H₆₁Br₄N₃P₄Pd₂: C, 48.26; H, 4.19; N, 2.86. Found: C, 48.42; H, 4,24; N, 2.93. MS(ESI): m/z 654 $[M - 2Br]^{2+}$, 1389 $[M - Br]^+$

Synthesis of [Pd(CH₃COO)₂(PPh₃)]₂(µ-ditz) (4). Complex all-cis-2 (58 mg, 0.05 mmol) and AgO₂CCH₃ (35 mg, 0.21 mmol) were mixed in CH₂Cl₂ (10 mL). The reaction mixture was stirred at ambient temperature for 6 h in the dark. The precipitate was filtered off via Celite, and the filtrate was evaporated in vacuo to yield the product as an off-white solid (37 mg, 0.034 mmol, 68%). Overlapping and signals that cannot be unambiguously assigned are indicated with an asterisk (*). all-cis-4: ¹H NMR (300 MHz, CDCl₃): δ 7.49-7.38 (m, 30 H, Ar-H*), 4.27 (s, 3 H, NCH₃), 3.10 (s, 6 H, NCH₃), 1.69, 1.42 (s, 12 H, CH₃COO*). ¹³C NMR (75.47 MHz, CDCl₃): δ 178.0, 177.6, 177.5, 177.4, 177.3, 172.0, 171.8 (NCN* and CH₃COO*), 134.7 (d, Ar–C, J(P,C) = 11 Hz), 132.6 (d, Ar–C, ${}^{4}J(P,C) = 2$ Hz), 129.7 (d, Ar–C*, J(P,C) = 11 Hz), 127.5 (d, Ar–C, ${}^{1}J(P,C) = 55$ Hz), 40.4 (NCH₃), 36.9 (NCH₃), 23.8, 23.3 (CH₃COO*). ³¹P{¹H} NMR (121.49 MHz, CDCl₃): δ 25.2 (s, PPh₃). cis-trans-4: ¹H NMR (300 MHz, CDCl₃): δ 7.49–7.38 (m, 30 H, Ar–H*), 4.14, 3.32, 2.97 (s, 9 H, NCH₃), 1.69, 1.47, 1.45, 1.42 (s, 12 H, CH₃COO*). ¹³C NMR (75.47 MHz, CDCl₃): δ 178.0, 177.6, 177.5, 177.4, 177.3, 172.0, 171.8 (NCN* and CH₃COO*), 132.7 (d, Ar-C, ³J(P,C) = 10 Hz), 130.0 (Ar–C*), 129.2 (d, Ar–C, ${}^{2}J(P,C) = 12$ Hz), 127.6 (d, Ar–C, ${}^{1}J(P,C) = 55 Hz$, 40.7. 37.2, 36.2 (NCH₃), 24.0, 23.8, 23.3 (CH_3COO^*) . ³¹P{¹H} NMR (121.49 MHz, CDCl₃): δ 25.3, 23.9 (s, PPh₃). Anal. Calcd for C₄₉H₅₁N₃O₈P₂Pd₂·1.25CH₂Cl₂: C, 50.68; H, 4.53; N, 3.53. Found: C, 50.77; H, 4.87; N, 3.88. MS(ESI): m/z 1026 $[M - CH_3COO]^+$.

Synthesis of trans-[PdBr₂(CH₃CN)(tazy)] (6). 1,4-Dimethyl-1,2,4-triazolium tetrafluoroborate (C) (255 mg, 1.38 mmol), Pd-(OAc)₂ (310 mg, 1.38 mmol), and KBr (820 mg, 6.89 mmol) were mixed in CH₃CN (10 mL). The reaction mixture was stirred and heated at 70 °C overnight. The resulting suspension was cooled and filtered through Celite. The filtrate was collected and concentrated. Column chromatography (SiO₂) followed by *n*-hexane precipitation gives the product as a brown-yellow solid (424 mg, 1.05 mmol, 76%). ¹H NMR (300 MHz, CD₃CN): δ 8.20 (s, 1 H, NCHN), 4.10 (s, 3 H, NCH₃), 3.94 (s, 3 H, NCH₃), 1.94 (s, CH₃CN). ¹³C{¹H} NMR (75.47 MHz, CD₃CN): δ 163.1 (NCN), 145.3 (NCHN), 40.4 (NCH₃), 36.1 (NCH₃). No correct elemental analysis could be obtained for this compound, despite several attempts. MS(ESI): *m/z* 1009 [3 M – Br – 3CH₃CN]⁺, 688 [2 M – Br – CH₃CN]⁺. **Synthesis of cis-[PdBr₂(PPh₃)(tazy)] (7).** Complex *trans-6* (40 mg, 0.1 mmol) and PPh₃ (27 mg, 0.1 mmol) were mixed and heated in CH₃CN at 80 °C overnight. All the volatiles were removed, and the residue was washed with diethyl ether (3 × 5 mL), affording the product as a yellow solid (54 mg, 0.087 mmol, 87%). ¹H NMR (300 MHz, CD₂Cl₂): δ 7.69–7.37 (m, 16 H, Ar–H), 3.77 (s, 3 H, NCH₃), 3.58 (s, 3 H, NCH₃). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂): δ 169.1 (NCN), 143.4 (NCHN), 134.3 (d, *J*(P,C) = 11 Hz, Ar–C), 131.7 (d, ⁴*J*(P,C) = 2 Hz, Ar–C), 130.3 (d, ¹*J*(P,C) = 54 Hz, Ar–C), 128.9 (d, *J*(P,C) = 11 Hz, Ar–C), 39.8 (NCH₃), 35.4 (NCH₃). ³¹P{¹H} NMR (121.49 MHz, CD₂Cl₂): δ 26.9 (s, PPh₃). Anal. Calcd for C₂₂H₂₂Br₂N₃PPd: C, 42.24; H, 3.54; N, 6.72. Found: C, 42.01; H, 3.42; N, 6.42. MS(ESI): *m*/z 577 [M – Br + CH₃OH]⁺.

Synthesis of [PdBr(DPPP)(tazy)]Br (8). Complex trans-6 (40 mg, 0.1 mmol) and 1,3-bis(diphenylphosphino)propane (42 mg, 0.1 mmol) were mixed and stirred in CH₃CN at ambient temperature overnight. All the volatiles were removed in vacuo, and the residue was washed with diethyl ether $(3 \times 5 \text{ mL})$, affording the product as an off-white solid (63 mg, 0.081 mmol, 81%). ¹H NMR (500 MHz, DMSO-d₆): δ 8.38 (s, 1 H, NCHN), 7.84–7.27 (m, 20 H, Ar–H), 3.63 (s, 3 H, NCH₃), 3.58 (s, 3 H, NCH₃), 3.19-3.01 (m, 2 H, CH₂), 2.76-2.67 (m, 2 H, CH₂), 1.95–1.76 (m, 2 H, CH₂). ¹³C{¹H} NMR $(125.76 \text{ MHz}, \text{DMSO-}d_6): \delta 172.4 \text{ (d, NCN, }^2 I(C,P) = 154 \text{ Hz}),$ 144.7 (NCHN), 133.4, 133.3, 133.2, 133.1, 132.6, 132.3, 132.2, 132.0, 131.8, 131.4, 131.2, 130.0, 129.8, 129.8, 129.4, 129.3, 129.1, 129.0, 128.9, 128.8, 128.7 (Ar–C), 34.9 (NCH₃), 23.6, 23.4, 22.8, 22.7, 22.6, 22.5, 17.9 (PCH₂ and PCH₂CH₂). The ^{13}C NMR resonance due to the second NCH₃ group accidentally overlaps with the DMSO-d₆ solvent residual signal. ³¹P $\{^{1}H\}$ NMR (202.45 MHz, DMSO- d_{6}): δ 11.4, -2.2 (d, PPh₂(CH₂)₃PPh₂, ²J(P,P) = 40 Hz). Anal. Calcd for C₃₁H₃₃Br₂N₃ P₂Pd·0.75CH₂Cl₂: C, 45.43; H, 4.14; N, 5.01. Found: C, 45.31; H, 3.64; N, 5.09. MS(ESI): m/z 696 [M - Br]⁺

Synthesis of cis-[Pd(CH₃COO)₂(PPh₃)(tazy)] (9). Complex cis-7 (63 mg, 0.1 mmol) and AgO₂CCH₃ (35 mg, 0.21 mmol) were mixed, and CH_2Cl_2 (10 mL) was added. The reaction mixture was stirred at ambient temperature for 6 h in the dark. The precipitate was filtered off via Celite, and the filtrate was evaporated in vacuo to yield the product as an off-white solid (42 mg, 0.072 mmol, 72%). ¹H NMR (300 MHz, CDCl₃): δ 7.61-7.38 (m, 16 H, Ar-H), 3.88 (s, 3 H, NCH₃), 3.63 (s, 3 H, NCH₃), 2.51, 1.87 (s, 6 H, CH₃COO). Overlapping and signals that cannot be unambiguously assigned are indicated with an asterisk (*). ¹³C{¹H} NMR (75.47 MHz, CDCl₃): δ 177.9 (NCN or CH₃COO^{*}), 143.7 (NCHN), 134.6 (d, ${}^{2}J(P,C) = 12$ Hz, Ar-C), 132.2 (br s, Ar-C), 129.4 (d, ${}^{3}J(P,C) = 11$ Hz, Ar-C), 128.8 $(d_{1}^{-1}J(P,C) = 54 Hz, Ar-C), 40.2, 35.6 (NCH_{3}), 24.1, 23.3 (s, C)$ CH₃COO). ³¹P{¹H} NMR (121.49 MHz, CDCl₃): δ 24.9 (PPh₃). No correct elemental analysis could be obtained for this compound, despite several recrystallization attempts. MS(ESI): m/z 525 $[M - OAc]^+$

General Procedure for Regioselective C5 Arylation of 1-Methylimidazoles. In a typical run, a 25 mL Schlenk tube was charged with 1-methylimidazole (60 μ L, 0.75 mmol), KOAc (98.2 mg, 1.0 mmol), aryl halide (0.5 mmol), 1.25 mol % of dipalladium precatalysts or 2.5 mol % of monopalladium precatalysts, and DMA (1 mL). The reaction mixture was sealed and heated at 140 °C for 18 h. The reaction mixture was cooled to ambient temperature, and H₂O (5 mL) was added, followed by extraction with ethyl acetate (3 × 10 mL). The organic phases were collected and dried over Na₂SO₄. All the volatiles were removed *in vacuo*, and the product was isolated by column chromatography and analyzed by ¹H NMR spectroscopy.

X-ray Diffraction Studies. X-ray data for *all-cis*-2·1.5CH₂Cl₂, **3**-3CH₂Cl₂·H₂O, and *cis*-7 were collected with a Bruker AXS SMART APEX diffractometer, using Mo K α radiation at 100(2) K with the SMART suite of programs.¹⁸ Data were processed and corrected for Lorentz and polarization effects with SAINT¹⁹ and for absorption effects with SADABS.²⁰ Structural solution and refinement were carried out with the SHELXTL suite of programs.²¹ The structure was solved by direct methods to locate the heavy atoms, followed by difference maps for the light, non-hydrogen atoms. All non-hydrogen atoms were generally given anisotropic displacement parameters in the final model. All H atoms were put at calculated positions. A summary of the most important crystallographic data is given in Table SI-1.

ASSOCIATED CONTENT

S Supporting Information

Crystallographic data for *all-cis*-**2**·1.5CH₂Cl₂, **3**·3CH₂Cl₂·H₂O, and *cis*-7 as CIF files and a summary of the most important crystallographic data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: chmhhv@nus.edu.sg.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National University of Singapore (NUS) and the Singapore Ministry of Education (MOE) for financial support (WBS R-143-000-483-112). Technical assistance from staff at the CMMAC of our department is appreciated. In particular, we thank Ms. Geok Kheng Tan, Ms. Hong Yimian, and Prof. Lip Lin Koh for determining the X-ray molecular structures.

REFERENCES

(1) For recent reviews on NHCs and their transitional metal complexes, see: (a) Hahn, F. E.; Jahnke, M. C. Angew. Chem., Int. Ed. 2008, 47, 3122. (b) Lin, J. C. Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.; Lin, I. J. B. Chem. Rev. 2009, 109, 3561. (c) Schuster, O.; Yang, L.; Raubenheimer, H. G.; Albrecht, M. Chem. Rev. 2009, 109, 3445. (d) Crabtree, R. H. Coord. Chem. Rev. 2013, 257, 755.

(2) Selected examples on diNHC complexes: For diNHCs as bridging ligands, see: (a) Maity, R.; Rit, A.; Schulte to Brinke, C.; Kösters, J.; Hahn, F. E. Organometallics **2013**, 32, 6174. (b) Conrady, F. M.; Fröhlich, R.; Schulte to Brinke, C.; Pape, T.; Hahn, F. E. J. Am. Chem. Soc. **2011**, 133, 11496. (c) Han, Y.; Lee, L. J.; Huynh, H. V. Chem.—Eur. J. **2010**, 16, 771. For diNHCs as chelating ligands: (d) Yeung, A. D.; Ng, P. S.; Huynh, H. V. J. Organomet. Chem. **2011**, 696, 112. (e) Huynh, H. V.; Jothibasu, R. J. Organomet. Chem. **2011**, 696, 3369. (f) Huynh, H. V.; Jothibasu, R. Eur. J. Inorg. Chem. **2009**, 1926. (g) Huynh, H. V.; Seow, H. X. Aust. J. Chem. **2009**, 62, 983.

(3) For examples on cooperative catalysis using diNHCs, see: (a) Mas-Marza, E.; Mata, J. A.; Peris, E. Angew. Chem., Int. Ed. 2007, 46, 3729. (b) Viciano, M.; Sanau, M.; Peris, E. Organometallics 2007, 26, 6050. (c) Zanardi, A.; Corberan, R.; Mata, J. A.; Peris, E. Organometallics 2008, 27, 3570. (d) Zanardi, A.; Mata, J. A.; Peris, E. J. Am. Chem. Soc. 2009, 131, 14531. (e) Zanardi, A.; Mata, J. A.; Peris, E. J. Am. Chem. Soc. 2009, 28, 1480. (f) Zanardi, A.; Mata, J. A.; Peris, E. Organometallics 2009, 28, 4335. (g) Sabater, S.; et al. Nat. Commun. 2013, 4, 2553. (h) Sabater, S.; Mata, J. A.; Peris, E. Organometallics 2012, 31, 6450. (i) Sabater, S.; Mata, J. A.; Peris, E. Chem.—Eur. J. 2012, 18, 6380. (j) Zanardi, A.; Mata, J. A.; Peris, E. Chem.—Eur. J. 2010, 16, 13109. (k) Guisado-Barrios, G.; Hiller, J.; Peris, E. Chem.— Eur. J. 2013, 19, 10405. (l) Mata, J. A.; Hahn, F. E.; Peris, E. Chem. Sci. DOI: 10.1039/c3sc53126k.

(4) (a) Guo, S.; Huynh, H. V. Organometallics 2012, 31, 4565.
(b) Guo, S.; Sivaram, H.; Yuan, D.; Huynh, H. V. Organometallics 2013, 32, 3685.

(5) For examples on other Janus-type di-NHCs, see: (a) Boydston, A. J.; Williams, K. A.; Bielawski, C. W. J. Am. Chem. Soc. 2005, 127, 12496. (b) Khramov, D. M.; Boydston, A. J.; Bielawski, C. W. Angew. Chem., Int. Ed. 2006, 45, 6186.

(6) Guerret, O.; Sole, S.; Gornitzka, H.; Teichert, M.; Trinquier, G.; Bertrand, G. J. Am. Chem. Soc. **1997**, 119, 6668.

(7) (a) Vicente, J.; Arcas, A.; Bautista, D.; Jones, P. G. Organometallics **1997**, *16*, 2127. (b) Han, Y.; Lee, L. J.; Huynh, H. V. Organometallics **2009**, *28*, 2778. (c) Huynh, H. V.; Han, Y.; Ho, J. H. H.; Tan, G. K. Organometallics **2006**, *25*, 3267.

(8) Huynh, H. V.; Ho, J. H. H.; Neo, T. C.; Koh, L. L. J. Organomet. Chem. 2005, 690, 3854.

(9) Curphey, T. J.; Prasad, K. S. J. Org. Chem. 1972, 37, 2259.

(10) (a) Magill, A. M.; Yates, B. F.; Cavell, K. J.; Skelton, B. W.; White, A. H. *Dalton Trans.* **2007**, 3398. (b) Green, M. J.; Cavell, K. J.; Skelton, B. W.; White, A. H. *J. Organomet. Chem.* **1998**, 554, 175.

(11) Van Leeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P. Chem. Rev. 2000, 100, 2741.

(12) (a) Huynh, H. V.; Ho, J. H. H.; Neo, T. C.; Koh, L. L. J. Organomet. Chem. 2005, 690, 3854. (b) Huynh, H. V.; Neo, T. C.; Tan, G. K. Organometallics 2006, 25, 1298.

(13) Myles, L.; Gathergood, N.; Connon, S. J. Chem. Commun. 2013, 49, 5316.

(14) For a review on biological activity of arylated imidazoles, see: Bellina, F.; Cauteruccio, S.; Rossi, R. *Tetrahedron* **2007**, *63*, 4571.

(15) (a) Kumar, P. V.; Lin, W.-S.; Shen, J.-S.; Nandi, D.; Lee, H. M. Organometallics **2011**, 30, 5160. (b) Toure, B.; Barry; Lane, B. S.; Sames, D. Org. Lett. **2006**, 8, 1979. (c) Shibahara, F.; Yamaguchi, E.; Murai, T. Chem. Commun. **2010**, 46, 2471. (d) Shibahara, F.; Yamaguchi, E.; Murai, T. J. Org. Chem. **2011**, 76, 2680. (e) Bensaid, S.; Laidaoui, N.; El Abed, D.; Kacimi, S.; Doucet, H. Tetrahedron Lett. **2011**, 52, 1383. (f) Dong, J. J.; Roger, J.; Verrier, C.; Martin, T.; Le Goff, R.; Hoarau, C.; Doucet, H. Green Chem. **2010**, 12, 2053.

(16) (a) Gorelsky, S. I. Organometallics **2012**, 31, 794. (b) Petit, A.; Flygare, J.; Miller, A. T.; Winkel, G.; Ess, D. H. Org. Lett. **2012**, 14, 3680.

(17) Jones, N. D.; James, B. R. Adv. Synth. Catal. 2002, 344, 1126.

(18) SMART version 5.628; Bruker AXS Inc.: Madison, WI, 2001.

(19) SAINT+ version 6.22a; Bruker AXS Inc.: Madison, WI, 2001.

(20) Sheldrick, G. W. SADABS version 2.10; University of Göttingen: 2001.

(21) SHELXTL version 6.14; Bruker AXS Inc.: Madison, WI, 2000.