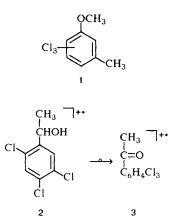
Rearrangements Accompanying the Fragmentation of Ionized 1-Phenylalkan-1-ols[†]


H. Budzikiewicz,* G. Drabner and Ch. Hammes

Institut für Organische Chemie der Universität zu Köln, Greinstr. 4, D-50939 Cologne, Germany

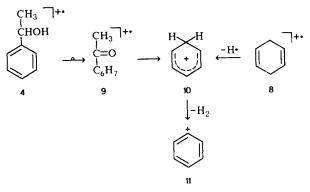
Some aspects of the fragmentation sequence of 1-phenylalkan-1-ols ($C_6H_5CH(OH)R$), which consists of the loss of R' followed by the elimination of CO and subsequently of H_2 , are discussed. Labelling studies and collision activation data of reference compounds allow a mechanism to be proposed for this rearrangement.

INTRODUCTION

In a note on the potential misidentification of trichlorophenylethanol in imported peppers, Cairns et al.² reported that the electron impact (EI) mass spectra of methyltrichloroanisoles (1) and 1-(2,4,5-trichlorophenyl) ethanol (2) are essentially indistinguishable. The main observed in either fragments case are ΓM $- (CH_3]^+ \rightarrow [M - (CH_3 - CO]^+)$ with subsequent elimination of 'Cl and HCl. Whereas from methyl phenyl ethers loss of 'CH₃ followed by that of CO is well known,³ the analogous process starting from M⁺ of 1-phenylethanol derivatives seemed to be unexpected. The authors showed that the OD analogue of 2 retained the label after the loss of ${}^{\bullet}\text{CH}_3$ and ${}^{\bullet}\text{CH}_3 + \text{CO}$ and that following collision activation of M^{+} of 2 the ions $[M - CH_3]^+$, $[M - CH_3 - CO]^+$ and $[M - CH_3 - CO]^+$ and $[M - CH_3 - CO - HCl]^+$ were formed.

These findings suggested a rearrangement of 2 to the isomeric ketone 3. Such rearrangements are well documented for vinyl carbinols, the migrating hydrogens being the hydroxyl- and the carbinol-H:^{4,5}

 $RCH = CH(CHOH)R' \rightarrow RCH_2CH_2COR'$ (1)


Scattered data which suggest an analogous process for compounds comprising a benzyl alcohol moiety (2H migrating to the benzene ring) can be found, $^{4-8}$ some of

0030-493X/93/111326-03 \$06.50 © 1993 by John Wiley & Sons, Ltd. which will be commented on below. Thus, Nibbering and de Boer⁸ studied 4 and its deuterated analogues 5-7 and showed that no exchange of label occurs prior to the loss of 'CH₃ and CH₃CO' from M⁺⁺ and prior to the formation of CH₃CO⁺, and that some scrambling between the hydrogen atoms except those of the methyl group accompanies the formation of $[C_6H_5]^+$ (m/z 77). They discussed protonated benzaldehyde and protonated tropone as possible intermediates in the path leading to $[C_6H_7]^+$ (m/z 79). In the following new data are presented which indicate that these species are unlikely as intermediates and a mechanism is proposed for this peculiar rearrangement (Scheme 1).

RESULTS AND DISCUSSION

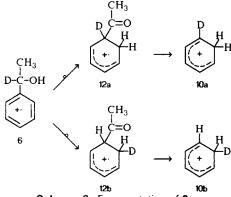
The EI mass spectrum of 4 (Fig. 1) clearly shows the ions resulting from the loss of 'CH₃ and 'CH₃ + CO $(m/z \ 107 \ and \ 79)$ from M⁺⁺ $(m/z \ 122)$. A parent ion spectrum of the $m/z \ 79$ ion reveals its origin from both m/z107 and 122, and a daughter ion scan of the $m/z \ 122$ ion demonstrates it to be the precursor of $m/z \ 107$ and 79 ions and of small amounts of $m/z \ 78, \ 77, \ 45$ and 43 ions. To the direct formation of [M - CH₃CO]⁺ from M⁺⁺ corresponds the appearance of an ion [CH₃CO]⁺ $(m/z \ 43)$ in Fig. 1. Deuterium labelling (5, 6, 7) confirms the earlier observation⁸ that no exchange of label occurs prior to the loss of 'CH₃ and CH₃CO' and to the formation of CH₃CO⁺.

Fragmentation of unrearranged 4 explains the formation of ions of m/z 107 (loss of CH_3), 77 ($[C_6H_5]^+$) and

Scheme 1. Fragmentation of 4

Received 23 November 1992 Revised manuscript received 31 July 1993 Accepted 15 August 1993

[†] Mass spectroscopic Fragmentation Reactions, Part XXXV. For Part XXXIV, see Ref. 1.


45 ([CH₃CHOH]⁺) and also of m/z 78 ([C₆H₆]⁺⁺; loss of CH₃CHO with concomitant transfer of H' to the ring). The formation of an m/z 43 ion ([CH₃CO]⁺) directly from m/z 122 suggests a preceding rearrangement to 9. For the genesis of an m/z 79 ion ([C₆H₇]⁺) several possibilities can be considered: loss of CH_3CO^{\bullet} from 4 with concomitant or from 9 with preceding migration of 2H or by the loss of CO from [M - 'CH₃]⁺ originating from 4 or from 9. In the last case the sequence is obvious. $[M - CH_3]^+$ from 4 corresponds to benzaldehyde protonated at the carbonyl group. The higher proton affinity of benzaldehyde (837 kJ mol⁻¹) than that of benzene (765 kJ mol⁻¹) ⁹ makes it probable that this species is obtained from benzaldehyde under CI conditions. The CI(CH₄) mass spectrum of benzaldehyde shows $[M + C_2H_5]^+ 1\%$, $[M + H]^+ 100\%$, $M^{+*} 4\%$, $[M - H]^+ 6\%$, $[C_6H_7]^+ 15\%$ and $[C_6H_6]^{+*} 1\%$. Collision activation (CA) of $[M + H]^+$ (m/z 107) demonstrates that this species decomposes essentially only by formation of $[C_6H_7]^+$ (67%) and CO^{+} (100%) (the only additional daughter ion is $[C_2H_2]^+$, 6%). In contrast, the CA spectrum of the m/z 107 ion from 4 yields $[C_6H_7]^+$ (100%) and CO⁺⁺ (10%) and in addition $[C_6H_5]^+$ (3%) and $[C_2H_2]^{+}$ (1%). This makes it unlikely that the m/z 107 ion from 4 corresponds to a major extent to protonated benzaldehyde. Protonated tropone⁸ can be excluded definitively: the CI (CH₄) mass spectrum of tropone comprises the ions $[M + C_2H_5]^{+}$ (1%), $[M + H]^{+}$ (100%), M⁺⁺ (3%), $[C_6H_7]^+$ (9%) and $[C_6H_6]^{++}$ (4%). The CA spectrum of $[M + H]^+$ (m/z 107) shows preferentially hydrocarbon ions at m/z 26 (100%), 28 (42%), 30 (3%), 39 (34%), 41 (2%), 51 (6%), 53 (30%), 55 (12%) 65 (1%), 77 (26%) and 79 (18%). Hence the [M $-CH_3^+$ ion from 4 decomposing to $[C_6H_7^+]$ must have a structure different from protonated benzaldehyde or tropone.

Regarding the formation and structure of the m/z 79 ion ([C₆H₇]⁺), one can go back to earlier observations^{10,11} made with benzyl alcohol: it was proposed that the m/z 79 ion observed in its mass spectrum has the same structure as [M - H[•]]⁺ from cyclohexa-1, 4-diene (8), essentially based on the fact that in either case m/z 79 showed a pronounced loss of H₂. This supposition can be confirmed for 4: the CA spectra of the m/z 79 ions from 4 and from 8 are indistinguishable $(\rightarrow m/z \ 77, \ 53, \ 51 \ and \ 39)$ (see also Ref. 12, where it is concluded that protonated benzene (10) is the reacting species of the $m/z \ 79 \ ion$). The narrow metastable peak for the transition $m/z \ 79 \ \rightarrow 77$ from 4 corresponding in our case to a release of 2.4 kJ mol⁻¹ translational energy is typical for protonated benzene.¹³

As far as the fragmentation processes leading to the m/z 79 ion and subsequently to the m/z 77 ion are concerned, some information can be obtained: parent scans of the m/z 77 and 78 ions from 4 give the following picture: the m/z 78 ion has weak precursor ions at m/z79, 80, 104, 106, 107 and 122, and the m/z 77 ion weak precursor ions at m/z 78, 103 and 107 and slightly more abundant ones ($\leq 6\%$) at m/z 79 and 105. An evaluation of the peak intensities in the EI spectra (average of three recordings each from three independent measurements for 5 and 6; the values for 7 are not included since, owing to the incomplete exchange, the spectrum of 7 obtained by subtraction is not sufficiently reliable and can therefore be used only qualitatively) gives the following picture: the CH₃ group is lost without any preceding H exchange with the rest of the molecule. The benzylic H is retained completely during the formation of the m/z 79 ion (complete shift to m/z 80 for 6). Subsequently, H, D, H₂ and HD are lost, giving 35%[C₆H₅]⁺, 37% [C₆H₄D]⁺, 10% [C₆H₆]⁺ and 18%[C₆H₅D]⁺ of the sum of these ions after correction for ¹³C contributions. Comparison with the relative intensities for unlabelled 4 (72% $[C_6H_5]^+$, 28% $[C_6H_6]^+$ after correction for ¹³C) allows the following conclusions: the abundance of $[C_6H_5D]^{+}$ (m/z 79) should be 24% if H was lost randomly from $[C_6H_6D]^+$ (this value is a lower limit since a primary isotope effect actually discriminates against the loss of D). As the observed value is 18% there must be an alternative route to $[C_6H_6]^{+}$ from 4 (and hence to $[C_6H_5D]^{+}$ from 6) which comprises a preferential loss of the benzylic H prior to a randomizing rearrangement (see above the various precursors of the m/z 78 ion). Labelling data demonstrate the same effect for 1-phenylpropan-1-ol.⁷

Of greater importance in the present context is the ion at m/z 77 in the EI spectrum of 4. For 6 the ratio of $[C_6H_5]^+$ to $[C_6H_4D]^+$ should be 2:5 for a random loss of H₂ and HD, ignoring an isotope effect which again would be in favour of the H₂ loss. The observed ratio of 35:37 deviates grossly from the calculated value (note that for $C_6H_5CD(OH)C_2H_5$ the same 1:1 ratio was observed⁷). Assuming a 1,1-elimination of H_2^{-13} for the formation of 11 from 10, a 1:1 ratio for the loss of H_2 and HD in the case of 6 implies that 10a and 10b are formed with comparable abundances. For undec-2en-4-ol transfer of the carbinol-H to either of the sp²-C during the rearrangement according to Eqn (1) was demonstrated.⁴ Assuming the same process for 6, one would actually obtain 12a and 12b and subsequently 10a and 10b, which then eliminate H_2 or HD to give $[C_6H_4D]^+$ and $[C_6H_5]^+$ (Scheme 2).

Hydrogen migrations from a side-chain to the benzene ring resulting in distonic ions are well known,¹⁴ the rate of the transfer being governed by the

Scheme 2. Fragmentation of 6.

dissociation energy of the transferred H and the local proton affinity of the acceptor site. In the case of alkyl phenyl carbinols the preferred donors are the benzylic C and the OH group. For toluene the proton affinity at the ortho is much higher than that at the *ipso* position.¹⁵ The CH₃CHOH substituent may enhance the *ipso* transfer; in any case, the double transfer of ortho plus *ipso* is the most likely result and the formation of 5-acetylcyclohexa-1,3-diene (12) as the decomposing intermediate explains best the observed behaviour of 4 and its analogues.

Data from the literature may be commented on briefly. 1-Phenylpropan-1-ol fragments in the same way as 4 (M⁺⁺, $[M - C_2H_5]^+$, m/z 79 and 77); see also above.⁷ 3-Phenylprop-1-en-3-ol demonstrates a more pronounced H-migration to the vinyl group than to the benzene ring.⁴ 1-*p*-Tolylethan-1-ol shows a partial loss of the label of the aromatic methyl group during the hydrogen elimination from $[CH_3C_6H_5D]^{+,7}$ Benzyl alcohol undergoes $[M - H^*]^+ \rightarrow [C_6H_7]^+ \rightarrow [C_6H_5]^+$, but here the picture is obscured by the competing formation of $[C_6H_7]^+$ by a loss of 'CHO directly from M⁺⁺ (see also above).^{10,11}

EXPERIMENTAL

Mass spectra

EI and $CI(CH_4)$ spectra were obtained on a Finnigan MAT 212 instrument with a liquid sample inlet (Fig. 1)

or with gas chromatography (evaluation of D shifts); the ionization energy was 70 eV. CA spectra (70 eV, collision energy 100 eV, argon, intensity reduction 50%) and metastable ion measurements were performed with an HS-Q 30 instrument (Finnigan MAT, Bremen).

¹H NMR spectra

A Bruker AM 300 instrument was used at 300 MHz, with $CDCl_3$ as solvent.

Compounds

Benzaldehyde, cyclohexa-1,4-diene and tropene were commercially available.

1-Phenlethan-1-ol (4) was prepared from methyl phenyl ketone by reduction with LiAlH₄ and purification by fractional distillation; b.p. (30 mbar) 96–97 °C; ¹H NMR, δ (ppm) 1.46, d (J = 6.4 Hz) (3H), 2.44, s (1H), 4.83, q (J = 6.4 Hz) (1H), ~7.30, m (5H).

[1-²H]-1-Phenylethan-1-ol (6) was obtained analogously to 4 using LiAlD₄. Isotopic purity 98%. ¹H NMR, δ (ppm) 1.45, s (3H), 2.76 s (1H), ~7.35, m (5H).

 $[O-^{2}H]$ -1-Phenylethan-1-ol (7) was prepared from 4 by exchange with D₂O. According to the EI spectrum, 30% of the OD compound could be obtained mainly due to back-exchange in the mass spectrometer. By subtraction of the mass spectrum of 4, that of 7 could be calculated.

Trideuteromethyl phenyl ketone (acetophenone- d_3) was prepared by refluxing acetophenone (5 g) with a solution of 11.5 g of Na in 50 cm³ of D₂O for 72 h. After extraction with diethyl ether and the usual work-up, deuterated acetophenone was obtained (90% d_3 , 10% d_2 by NMR and EIMS).

[2,2, $2^{2}H_{3}$]-1-Phenylethan-1-ol (5) was prepared by reduction of acetophenone- d_{3} with LiAlH₄. ¹H NMR, δ (ppm) 1.45, s (0.1 H from the d_{2} compound), 2.56, s (1H), 4.81, s (1H), ~7.33, m (5H).

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial assistance.

REFERENCES

- H. Budzikiewicz and D. Lange, Org. Mass Spectrom. 27, 489 (1992).
- Th. Cairns, E. G. Siegmund, Th. L. Barry and G. Petzinger, Rapid Commun. Mass Spectrom. 4, 58 (1990).
- H. Budzikiewicz, C. Djerassi and D. H. Williams, *Mass Spectrometry of Organic Compounds*, pp. 237ff. Holden-Day, San Francisco (1967).
- 4. M. Kraft and G. Spiteller, Org. Mass Spectrom. 1, 617 (1968).
- 5. B. Willhalm and A. F. Thomas, *Org. Mass Spectrom.* 1, 627 (1968).
- F. Bohlmann, Ch. Zdero, H. Bethke and D. Schumann, *Chem. Ber.* 101, 1553 (1968).
- C. Köppel, H. Schwarz and F. Bohlmann, *Tetrahedron* 29, 1735 (1973).

- 8. N. M. M. Nibbering and Th. J. de Boer, *Org. Mass Spectrom.*, 1, 365 (1968).
- S. G. Lias, J. E. Bartmess, J. F. Liebmann, J. L. Holmes, R. D. Levin and W. G. Mallard, *J. Phys. Chem. Ref. Data* 17, Suppl. 1 (1988).
- E. L. Eliel, J. D. McCollum, S. Meyerson and P. N. Rylander, J. Am. Chem. Soc. 83, 2481 (1961).
- 11. J. S. Shannon, Aust. J. Chem. 15, 265 (1962).
- L. E. Brady, D. H. Williams, S. C. Traynor and K. J. Crowley, Org. Mass Spectrom. 10, 116 (1975).
- D. H. Williams and G. Hvistendahl, J. Am. Chem. Soc. 96, 6755 (1974).
- 14. D. Kuck, Mass Spectrom. Rev. 9, 187 (1990).
- 15. J. L. Devlin, III, J. F. Wolf, R. W. Taft and W. J. Hehre, J. Am. Chem. Soc. 98, 1990 (1976).