International Edition: DOI: 10.1002/anie.201508804 German Edition: DOI: 10.1002/ange.201508804

Metal-Free Ring-Expansion Reaction of Six-membered Sulfonylimines with Diazomethanes: An Approach toward Seven-Membered Enesulfonamides

An-Jie Xia⁺, Tai-Ran Kang,* Long He,* Lian-Mei Chen, Wen-Ting Li⁺, Jin-Liang Yang,* and Quan-Zhong Liu*

Abstract: A new metal-free, ring-expansion reaction of sixmembered N-sulfonylimines with unstable diazomethanes, generated in situ from the N-tosylhydrazones, has been developed. This reaction delivers valuable seven-membered enesulfonamides by a Tiffeneau–Demjanov rearrangement and intramolecular proton transfer tautomerization process. Moreover, this ring-expansion reaction can be carried out in a one-pot fashion and scaled up to the gram scale by using aryl aldehydes, without the need to isolate the N-tosylhydrazone.

Seven-membered sulfonamides or sulfamates are found to possess prominent biological activities,^[1] such as, calcium sensing receptor agonists,^[1c] HIV-1 protease inhibiters,^[1d] and ASBT inhibitors.^[1e] In addition, they are also used as synthetic intermediates for the synthesis of biologically active molecules.^[1c,2-5] Despite being appealing structural motifs, only few metal-catalyzed methods for the synthesis of these compounds have been reported.^[1f,2-5] Major synthetic methods consist of: 1) Rhodium- or iron-catalyzed intramolecular allylic C-H amination;^[2] 2) Rhodium-catalyzed intramolecular alkyne or allene amination;^[3,4] 3) Copper-catalyzed intramolecular nucleophilic ring-opening of sulfamate-derived aziridines;^[5] 4) Scandium- or lutetium-catalyzed haloaminocyclization of primary sulfamate ester derivatives.^[1f] Despite great achievements in metal-catalyzed reactions, the discovery of efficient metal-free reactions will also be of great importance because of the reduced toxicity and elimination of the cost of the metal.^[9a] For these reasons, the metal-free reaction is highly desirable, and indeed, significant progress

[*] Dr. A.-J. Xia,^[+] Prof. Dr. T.-R. Kang, Prof. Dr. L. He, Prof. Dr. L.-M. Chen, Prof. Dr. Q.-Z. Liu Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, Collaborative Innovation Center of Tissue Repair Material of Sichuan Province, China West Normal University Nanchong, 637009 (China) E-mail: kangtairan@sina.com longhe@cwnu.edu.cn quanzhongliu@sohu.com
Prof. Dr. T.-R. Kang, Dr. W.-T. Li,^[4] Prof. Dr. J.-L. Yang State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Cancer Center, West China Hospital Sichuan University, Chengdu (P.R. China) E-mail: jlyang01@163.com

[⁺] These authors contributed equally to this work.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201508804. has been made in the past years.^[6,8–10] The metal-free coupling reactions of diazo compounds generated in situ from Ntosylhydrazones under basic reaction conditions (Bamford– Stevens reaction)^[7] have appeared in the recent literature.^[8] In pioneering studies, Barluenga, Valdés, and co-workers discovered metal-free reductive cross-coupling of boronic acids,^[9a] phenols, and alcohols^[9b] with N-tosylhydrazones. The group of Wang also reported a metal-free reaction to convert N-tosylhydrazones into pinacol boronates.^[10]

The diazo carbon insertion into either a keto C–C bond or formyl C–H bond is a valuable tool in organic synthesis.^[11,12] For example, the Lewis acid catalyzed ring-expansion reaction of cyclohexanones with diazo compounds have become a classical strategy for synthesis of seven-membered rings through the Tiffeneau–Demjanov rearrangement (Scheme 1 a).^[13,14] Although it is clear that the reaction between

 $\label{eq:scheme1} \begin{array}{l} \mbox{Scheme1.} \end{tabular} \mbox{The ring-expansion reaction of cyclohexanone or cyclic} \\ \mbox{N-sulfonylimine.} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular}$

acyclic N-tosylimines and acyldiazomethanes could afford Ntosyldiazoketamines^[15a] or N-tosylaziridines^[15b] under various reaction conditions (Scheme 1b), we reasoned that if the ringexpansion reaction were conducted with a six-membered imine, the resulting product might form a seven-membered imine, based on a similar Tiffeneau–Demjanov rearrangement mechanism under certain reaction conditions (Scheme 1c).

The ring-expansion reactions between cyclic ketones and diazo compounds have been widely used in organic synthesis.^[16] However, to the best of our knowledge, there has been no systematic study on the ring-expansion reaction of

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

cyclic imines with diazo compounds so far. Herein, we report a metal-free ring-expansion reaction of six-membered imines with diazomethanes, thus providing a new and promising route to seven-membered enesulfonamides.

To test our hypothesis, we employed the N-tosylhydrazone **1a** and benzoxathiazine 2,2-dioxide **2a**^[17] as model substrates (for structures see Table; see Table S1 in the Supporting Information). After some optmization work (entries 1–12), it was found that the best yield of the expected seven-membered sulfonamide **3a** was achieved by employing Cs_2CO_3 as a base in 1,4-dioxane at 60 °C (entry 2). It should be noted that the diazoketamine and aziridine products were not found.

With the optimal reaction conditions established, a variety of N-tosylhydrazones (1) derived from aldehydes and benzoxathiazine 2,2-dioxides (2) were subjected to the ringexpansion reaction (Table 1). The electronic nature of substituents on the aryl ring attached on the α -position of N-tosylhydrazone had no apparent effects on the reaction. Aromatic groups bearing electron-donating and electron-

оо н

Table 1: Reaction scope of the N-tosylhydrazones.[a]

0,0

	H H H H H H H H H H H H H H H H H H H				
	1 2	Αι, ου	R ¹		
Entry	R ¹	R ²	3	Yield [%] ^[b]	
1	Ph	Н	3 a	87	
2	$4-FC_6H_4$	Н	3 b	95	
3	4-CIC ₆ H ₄	Н	3 c	94	
4	$4-BrC_6H_4$	Н	3 d	92	
5	4-CF ₃ C ₆ H ₄	Н	3 e	89	
6	4-CNC ₆ H ₄	Н	3 f	90	
7	4-NO ₂ C ₆ H ₄	Н	3 g	88	
8	4-MeC ₆ H ₄	Н	3 h	70	
9	4-MeOC ₆ H ₄	Н	3 i	64	
10	$3-BrC_6H_4$	Н	3 j	78	
11	3-MeC ₆ H ₄	Н	3 k	62	
12	3-MeOC ₆ H ₄	Н	31	60	
13	2-CIC ₆ H ₄	Н	3 m	68	
14	$2-BrC_6H_4$	Н	3 n	65	
15	2-MeOC ₆ H ₄	Н	3 o	63	
16	1-naphthyl	Н	3 p	81	
17	3-thienyl	Н	3 q	45	
18	2-thienyl	Н	-	_[c]	
19	2-furanyl	Н	-	_[c]	
20	Ph	Me	3 r	64	
21	$4-BrC_6H_4$	Me	3 s	70	
22	3-BrC ₆ H ₄	Me	3t	67	
23	<i>n</i> Bu	Н	-	_[d]	
24 ^[e]	CH ₂ N ₂	Н	3 u	99	
25 ^[e]	CH_2N_2	Me	3 u	98	
26 ^[f]	CH_3CHN_2	Me	3 v	90	

[a] Reaction conditions: N-tosylhydrazone (1; 0.21 mmol), cyclic Nsulfonylimine (2; 0.2 mmol), and Cs₂CO₃ (75 mol%) in 0.5 mL of 1,4dioxane at 60 °C for 8–16 h under argon. [b] Yield of isolated product. [c] Other products were obtained; see the Supporting Information. [d] No new products were detected. [e] The CH₂N₂ was used. See the Supporting Information for details. [f] The CH₃CHN₂ was used. See the Supporting Information for details.

withdrawing substituents were tolerated. The higher reactivity of the substrates containing an electron-withdrawing group at the 4-position of the aryl ring could lead to formation of the products in higher yields (3b-g). Steric hindrance had a slight effect on this transformation, both ortho- and meta-substituted phenyl N-tosylhydrazones presented lower reactivity and led to the formation of the products in moderate yields (3j-o). Notably, 1-naphthyl Ntosylhydrazone participated in the reaction to give the corresponding product 3p in 81% yield. The heteroaromatic 3-thiophenyl N-tosylhydrazone provided the expected products 3q in 45% yields (entry 17), but the 2-furanyl or 2thiophenyl N-tosylhydrazones failed (entries 18-19). To our delight, when $R^2 =$ methyl, the corresponding products 3rt were afforded in moderate yield (entries 20-22). Using an Ntosylhydrazone derived from an aliphatic aldehyde as a substrate resulted in no new products (entry 23). Considering that the alkyl diazomethane generated in situ from the corresponding N-tosylhydrazones at 60°C are highly unstable, we turned to the direct utilization of alkyl diazomethanes. By using diazomethane as a substrate, the same sevenmembered product 3u was afforded at 0°C in excellent yield, irrespective of R² being a hydrogen or methyl group (entries 24 and 25). The use of diazoethane gave the product **3v** at room temperature in 90% yield (entry 26).

This reaction was not significantly affected by the substituents on the aromatic ring of the benzoxathiazine 2,2-dioxides 2 (Table 2). Although a slightly lower yield was observed when the substituent was 8-Me or 6,8-tBu (4h, 4i), both electron-donor and electron-withdrawing substituents were effective, thus giving the corresponding products 4 in moderate to good yield (4a–j). The reaction also worked well with a 1-naphthyl N-sulfonylimine (4k).

[a] Reaction conditions: N-tosylhydrazone **1a** (0.21 mmol), cyclic N-sulfonylimines **2** (0.2 mmol), Cs_2CO_3 (75 mol%) in 0.5 mL of 1,4-dioxane at 60°C for 8–16 h in argon. [b] Yield of isolated product.

1442 www.angewandte.org

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Communications

This ring-expansion reaction could be carried out in a one-pot fashion and scaledup to a gram scale from the aryl aldehydes 5 without the need to isolate the tosylhydrazone, thus affording the enesulfonamides 3 in similar yield (see the Supporting for Information details; selected examples are shown in Table 3).

Scheme 2. Proposed mechanism for the ring-expansion reaction.

Table 3: One-pot reaction of the aryl aldehydes 5 with cyclic N-sulfonylimine $2a^{[a]}$

[a] Reaction conditions: 1) aryl aldehyde **5** (0.21 mmol), tosylhydrazide (0.22 mmol) in MeOH (1 mL), at 60°C for 1–2 h; 2) cyclic N-sulfonylimine **2a** (0.2 mmol) and Cs₂CO₃ (75 mol%) in 1,4-dioxane (1 mL), at 60°C for 8–16 h under argon. [b] Yield of isolated product. [c] 10 mmol scale; see the Supporting Information for the reaction conditions.

Figure 1. X-ray structure of **30**; thermal ellipsoids shown at 30% probability.

The structure of **30** was confirmed by X-ray crystal structure analysis (Figure 1).^[18] Based on the Bamford–Stevens reaction^[7] and the mechanistic study reported by the groups of Barluenga^[9a] and Maruoka,^[15] the formation of **3a** is rationalized by a ring-expansion reaction as outlined in Scheme 2. The compound **1a** undergoes deprotonation to form the tosylhydrazone salt **A**. And the diazo compound **B** is generated by decomposition of **A**. From **B**, two pathways are possible: a) **B** could react with **2a** via a similar Tiffeneau–Demjanov-type intermediate **C**, and a rearrangement of the carbon skeleton with release of N₂, subsequently affords **F**. b) The carbene **D**, generated by thermally induced N₂ release, reacts with **2a** via a zwitterionic intermediate **E**, thus smoothly affording **F** by a rearrangement of the carbon

Scheme 3. Transformations of **3 a**. Boc = tert-butoxycarbonyl, dba = dibenzylideneacetone, DCC = dicyclohexylcarbodiimide, DCM = dichloromethane, THF = tetrahydrofuran.

skeleton. Finally, intramolecular proton transfer tautomerization of \mathbf{F} leads to the expected product 3a.

The synthetic versatility of the product 3a is demonstrated by a series of transformations (Scheme 3). Hydrogenation of 3a using Pd/C gave the cyclic sulfamate 6 in 90% yield. 2-(2-Amino-1-phenylethyl)phenol (7), which is an important structural unit in the agricultural and pharmaceutical agents,^[19] was easily derived from the cyclic sulfonamide 6 in 85% yield. Acidic hydrolysis of 3a produced the valuable 3-phenylbenzofuran (8) in 70% yield. Palladium-catalyzed hydroamination reaction between dimethyl 2-vinylcyclo-propane-1,1-dicarboxylate and 3a produced the allylic sulfonamide 9 in 95% yield. This approach is an effective and valuable hydroamination protocol. The N-Boc-(*S*)-2-amino-2-phenylacetic acid reacting with 3a afforded 10 in 95% yield. The diazo carbon atom could be selectively inserted into the N–H bond of 3a, thus giving 11 in 99% yield.

In conclusion, we developed a new metal-free ringexpansion reaction of cyclic N-sulfonylimines with diazomethanes by a tandem reaction similar to a Tiffeneau– Demjanov rearrangement/proton-transfer tautomerization process. This transformation represents an extremely simple way to afford seven-membered enesulfonamides. Moreover, the reaction can be conducted in one pot and on gram scale using aryl aldehydes without isolation of the tosylhydrazones. We believe that this new ring-expansion reaction could become a widely used transformation in organic synthesis.

Acknowledgments

We thank Science & Technology Department of Sichuan Province (2013JY0095), Education Department of Sichuan Province (15CZ0016), the Innovative Research Team in College of Sichuan Province (14TD0016), and NSFC (21572183) for financial support.

Keywords: diazo compounds · heterocycles · hydrazones · rearrangements · ring expansion

How to cite: Angew. Chem. Int. Ed. 2016, 55, 1441–1444 Angew. Chem. 2016, 128, 1463–1466

- For reviews on sulfamates and their therapeutic potential, see:

 J.-Y. Winum, A. Scozzafava, J.-L. Montero, C. T. Supuran, *Med. Res. Rev.* 2005, 25, 186; b) S. J. Williams, *Expert Opin. Ther. Pat.* 2013, 23, 79. For selected examples of the potent bioactive seven-membered sulfonamides, see: c) L. Kiefer, T. Gorojankina, P. Dauban, H. Faure, M. Ruat, R. H. Dodd, *Bioorg. Med. Chem. Lett.* 2010, 20, 7483; d) A. K. Ganguly, S. S. Alluri, D. Caroccia, D. Biswas, C.-H. Wang, E. Kang, Y. Zhang, A. T. McPhail, S. S. Carroll, C. Burlein, V. Munshi, P. Orth, C. Strickland, *J. Med. Chem.* 2011, 54, 7176; e) M. B. Tollefson, S. A. Kolodziej, T. R. Fletcher, W. F. Vernier, J. A. Beaudry, B. T. Keller, D. B. Reitz, *Bioorg. Med. Chem. Lett.* 2003, 13, 3727; f) Y. Cai, P. Zhou, X. Liu, J. Zhao, L. Lin, X. Feng, *Chem. Eur. J.* 2015, 21, 6386.
- [2] a) D. N. Zalatan, J. D. Bois, J. Am. Chem. Soc. 2008, 130, 9220;
 b) S. M. Paradine, M. C. White, J. Am. Chem. Soc. 2012, 134, 2036.
- [3] a) A. R. Thornton, S. B. Blakey, J. Am. Chem. Soc. 2008, 130, 5020; b) N. Mace, A. R. Thornton, S. B. Blakey, Angew. Chem. Int. Ed. 2013, 52, 5836; Angew. Chem. 2013, 125, 5948; c) R. D. Grigg, J. W. Rigoli, S. D. Pearce, J. M. Shomaker, Org. Lett. 2012, 14, 280; d) R. A. Brawn, K. Zhu, J. S. Panek, Org. Lett. 2014, 16, 74.
- [4] a) A. R. Thornton, V. I. Martin, S. B. Blakey, J. Am. Chem. Soc. 2009, 131, 2434; b) A. H. Stoll, S. B. Blakey, J. Am. Chem. Soc. 2010, 132, 2108; c) G. C. Feast, L. W. Page, J. Robertson, Chem. Commun. 2010, 46, 2835; d) C. S. Adams, L. A. Boralsky, I. A. Guzei, J. M. Schomaker, J. Am. Chem. Soc. 2012, 134, 10807; e) L. A. Boralsky, D. Marston, R. D. Grigg, J. C. Hershberger, J. M. Schomaker, Org. Lett. 2011, 13, 1924.
- [5] a) F. Duran, L. Leman, A. Ghini, G. Burton, P. Dauban, R. H. Dodd, Org. Lett. 2002, 4, 2481; b) G. Malik, A. Estéoule, P. Retailleau, P. Dauban, J. Org. Chem. 2011, 76, 7438.
- [6] For selected examples of metal-free reactions, see: a) C. Sun, H. Li, D. Yu, M. Yu, X. Zhou, X. Lu, K. Huang, S. Zheng, B. Li, Z. Shi, *Nat. Chem.* **2010**, *2*, 1044; b) E. Shirakawa, K. Itoh, T. Higashino, T. Hayashi, *J. Am. Chem. Soc.* **2010**, *132*, 15537.
- [7] W. R. Bamford, T. S. Stevens, J. Chem. Soc. 1952, 4735.
- [8] For selected reviews on N-tosylhydrazones, see: a) J. Barluenga, C. Valdés, Angew. Chem. Int. Ed. 2011, 50, 7486; Angew. Chem.
 2011, 123, 7626; b) Z. Shao, H. Zhang, Chem. Soc. Rev. 2012, 41, 560; c) Q. Xiao, Y. Zhang, J. Wang, Acc. Chem. Res. 2013, 46, 236; d) Z. Liu, J. Wang, J. Org. Chem. 2013, 78, 10024; e) Y. Xia, Y. Zhang, J. Wang, ACS Catal. 2013, 3, 2586; f) Y. Zhang, J. Wang, Top. Curr. Chem. 2012, 327, 239; g) J. R. Fulton, V. K. Aggarwal, J. de Vicente, Eur. J. Org. Chem. 2005, 1479. For selected examples of N-tosylhydrazones, see: h) S. Xu, G. Wu, F. Ye, X. Wang, H. Li, X. Zhao, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2015, 54, 4669; Angew. Chem. 2015, 127, 4752; i) W. Xiong, C. Qi, H. He, L. Ouyang, M. Zhang, H. Jiang, Angew. Chem. Int. Ed. 2015, 54, 3084; Angew. Chem. 2015, 127, 3127;

j) Z. Liu, H. Tan, L. Wang, T. Fu, Y. Xia, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2015, 54, 3056; Angew. Chem. 2015, 127, 3099; k) Z. Zhang, Q. Zhou, W. Yu, T. Li, G. Wu, Y. Zhang, J. Wang, Org. Lett. 2015, 17, 2474; l) S. Mao, Y.-R. Gao, X.-Q. Zhu, D.-D. Guo, Y.-Q. Wang, Org. Lett. 2015, 17, 1692.

- [9] a) J. Barluenga, M. Tomás-Gamasa, F. Aznar, C. Valdés, *Nat. Chem.* 2009, *1*, 494; b) J. Barluenga, M. Tomás-Gamasa, F. Aznar, C. Valdés, *Angew. Chem. Int. Ed.* 2010, *49*, 4993; *Angew. Chem.* 2010, *122*, 5113.
- [10] H. Li, L. Wang, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2012, 51, 2943; Angew. Chem. 2012, 124, 2997.
- [11] a) W. Li, J. Wang, X. L. Hu, K. Shen, W. T. Wang, Y. Y. Chu, L. L. Lin, X. H. Liu, X. M. Feng, J. Am. Chem. Soc. 2010, 132, 8532; b) L. Gao, B. C. Kang, G.-S. Hwang, D. H. Ryu, Angew. Chem. Int. Ed. 2012, 51, 8322; Angew. Chem. 2012, 124, 8447; c) T. Hashimoto, Y. Naganawa, K. Maruoka, J. Am. Chem. Soc. 2011, 133, 8834; d) V. L. Rendina, D. C. Moebius, J. S. Kingsbury, Org. Lett. 2011, 13, 2004; e) W. Li, X. Liu, X. Hao, Y. Cai, L. Lin, X. Feng, Angew. Chem. Int. Ed. 2012, 51, 8644; Angew. Chem. 2012, 124, 8772.
- [12] a) Y. Xia, P. Qu, Z. Liu, R. Ge, Q. Xiao, Y. Zhang, J. Wang, *Angew. Chem. Int. Ed.* **2013**, *52*, 2543; *Angew. Chem.* **2013**, *125*, 2603; b) D. M. Allwood, D. C. Blakemore, S. V. Ley, *Org. Lett.* **2014**, *16*, 3064.
- [13] For reviews, see: a) T. Ye, M. A. McKervey, Chem. Rev. 1994, 94, 1091; b) M. P. Doyle, T. Ye, M. A. McKervey, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998.
- [14] a) H. J. Dauben, Jr., H. J. Ringold, R. H. Wade, D. L. Pearson, A. G. Anderson, Jr., Org. Synth. Coll. 1963, 4, 221; b) T. Hashimoto, Y. Naganawa, K. Maruoka, J. Am. Chem. Soc. 2009, 131, 6614. And see references therein.
- [15] a) N. Jiang, Z. Ma, Z. Qu, X. Xing, L. Xie, J. Wang, J. Org. Chem. 2003, 68, 893; b) V. K. Aggarwal, M. Ferrar, C. J. O'Brien, A. Thompson, R. V. H. Jones, R. Fieldhouse, J. Chem. Soc. Perkin Trans. 1 2001, 1635.
- [16] B. M. Trost, J. Xie, N. Maulide, J. Am. Chem. Soc. 2008, 130, 17258.
- [17] Examples of cyclic N-sulfonylimines employed as substrates. See: a) P. Hu, J. Hu, J. Jiao, X. Tong, Angew. Chem. Int. Ed. 2013, 52, 5319; Angew. Chem. 2013, 125, 5427; b) H. Wang, T. Jiang, M.-H. Xu, J. Am. Chem. Soc. 2013, 135, 971; c) Y. Luo, H. B. Hepburn, N. Chotsaeng, H. W. Lam, Angew. Chem. Int. Ed. 2012, 51, 8309; Angew. Chem. 2012, 124, 8434; d) Y. Luo, A. J. Carnell, H. W. Lam, Angew. Chem. Int. Ed. 2012, 51, 6762; Angew. Chem. 2012, 124, 6866; e) Y.-Q. Wang, Y. Zhang, H. Dong, J. Zhang, J. Zhao, Eur. J. Org. Chem. 2013, 764; f) A. G. Kravina, J. Mahatthananchai, J. W. Bode, Angew. Chem. Int. Ed. 2012, 51, 9433; Angew. Chem. 2012, 124, 9568; g) N. D. Litvinas, B. H. Brodsky, J. D. Bois, Angew. Chem. Int. Ed. 2009, 48, 4513; Angew. Chem. 2009, 121, 4583; h) M. Rommel, T. Fukuzumi, J. W. Bode, J. Am. Chem. Soc. 2008, 130, 17266; i) Y. Liu, T.-R. Kang, Q.-Z. Liu, L.-M. Chen, Y.-C. Wang, J. Liu, Y.-M. Xie, J.-L. Yang, L. He, Org. Lett. 2013, 15, 6090.
- [18] CCDC 1423532 (30) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [19] a) Y.-Q. Wang, C.-B. Yu, D.-W. Wang, X.-B. Wang, Y.-G. Zhou, Org. Lett. 2008, 10, 2071; b) M. T. Reetz, Angew. Chem. Int. Ed. Engl. 1991, 30, 1531; Angew. Chem. 1991, 103, 1559.

Received: September 19, 2015 Revised: November 13, 2015 Published online: December 14, 2015

1444 www.angewandte.org

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. Int. Ed. 2016, 55, 1441-1444