SYNTHESIS AND PROPERTIES OF N-METHYL-MORPHOLINIUM 6-METHYL-4-(4-PYRIDYL)-5-PHENYLCARBAMOYL-3-CYANO-1,4-DIHYDRO-PYRIDINE-2-THIOLATE

S. G. Krivokolysko, V. D. Dyachenko, and V. P. Litvinov

Condensation of acetoacetic acid anilide, 4-pyridyl aldehyde, cyanothioacetamide and N-methylmorpholine gave N-methylmorpholinium 6-methyl-4-(4-pyridyl)-5-phenylcarbamoyl-3-cyano-1,4-dihydropyridine-2-thiolate from which were obtained the corresponding substituted pyridinethiones, 2-alkylthio-1,4-dihydropyridines and 3-amino-2-benzoyl-6-methyl-4-(4-pyridyl)-5-phenylcarbamoylthieno[2,3-b]pyridine.

Derivatives of 3-cyano-2(1H)-pyridine-chalkogenones with 4-pyridyl substituents are known to have cardiotonic properties [1-5]. Methods for their synthesis include interaction of 4-pyridylmethylenecyanothioacetamide with acetylacetone [6] or acetoacetic ester [7]. the reaction of 5-(4-pyridyl) substituted 2-chloro-3-cyanopyridines with sodium alkoxides [8] and the interaction of α,β -enaminoketones with cyanothioacetamide [9].

VI, VIIa Hal = Cl, Z = Ph; b Hal = Cl, Z = CONH₂; c Hal = I, Z = $(CH_2)_4CH_3$ d Hal = Cl, Z = PhNHCO; e Hal = I, Z = H; f Hal = Cl, Z = 4-BrC₆H₄NHCO; g Hal = I, Z = CH₃; h Hal = Br, Z = Et; i Hal = Br, Z = 4-ClC₆H₄

T. G. Shevchenko Lugansk Pedagogical Institute, Lugansk 348011. N. D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 117913. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 672-675, May, 1997. Original article submitted September 24, 1996.

TABLE 1. ¹H NMR and IR Spectra of Compounds VIIa-i

H NMR spectrum, ô, ppm	SCH ₂ 6-CH ₅ , S Z		4,30 s 2,10 6,98 m (Ph)		3,01 m 2,13 1,26 m ((CH ₂)4), 0,87 t (CH ₃)	3,99 s 2,12 10,39 s (CONH), 7,20 (Ph)	2,63 [†] s 2,09	3,97 s 2,11 10,50 s (CONH), 7,56 (C ₆ H ₄)		2,97 m 2,10 0,95 t (CH ₃), 1,54 m (CH ₂)	4,30 s 2,11 7,01 m (C ₆ H ₄)
	4-H, S		4,71	4,83	4,80	4,84	4,72	4,83	4,79	4,77	4,75
H NMR	Ph. m		7,32	7,27	7,20	7,20	7,20	7,25	7,24	7,20	7,35
	pyridyl	β and β' -H, d	7,51	09'L	7,55	09'L	7,49	7,56	7,49	7,53	7,45
		α and α′-H, d	8,46	8,53	8,54	8,47	8,68	8,48	8,53	8,51	8,49
	NH, S		9,28	9,74	9,27	19'6	61'6	9,53	9,28	9,28	9,31
	CONH, S		9,65	10,11	9,71	9,74	9,73	9,72	9,71	9,72	6,67
, cm ⁻¹	CONH		1670	1670	1665	1674	1650	1662	1675	1660	1673
IR spectrum, v, cm	CO		2190	21 92	2190	2188	2194	2200	2188	2190	2192
	풀		3300	3264, 3380	3284	3315	3300	3348	3330	3305	3330
	Com-			VIIb	VIIC	VIId	VIIe	VIIf	VIIB	VIIh	VII.i

*Signals overlap. †SCH₃ signal.

TABLE 2. Characteristics of the Compounds Synthesized, VIIa-i

Com- pound	Molecular formula		(Found, (Calculated	mp, °C (solvent for .	Yield,		
		С	н	И	s	recrystallization)) %
VIIa	C ₂₆ H ₂₂ N ₄ OS	71,10 71,21	4.95 5,06	12.84 12,78	7.50 7,31	150152 (i-PrOH)	79
VIIb	C21H19N5O2S	62,30 62,21	4.68 4,72	17.35 17,27	7.80 7,91	242244 (i-PrOH)	86
VIIc	C25H28N4OS	69,50 69,41	6.48 6,52	12.80 12,95	7.60 7,41	168170 (ethanol)	65
VIId	C27H23N5O2S	67.28 67,34	4.75 4,81	14.60 14,54	6.79 6,66	210212 (AcOH)	67
VIIe	C20H18N4OS	66,30 66,28	4.90 5,01	15.32 15,46	8.91 8,85	119121 (ethanol)	86
VIIIf	C27H22BrN5O2S	<u>57.92</u> 57,86	3,80 3,96	12.66 12,50	<u>5.65</u> 5,72	239241 (n-butanol)	75
VII g	C21H20N4OS	66.88 67,00	5,20 5,35	14.97 14,88	8,64 8,52	105107 (ethanol)	81
VIIh.	C22H22N4OS	67.57 67,67	<u>5.70</u> 5,68	14.39 14,35	8.10 8,21	139141 (ethanol)	78
VIIi	C ₂₆ H ₂₁ CIN ₄ OS	65,93 66,02	4.30 4,48	11.90 11,85	6.82 6,78	218220 (n-butanol)	69

In this work we have developed a method for the synthesis of the previously unknown N-methylmorpholinium 6-methyl-4-(4-pyridyl)-phenylcarbamoyl-3-cyano-1,4-dihydropyridine-2-thiolate (I) by the three component condensation of the anilide of acetoacetic acid (II), 4-pyridylaldehyde (III) and cyanothioacetamide (IV) in ethanol at 20°C in the presence of N-methylmorpholine. The structure of the I was confirmed spectroscopically. Its IR spectrum contained an absorption corresponding to a conjugated cyano group and another corresponding to the NHCO unit at 2188 and 1655 cm⁻¹ respectively. The ¹H NMR spectrum of the thiolate I contains signals for the hydrogens of the aromatic ring, the N-methylmorpholinium cation and the 6-CH₃ (see Experimental section) together with signals for the protons of the dihydropyridine ring at 9.28 (s, NH) and 4.57 ppm (s, 4-H).

Treatment of salt I with dilute aqueous hydrochloric acid gave the thione (V) which reacted with the halides (VIa-i) in DMF solution to give the corresponding 2-alkylthio-1,4-dihydropyridines (VIIa-i). Interestingly when phenacyl bromide was used as the alkylating agent only the bicyclic product, substituted thieno[2,3-b]pyridine (VIII), was obtained (method A). The same product was obtained when the thione V reacted with phenacyl bromide in the presence of KOH (method B).

The structures of compounds V, VII, and VIII are in agreement with ¹H NMR and IR spectroscopic results (see Experimental section, Table 1).

EXPERIMENTAL

 1 H NMR spectra of DMSO-D₆ solutions with TMS as internal standard were recorded on a Bruker WP-100 SU (100 MHz) instrument. IR spectra of Nujol mulls were recorded with an IRS-29 spectrometer. TLC was carried out on Silufol UV-254 strips with 3:5 acetone-heptane as eluant and development with iodine vapor.

N-Methylmorpholinium 6-Methyl-4-(4-pyridyl)-5-phenylcarbamoyl-3-cyano-1,4-dihydropyridine-2-thiolate (I). A mixture of 10 mmol of each of anilide II, aldehyde III and cyanothioacetamide (IV) and 15 mmol of N-methylmorpholine was stirred for 6 h at 20°C. The precipitate was filtered off and washed with ethanol and acetone to give compound I (4.0 g, 89%). mp 246-248°C. IR spectrum: 3150 (NH), 2188 (CN), 1655 cm⁻¹ (NHCO). 1 H NMR spectrum: 10.36, (1 H, s, NHCO), 9.28 (1 H, s, NH), 8.47 (2 H, d, α and α' -H_{py}), 7.48 (2 H, d, β and β' -H_{py}), 7.20 (5 H, m, H_{ph}), 4.57 (1 H, s, 4-H), 3.75 (4 H, m, CH₂OCH₂), 3.09 (4 H, m, CH₂NCH₂), 2.72 (3 H, s, NCH₃), 2.09 ppm (3 H, s, 6-CH₃). Found, %: C 64.00, H 5.90, N 15.64, S 7.22. $C_{24}H_{27}N_5O_2S$. Calculated, %: C 64.12, H 6.05, N 15.58, S 7.13.

6-Methyl-4-(4-pyridyl)-5-phenylcarbamoyl-3-cyanopyridine-2(1H)thione (V). A suspension of salt I (10 mmol) in ethanol (15 cm³) was diluted with aqueous hydrochloric acid to pH 3 with stirring, and filtered. The precipitate, which developed over 24 h, was filtered off and washed with ethanol and hexane to give V (yield 2.46 g, 71%). mp 301-303°C. IR spectrum: 3360 (NH), 2230 (CN), 1648 cm⁻¹ (NHCO). ¹H NMR spectrum: 10.36 (1 H, s, NHCO), 8.67 (2 H, d, α and

 α' -H_{Py}), 7.45 (2 H, d, β and β' -H_{Py}), 7.26 (5 H, m, H_{Ph}), 2.48 ppm (3 H, s, CH₃). Found, %: C 65.81, H 3.98, N 16.24, S 9.16. C₁₀H₁₄N₄OS. Calculated, %: C 65.88, H 4.07, N 16.17, S 9.26.

6-Methyl-2-(Z-methylthio)-4-(4-pyridyl)-5-phenylcarbamoyl-3-cyano-1,4-dihydropyridines (VIIa-i). A halide VI (10 mmol) was added to a suspension of salt I (10 mmol) in DMF (10 cm³), the mixture was stirred for 4 h and then diluted with water (10 cm³). The precipitate was filtered off and washed with water, ethanol and hexane to give compounds VIIa-i, whose characteristics are given in Tables 1 and 2.

3-Amino-2-benzoyl-6-methyl-4-(4-pyridyl)-5-phenylcarbamoylthieno[2,3-b]pyridine (VIII). Method A. Product VIII was obtained from phenacyl bromide by the method described above for the synthesis of compounds VII: yield 3.5 g (75%). IR spectrum: 3150-3300 (NH₂), 1665 cm⁻¹ (NHCO). ¹H NMR spectrum: 10.47, (1 H, s, NHCO), 8.74 (2 H, d, α and α' -H_{Py}), 7.80 (2 H, d, β and β' -H_{Py}), 7.10-7.65 (10 H, m, H_{Ph}), 6.75 ppm (2 H, br.s, NH₂). Found, %: C 69.98, H 4.22, N 11.88, S 7.02. C₂₇H₂₀N₄O₂S. Calculated, %: C 69.81, H 4.34, N 12.06, S 6.90.

Method B. 10% Aqueous KOH (5.6 cm³, 10 mmol) was added with stirring to a suspension of thione V (10 mmol) in DMF (10 cm³) and then phenacyl bromide (10 mmol) was added over 1 min and the mixture was stirred for 4 h. The mixture was then diluted with water (10 cm³) and the precipitate which formed was filtered off and washed with water, ethanol and hexane to give compound VII identical to that prepared by method A (no depression with a mixed melting point).

REFERENCES

- 1. H. Landmann and H. Lowe, Pharmazie, 41, 169 (1986).
- 2. V. Handfeld, S. Leistner, D. Lohmann, H. Poppe, and S. Heer, Pharmazie, 44, 12 (1989).
- 3. Kh. Okusima, A. Narimanu, and N. Simokota, Jpn. Pat. 58-15914; Ref. Zh. Khim., 120117P (1984).
- 4. A. Rumler, V. Hagen, and A. Hagen, Pharmazie, 45, 657 (1990).
- 5. E. Klauschenz, V. Hagen, A. Hagen, and S. Heer, Pharmazie, 45, 628 (1990).
- 6. A. Krauze and G. Duburs, Latv. Kim. Z., No. 1, 928 (1994).
- 7. A. A. Krauze, É. É. Liepin'sh, Yu. É. Pelcher, Z. A. Kalme, and G. Ya. Dubur, Khim. Geterotsikl. Soedin., No. 5, 630 (1986).
- 8. V. Hagen, E. Klauschenz, A. Rumler, A. Hagen, S. Heer, R. Mitzner, H. Niedrich, and D. Lohmann, Pharmazie, 45, 189 (1990).
- 9. V. Hagen, A. Rumler, G. Reck, A. Hagen, D. Labes, and S. Herr, Pharmazie, 44, 809 (1989).