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Abstract 

Covalent organic frameworks (COFs) are promising candidates as heterogeneous photocatalysts 

due to their porosity and tunable light absorption. The photostability and charge separation of 

covalent organic frameworks are highly important to improve the efficiency of photocatalytic 

transformation. In this work, a fully conjugated donor-acceptor COF is constructed with 

benzothiadiazole unit, which exhibits high stability and enhanced charge separation. The prepared 

COF can efficaciously produce superoxide radical anion under air and visible light, which 

mediates the photocatalytic oxidative amine coupling and cyclization of thioamide to 1,2,4-
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 2 

thiadiazole in moderate to high yield and high recyclability (18 examples). This study 

demonstrates the great capacity of fully conjugated COFs with D-A structure for light-driven 

organic synthesis. 

KEYWORDS: covalent organic frameworks, donor-acceptor, superoxide radical anion, organic 

synthesis, photocatalysis. 

Introduction 

Visible-light driven organic transformations offer a highly sustainable and environment friendly 

route for the synthesis of important chemicals, which have attracted significant attention in recent 

years.1-3 Heterogeneous visible-light photocatalysts with great recyclability are especially 

promising for large scale applications.4 Inorganic semiconductors with well-defined band 

structures are intensely investigated as heterogenous photocatalyst, such as TiO2 and ZnO, which 

mostly work in the UV range.5, 6 Subsequently, organic based photocatalysts, such as organic dyes, 

are developed to enhance the visible light absorption. To further escalate the catalytic performance, 

porous photocatalyst or porous material supported semiconductors with exposed photocatalytic 

sites have been synthesized, such as metal organic frameworks,7, 8 covalent organic frameworks,9, 

10 conjugated microporous polymers11, 12 and g-C3N4.13 Among these porous materials, COFs are 

particularly attractive due to their chemical and structural features. 
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 3 

COFs are a class of polymers with high crystallinity and porosity, which are constructed from 

organic building blocks with well-defined pore structure and highly tunable opto-electronic 

properties.14-16 In recent years, COFs have been found a variety of applications, such as gas sorption 

and separation,17-20 energy transformation and storage,21-24 and particularly heterogeneous 

catalysis.25-30 2D COFs are emerging heterogeneous photocatalysts owing to the combination of 

strong visible light absorption and mesopore structure. Under visible-light irradiation, the photo-

generated electrons and holes in COFs promote a series of reactions, such as hydrogen 

generation,31-34 oxygen evolution,35-37 carbon dioxide reduction38-40 and organic transformations.41-

53 To obtain higher photocatalytic efficiency, enhanced light absorption, suitable band positions, 

and fast charge separation are highly important. All these properties are related to the intrinsic 

chemical linkage of particular COFs. Among many different linkages, the construction of fully 

conjugated covalent organic frameworks would realize desirable light absorption and charge 

separation. Until very recently, several ethylene-linked COFs have been synthesized and applied 

to fluorescence,54, 55 lithium-ion battery,56 supercapacitor57 and others.58-60 Only a few reports 

investigate the photocatalytic performance of fully conjugated COFs. Jiang’s group reported a 2D 

vinylene-linked COF that shows impressive photocatalytic hydrogen production activity.61 

Zhang’s group introduced pyridine and triazine cores into olefin-based COFs, which grant them 

strong light-harvesting characteristics and further improved their photocatalytic hydrogen 

evolution rate.62, 63 Wang and co-workers incorporated porphyrin to a 2D vinylene-linked COF, 

which shows good photocatalytic activity of oxidative secondary amine to imine due to improved 
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 4 

photo-stability and enhanced electron delocalization.64 Li and co-workers introduced nitrogen 

atom in the skeleton of TP-COF to modulate its electronic structure and lead to a good simulation 

of artificial photosystem I.65 Recently, Cooper’s group synthesized a bipyridine-containing sp2c-

COF modified with a rhenium complex to improve photocatalytic carbon dioxide reduction 

performance.66 Fast charge separation in these fully conjugated COFs is very important and can 

further improve their photocatalytic performance. The incorporation of donor-acceptor moieties in 

porous organic systems has been demonstrated to be an effective way to promote the charge 

seperation.67, 68 Herein, we designed and synthesized a fully conjugated Py-BSZ-COF, containing 

electron-donating pyrene unit and electron-accepting benzothiadiazole unit to construct a donor-

acceptor structure, which shows high photo-stability and enhanced charge separation. Under 

visible light irradiation, this D-A Py-BSZ-COF can produce superoxide radical anion (O2
•–) in air 

saturated CH3CN, which drives the photocatalytic oxidative amine coupling and cyclization of 

thioamide to 1,2,4-thiadiazole in moderate to high yield and high recyclability. 

Experimental Section 

The preparation of COFs 

Py-BSZ-COF: 1,3,6,8-tetrakis(4-formylphenyl)pyrene (20 mg, 0.032 mmol) and 4,4’-

(benzothiadiazole-4,7-diyl)diacetonitrile (24 mg, 0.065 mmol) in 2 mL o-dichlorobenzene were 

added to a 10 mL Pyrex tube. After sonification, 0.2 mL of 1 M tetrabutylammonium hydroxide 
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 5 

(TBAH) in methanol and 0.1 mL water were added. After three freeze-thaw cycles, the tube was 

flame-sealed and heated at 120 °C for 72 h. The precipitate was washed by DMF, 1 M HCl aqueous 

solution, water and THF, successively. The solid was Soxhlet extracted with THF for 24 h and 

activated at 120 °C under vacuum for 12 h to afford an orange powder of 34 mg in 81% yield. 

Elemental analysis showed that the weight percentage of C, H, N and S to be 74.2%, 3.7%, 7.7% 

and 4.84%, which is in well agreement with the calculated value of Py-BSZ-COF (C44H23N4S, C 

82.6%, H 3.6%, N 8.8%, S 5.0%). 

COF-JLU22 was prepared according to the literature method.44 After activation at 120 oC under 

vacuum, a red powder of COF-JLU22 was obtained in 76% yield. 

sp2c-COF-3 was prepared according to the literature method.54 After activation at 120 oC under 

vacuum, an orange powder of sp2c-COF-3 was obtained in 75% yield. 

Electrochemical measurements 

COF powder (6 mg) was ground with poly(vinylidene fluoride) (PVDF, 2 mg), then ultrasonically 

dispersed in 2 mL of acetone. The resultant slurry was then drop-casted onto indium tin oxide (ITO) 

glass with an area of 0.5 × 0.5 cm2. A Pt wire (counter electrode), a Ag/AgCl electrode (reference 

electrode), and a coated ITO conductive glass (working electrode) were assembled into a three-

electrode system with 0.2 M Na2SO4 aqueous solution was used as the electrolyte. The Mott-

Schottky plots were collected in dark at different frequencies. The photocurrent measurements 
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 6 

were conducted under the irradiation of a 300 W xenon lamp (100 mW cm–1) with a 420 nm cut-

off filter under a nitrogen or oxygen saturated atmosphere. For cyclic voltammetry (CV) tests, the 

working electrode was prepared by dropping the prepared suspension onto a glassy carbon 

electrode, then CV experiments were carried on a three-electrode system (saturated calomel 

electrode as the reference electrode, platinum wire as the counter electrode, glassy carbon electrode 

as the working electrode) in nitrogen saturated 0.1 M tetrabutylammonium hexafluorophosphate 

acetonitrile solution with a scan rate of 50 mV s–1. 

To investigate the possible influence of the Pt diffusion, all the electrochemical tests were 

conducted by using a graphite rod as the counter electrode under the same experimental conditions. 

Electron spin resonance (ESR) measurements 

ESR experiments were conducted in a mixture of 1 mg mL–1 Py-BSZ-COF and 0.1 M DMPO air-

saturated acetonitrile suspension in dark or irradiated by 300 W xenon lamp (100 mW cm–1) with 

a 420 nm cut-off filter. 

Results and Discussion 

The highly crystalline Py-BSZ-COF was obtained by the condensation of 1,3,6,8-tetrakis(4-

formylphenyl)pyrene (Py-4CHO) and 4,4’-(benzothiadiazole-4,7-diyl)diacetonitrile (BSZ-2CN) 

in a mixture of o-dichlorobenzene and 1 M TBAH at 120 °C for 72 h, which afforded an orange 
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 7 

powder in 81% yield (Figure 1). The chemical structure of Py-BSZ-COF was first demonstrated 

by the existence of C=C–H and C≡N stretching bands at around 3030 cm–1 and 2214 cm–1 and the 

attenuation of the C=O stretching band at 1697 cm–1 in Fourier transform infrared (FT-IR) 

spectrum (Figure 2a). A broad peak with several close shoulders from 120 to 140 ppm can be 

assigned to the aromatic carbons and ethylene carbons of Py-BSZ-COF in 13C CP-MAS NMR 

spectrum. A weak carboxylic carbon at ~180 ppm could be observed, which is due to the partially 

oxidation of the residue aldehyde groups in the COF (Figure S1).  

 

Figure 1. a) The synthetic condition of Py-BSZ-COF. b) Top and c) side views of the structural 

model of Py-BSZ-COF (C, gray; N, blue; S, yellow; H, white). 

The PXRD pattern revealed that Py-BSZ-COF is highly crystalline with diffraction peaks at 2.7o, 

5.5o, 8.3o, 11.1o and 24.0o, which are assignable to (110), (220), (400), (440) and (001) facets, 

respectively. Structural models with AA and AB stacking were constructed by Materials Studio 

(Figure 1 and S2). The simulated PXRD pattern of the eclipsed AA stacking model was in good 
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 8 

agreement with the experimental PXRD, while the AB stacking model did not (Figure 2b). In 

addition, the Pawley refinement was performed on the experimental PXRD pattern of Py-BSZ-

COF, which resulted in cell unit parameters of a = 51.3 Å, b = 42.5 Å, c = 3.8 Å, and α = γ = 90o, 

β = 96.6o with a negligible difference of Rwp = 3.70% and Rp = 2.86%.  

 

Figure 2. a) FT-IR spectra of Py-BSZ-COF, BSZ-2CN and Py-4CHO. b) Experimentally observed 

PXRD pattern, Pawley refinement and their difference of Py-BSZ-COF (red, purple dots, black), 

the simulated PXRD patterns of the AA stacking model (blue) and the AB stacking model (green). 
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 9 

c) N2 isotherm of Py-BSZ-COF at 77 K, inset: pore width distribution and cumulative pore volume 

of Py-BSZ-COF. d) HR-TEM image of Py-BSZ-COF. 

The porosity of Py-BSZ-COF was investigated by the N2 adsorption isotherm at 77 K (Figure 2c). 

The Brunauer–Emmett–Teller (BET) surface area was evaluated to be 600 m2 g–1 with a total pore 

volume of 0.33 cm3 g–1 at P/P0 = 0.98. The pore size of Py-BSZ-COF was estimated to be 2.4 nm 

by nonlinear density functional theory (NLDFT), which consists well with pore width predicted 

by the structural model. Scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM) images show that Py-BSZ-COF has a belt-like morphology (Figure S3 and S4). 

High resolution transmission electron microscopy (HR-TEM) of Py-BSZ-COF reveals a clear 

lattice fringe of 2.41 nm, which is close to the pore size calculated from the nitrogen isotherm 

(Figure 2d). In addition, the energy dispersive spectroscopy (EDS) mapping of Py-BSZ-COF 

shows a homogeneous distribution of carbon, nitrogen and sulfur elements in the particles (Figure 

S5). 

Due to the irreversible nature of ethylene linkage, Py-BSZ-COF offers high thermal-, chemical- 

and photo- stability, which is stable over 400 °C and remains crystallinity, structural intact and 

porosity after immerse in 12 M HCl, 12 M NaOH and boiling water or illuminate under 15 W 

white LED bulb in a CH3CN suspension for at least 3 days as determined by the comparison of the 

PXRD patterns, FT-IR spectra and N2 isotherm at 77 K before and after the treatments (Figure S6–

S9). The high stability of Py-BSZ-COF makes it a promising candidate in photocatalysis. 
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 10 

 

Figure 3. a) Solid state UV−vis diffuse reflectance spectra (red), inset: Tauc plot of Py-BSZ-COF 

(blue). b) The Mott-Schottky plots of Py-BSZ-COF. c) The band energy diagram of Py-BSZ-COF. 

d) Photocurrent responses spectra of Py-BSZ-COF under nitrogen or oxygen atmosphere. 

The UV−vis diffuse reflection spectrum of Py-BSZ-COF exhibits a broad visible adsorption range 

up to 600 nm. The optical band gap of Py-BSZ-COF is calculated to be 2.24 eV by using the Tauc 

plot (Figure 3a). The cyclic voltammetry of Py-BSZ-COF shows a reversible half wave potential 

(E1/2) at 1.47 V vs. NHE (Figure S10), which can be assigned to the Py-BSZ-COF+/Py-BSZ-COF 
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 11 

couple. To determine the positions of the conduction band (CB) and valence band (VB), the 

electrochemical Mott-Schottky spectra and VB X-ray photoelectron spectroscopy (VB-XPS) of 

Py-BSZ-COF were measured. The Mott-Schottky plot of Py-BSZ-COF has a positive slope, which 

suggests an n-type semiconductor behavior. For an n-type semiconductor, the CB position is close 

to its flat band potential.69 Therefore, the CB position of Py-BSZ-COF is estimated to be –0.68 V 

vs. NHE at pH = 7 (Figure 3b and S11). The VB edge of Py-BSZ-COF is determined by the VB-

XPS spectrum, which is located at 1.53 eV (Figure S12). The band gap of Py-BSZ-COF calculated 

from the Mott-Schottky plots and VB-XPS spectrum is 2.21 eV, which is quite closed to the optical 

band gap. To rule out the possible of Pt diffusion during the electrochemical experiments, we also 

tested the cyclic voltammetry, Mott-Schottky spectra of Py-BSZ-COF by using a graphite rod as 

the counter electrode under the same conditions. The reversible half wave potential (E1/2) and CB 

position of Py-BSZ-COF determined from the graphite counter electrode are quite close to that of 

the Pt electrode, which are 1.45 V and –0.67 V vs. NHE at pH = 7, respectively (Figure S10 and 

S11). Combine all the evidence, the CB of Py-BSZ-COF (–0.68 V vs. NHE) is negative than the 

potential required for the reduction of O2 to superoxide radical (–0.33 V vs. NHE), which makes 

Py-BSZ-COF a potential photocatalyst in generating critical superoxide radical (O2
•–) intermediate 

(Figure 3c). The photo-generation of superoxide radical in solution with Py-BSZ-COF was probed 

by electron spin resonance (ESR) spectra. Upon light irradiation of Py-BSZ-COF with 5,5-

dimethyl-1-pyrroline-N-oxide (DMPO) in an air-saturated CH3CN, the intensity of the 

characteristic peaks of typical DMPO−O2
•– adduct were increased by prolonging the illumination 
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 12 

time (Figure S13). The existence of O2
•– in an irradiated Py-BSZ-COF suspension is also confirmed 

by the reduction of a yellow colored nitro blue tetrazorium (Figure S14).70 In addition, the transient 

photocurrent responses of Py-BSZ-COF over several on-off photoirradiation cycles show high 

photo-induced charge separation under both nitrogen and oxygen atmosphere. The photocurrent 

of Py-BSZ-COF under nitrogen is higher than that under oxygen atmosphere, which could arise 

from the quenching of the photo-generated electrons by oxygen to generate superoxide radical 

anion. (Figure 3d and S15). 

Table 1. Control experiments of the photocatalytic oxidative amine coupling of benzylamine.a 
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 13 

a Reaction conditions: benzylamine (0.2 mmol), photocatalyst (5 mg), 2 mL CH3CN, 1 atm air, 12 

h and 15 W 520 nm LED bulb (5 mW cm–2). b Determined by 1H NMR spectroscopic analysis. c 

In the dark. d Under Ar environment. e L-histidine used as 1O2 radical scavenger. f Catalase used as 

H2O2 scavenger. g Isopropanol used as •OH radical scavenger. h p-benzoquinone used as O2
•– radical 

scavenger. i AgNO3 used as electron scavenger. j KI used as hole scavenger. k Partly decomposed 

during the photocatalysis. 

Oxidative amine coupling  

Imines are important intermediates in organic synthesis and widely used to synthesize dyes, drugs, 

and agrochemicals.71 The direct synthesis of imine from amine under photocatalytic condition has 

attracted great attention in recent years.72-75 Considering the significant superoxide radical 

generating ability and the ideal band gap, the activated Py-BSZ-COF was first tested for the 

oxidative amine coupling reaction by using benzylamine as the substrate to optimize the reaction 

condition. When benzylamine (0.2 mmol) and Py-BSZ-COF (5 mg) in 2 mL of CH3CN was 

irradiated over a 15 W 520 nm LED bulb (5 mW cm–2) under air at room temperature, the formation 

of N-benzyl-1-phenylmethanimine was observed with 99% conversion (Table 1, entry 1). A series 

of control experiments demonstrated that the photocatalyst Py-BSZ-COF, oxygen and light are all 

indispensable reaction conditions, otherwise little or trace conversion can be observed (Table 1, 

entries 2–4). To determine the key intermediate in the photocatalytic transformation, a series of 

trapping agents with different quenching targets has been added to the reaction mixture. The 
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 14 

addition of L-histidine (L-His), catalase (CAT) and isopropanol (IPA) shows negligible decrease 

of the reaction yield, which rules out the existence of 1O2, H2O2 and •OH during the photocatalysis 

(Table 1, entries 5–7). After adding p-benzoquinone (Bq), a typical O2
•– scavenger, the reaction 

yield was significantly reduced from 99% to 28%. These quenching experiments suggest that O2
•– 

is the predominant radical in this reaction (Table 1, entry 8). The addition of AgNO3 can fully 

quench photo-generated electrons, which completely inhibits the reaction (Table 1, entry 9). 

Furthermore, by using KI as the hole scavenger, only 38% of benzylamine converted to the 

corresponding imine, which indicated the photo-generated holes are also important in the amine 

coupling reaction (Table 1, entry 10). 

To study the donor and acceptor behavior of Py-BSZ-COF, two iso-reticular COFs with 

benzothiazole in the imine linked COF-JLU22 and without benzothiazole in the olefin bridged 

sp2c-COF-3 were synthesized and fully characterized (Figure S16–S25). The UV-vis diffuse 

reflection spectrum of Py-BSZ-COF is significantly red-shifted as compared to sp2c-COF-3 with 

maximum absorption and absorption onset quite close to the benzothiazole incorporated COF-

JLU22 (Figure S26 and S27). Photoluminescence (PL) spectra reveal a weaker fluorescence 

intensity of Py-BSZ-COF as compared to sp2c-COF-3 and COF-JLU22 (Figure S28). Time-

resolved PL spectra demonstrate a longer fluorescence lifetime of Py-BSZ-COF (1.6 ns) as 

compared with sp2c-COF-3 (1.2 ns) and COF-JLU22 (1.1 ns). The weaker PL emission and longer 

fluorescence lifetime of Py-BSZ COF clearly demonstrated that the recombination of photo-
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 15 

generated excitons was inhibited (Figure S29). In addition, the introduction of benzothiazole in 

the fully conjugated Py-BSZ-COF provides an improved charge separation, which generates 

higher transient photocurrent responses compared to both sp2c-COF-3 and COF-JLU22 under 

nitrogen or oxygen atmosphere (Figure S30 and S31). Similarly, the photocurrent responses were 

also conducted with a graphite counter electrode to eliminate the possible influence of Pt electrode. 

The photocurrents of Py-BSZ-COF are higher than sp2c-COF-3 and COF-JLU22 under both 

nitrogen and oxygen atmosphere. All three COFs also exhibit decreased photocurrents under 

oxygen atmosphere, which were in accordance with the results by using a Pt electrode (Figure 

S15b, S30b and S31b). As a result, the iso-reticular sp2c-COF-3 only affords a moderate yield of 

67% (Table 1, entry 11). Similar D-A structure in an imine linked COF-JLU22 has a comparable 

yield with the Py-BSZ-COF (Table 1, entry 12). However, COF-JLU22 partly decomposed in the 

process of photocatalysis due to the dynamic imine exchange between COF-JLU22 and 

benzylamine, and the exchange product was observed in 1H NMR (Figure S32).  

With the optimal photocatalyst, we expand the substrate scope to various benzylamine with 

different functional groups. High conversion (> 99%) and selectivity (> 98%) were obtained for 

4-substituted benzylamine with electron donating groups such as Me-, MeO- and electron 

withdrawing groups like F-, Cl-, Br-, CF3- and CN- (Table 2). CN- in 4-substituted benzylamine 

slows down the reaction rate and lowers the conversion, which may due to the strong electron-

withdrawing effect of the cyano group in destabilizing the cationic radical intermediate.76 The 
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 16 

conversion of 4-cyanobenzylamine to 2h can increase from 52% to 84% by prolonging the reaction 

time to 24 h. Moreover, heterocyclic amine like 2-thiophenemethanamine can completely convert 

to imine 2i in nearly quantitative yield. The Py-BSZ-COF catalyst has a high recyclability with 

conversion and selectivity both over 98% after four consecutive runs (Figure S33 and S34). The 

PXRD and FT-IR spectra of Py-BSZ-COF after three cycles remain the same as the pristine one, 

which suggest high photostability of Py-BSZ-COF during the catalysis (Figure S35). 

Table 2. Heterogeneous photocatalytic oxidative coupling of diverse amines.a 
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a Reaction conditions: amine (0.2 mmol), photocatalyst (5 mg), 2 mL CH3CN, 1 atm air and 15 W 

520 nm LED bulb (5 mW cm–2). Conversion (red) and selectivity (blue) are determined by 1H 

NMR spectroscopic analysis. 

Oxidative cyclization of thioamide to 1,2,4-thiadiazole  

Compounds containing 1,2,4-thiadiazole are biologically and pharmaceutically important.77 

Pharmaceuticals with 1,2,4-thiadiazole as the key scaffold exhibit promising activity in 

suppressing inflammation, central nervous system activity and antibiotic action, such as the most 

famous commercially available antibiotic cefozopram.78 Most of the synthetic routes available for 

1,2,4-thiadiazoles rely on the oxidative cyclization of thioamides by various oxidants such as 

DDQ,79 iodate80 and phosphovanadomolybdic acid.81 Here, Py-BSZ-COF was explored as a 

photocatalyst to oxidative cyclization of thioamide due to its outstanding capability to generate 

O2
•–. When the thioamide (0.4 mmol) and catalytic amount of Py-BSZ-COF (10 mg) in 4 mL of 

DMF was illuminated with a 15 W white LED bulb (11 mW cm–2) under air at room temperature, 

3,5-diphenyl-1,2,4-thiadiazole was obtained in 90% yield (Table 3, entry 1). Control experiments 

showed that the light, oxygen, and Py-BSZ-COF are all essential (Table S1, entries 2–4). In 

addition, radical scavenger experiments suggest that O2
•– is also the predominant radical in the 

oxidative cyclization of thioamide (Table S1, entries 5-8). A variety of thioamides can be 

converted to 1,2,4-thiadiazoles in moderate to good yield under mild condition. The oxidative 

cyclization of thioamides with electron donating groups like Me- and MeO- provides good yields 
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over 87%, while the electron withdrawing groups lead to a slightly lower yield (Table 3). 

Heterocyclic thioamide like 2-thiophenecarboxamide can also be cyclized in satisfying yield of 

84%. The recyclability of Py-BSZ-COF in oxidative cyclization of thioamide was also tested in 

four consecutive cycles, after which the isolated yield of 3,5-diphenyl-1,2,4-thiadiazole reduced 

slightly from 90% to 84% possibly due to the loss of photocatalyst during the recycling 

experiments (Figure S28). Same as in the photocatalytic amine coupling, Py-BSZ-COF also 

exhibits high photostability in the oxidative cyclization of thioamide as the PXRD and FT-IR 

spectra of Py-BSZ-COF remain unchanged after three reuses (Figure S36).  

Table 3. Heterogeneous photocatalytic oxidative cyclization of diverse thioamides to 1,2,4-

thiadiazoles.a 
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a Reaction conditions: thioamide (0.4 mmol), photocatalyst (10 mg), 4 mL DMF, 1 atm air, and 15 

W white LED bulb (11 mW cm–2). Isolated yield after chromatography over silica. 
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Figure 4. The plausible photocatalytic mechanisms of Py-BSZ-COF mediated oxidative amine 

coupling and cyclization of thioamide to 1,2,4-thiadiazole.  

Reaction mechanism 

Based on the above experiments and literature reports,72, 82-87 tentative reaction mechanisms for the 

oxidative amine coupling and cyclization of thioamide to 1,2,4-thiadiazole were proposed (Figure 

4). Py-BSZ-COF is first photo-excited to Py-BSZ-COF* under visible light. The photo-generated 

electrons in Py-BSZ-COF* reduce molecular oxygens to superoxide radicals. At the same time, 

the resulted Py-BSZ-COF+ oxidizes amine to amine radical anion 1 and regenerates the Py-BSZ-

COF. The O2
•– abstracts a H+ and a hydrogen atom from 1 to give the key intermediate 

phenylmethanimine 2. After that, two paths are possible. In path A, intermediate 2 is attacked by 
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another molecule of benzylamine to give an aminal 3. After the loss of NH3, the final product N-

benzyl-1-phenylmethanimine is produced. In path B, intermediate 2 is hydrolyzed to afford the 

benzaldehyde 4, which subsequently condensed with another molecule of amine to yield the final 

product. We could detect the existence of benzaldehyde 4 with gas chromatography/mass 

spectrometer (GC/MS), thus path B is more likely to happen in our system (Figure S37). Similarly, 

the Py-BSZ-COF+ could also oxidize thioamide to a thioamide radical cation 5. Two radical 

isomers 6 and 7 are formed with the proton removal and linked to give a dimer 8. The final 1,2,4-

thiadiazole was obtained through the intramolecular cyclization of dimer 8 and aromatization of 9 

with the help of superoxide radical anion. 

Conclusion 

A benzothiazole-containing D-A covalent organic framework with fully conjugated ethylene 

linkage was designed and synthesized in high crystallinity and high yield. The introduction of 

benzothiazole to the framework induces the red-shift of the visible light absorption and the fast 

separation of photo-generated charges. The resultant D-A Py-BSZ-COF can produce superoxide 

radical anion (O2
•–) for the photocatalytic oxidative amine coupling and cyclization of thioamide 

to 1,2,4-thiadiazole with broad substrate scope, good yield and high recyclability. 
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Figure 1. a) The synthetic condition of Py-BSZ-COF. b) Top and c) side views of the structural model of Py-
BSZ-COF (C, gray; N, blue; S, yellow; H, white). 
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Figure 2. a) FT-IR spectra of Py-BSZ-COF, BSZ-2CN and Py-4CHO. b) Experimentally observed PXRD 
pattern, Pawley refinement and their difference of Py-BSZ-COF (red, purple dots, black), the simulated 

PXRD patterns of the AA stacking model (blue) and the AB stacking model (green). c) N2 isotherm of Py-
BSZ-COF at 77 K, inset: pore width distribution and cumulative pore volume of Py-BSZ-COF by NLDFT. d) 

HR-TEM image of Py-BSZ-COF. 
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Figure 3. a) Solid state UV−vis diffuse reflectance spectra (red), inset: Tauc plot of Py-BSZ-COF (blue). b) 
The Mott-Schottky plots of Py-BSZ-COF. c) The band energy diagram of Py-BSZ-COF. d) Photocurrent 

responses spectra of Py-BSZ-COF under nitrogen or oxygen atmosphere. 
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Table 1. Control experiments of the photocatalytic oxidative amine coupling of benzylamine. 
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Table 2. Heterogeneous photocatalytic oxidative coupling of diverse amines. 
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Table 3. Heterogeneous photocatalytic oxidative cyclization of diverse thioamides to 1,2,4-thiadiazoles. 
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Figure 4. The plausible photocatalytic mechanisms of Py-BSZ-COF mediated oxidative amine coupling and 
cyclization of thioamide to 1,2,4-thiadiazole. 
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