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ABSTRACT: A Ni-catalyzed reaction was developed for the synthesis of
multifunctionalized indoles. The reaction proceeded through oxidative cyclization
of the Ni(0)/P^N complex with an enyne system, 2-alkynyl anilinoacrylate, to
provide a nickelacycle intermediate. The trans-carboamination around the internal
alkyne was achieved by syn/anti-rotation of the Ni-carbenoid intermediate formed
by C−N bond cleavage of the nickelacycle, and 3-alkenylated indoles were formed
by C−N bond-forming reductive elimination. Notably, the synthesized indoles
could be successfully transformed to functionalized carbazoles.

Indoles are considered one of the most privileged structural
motifs in drug development, particularly because of their

compatibility with the human body. The compatibility stems
from the fact that the indole moiety is present in an essential
amino acid, tryptophan, and is also an important skeletal
backbone of naturally occurring alkaloids and biologically active
molecules.1 Various electronic materials also contain the indole
moiety.2 Due to their physiological relevance and their scope in
practical applications, various synthetic methodologies have
been developed over the years to construct indole systems.3

Transition-metal-catalyzed annulation of 2-alkynyl aniline
derivatives has gained significant attention due to the ease of
substrate synthesis and high atom economy of the process.3−5

The transformations involve the formation of alkenyl−metal
(Pd, Pt, Rh, Ir, Au, Cu, Co, In) complex intermediates that
undergo either electrophilic trapping or 1,3-migration of a broad
range of functional groups including methyl, allyl, benzyl,
propargyl, α-alkoxyalkyl, acyl, silyl, sulfonyl, and B(OR)2 groups
to afford diverse indole structures (Scheme 1a). Despite the
efficiency and broad applications of this reaction, it has certain
drawbacks. This includes a limited substrate scope, wherein no
alkenyl group migration occurs, and the requirement of a high
temperature.6

To overcome these limitations, we envisioned an alternative
Ni-catalyzed trans-carboamination approach. A suitable ligand
for driving the alkenyl group migration was chosen to afford 3-
alkenyl indoles at ambient temperature. We hypothesized that
alkenyl group migration can be achieved by nickelacycle
formation7 with an enyne system, 2-alkynyl anilinoacrylate,
followed by the C−N bond cleavage to give a Ni-carbenoid
intermediate. Then, the key process, trans-carboamination
around the alkyne, could be achieved by the syn/anti-rotation

of the Ni-carbenoid intermediate,8 followed by a new C−N
bond-forming reductive elimination (Scheme 1b). This trans-
formation would allow rapid access to multisubstituted indoles
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Scheme 1. Metal-Catalyzed Cycloisomerization for Indole
Synthesis
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in an atom-economical manner at ambient temperature.
Additionally, the substituent at the 2-position of the indoles
could be easily varied by modifying the alkyne moiety in the
substrate, allowing the rapid buildup of diversity.
We commenced our investigation with tosylated methyl 2-

propynyl anilinoacrylate 1a as the model substrate, using
Ni(COD)2 as the catalyst. The reaction was conducted at
ambient temperature in CH3CN (Table 1). The desired indole

2a with alkenyl substitution at the 3-position could be obtained
with several types of ligands. The P^P-, N^N-, and N^N^N-type
ligands were found to be less effective for the transformation
(Table 1, entries 1−8).9 A dramatic increase in reactivity was
observed when monodentate phosphorus ligands were
employed, although E/Z mixtures were obtained (Table 1,
entries 9 and 10). Notably, the use of a P^N-type bidentate
ligand, PyPhos,10 which has not been explored much with Ni(0)
complexes,11 showed excellent reactivity, affording 2a in 98%
yield as only the E-isomer. This suggested that the reactivity
could be tuned by carefully selecting the ligand (Table 1, entry
11). The choice of solvent was also critical for this reaction, as no

other solvents employed could produce 2a in significant yields
(Table 1, entries 12−18). The presence of molecular oxygen
lowered the reaction efficacy (Table 1, entry 19), whereas
controlled experiments revealed that Ni and the ligand were
essential for the reaction to proceed (Table 1, entries 20 and 21).
The selective alkenyl group migration over the tosyl group
migration is noteworthy.4a

With the optimized conditions in hand, various indole
derivatives were synthesized to confirm the generality of this
transformation. First, the substituent in the alkynyl moiety (R)
was varied to obtain different substitution patterns at the 2-
position (Scheme 2). Substrates with both aliphatic (2a−2f)

and (hetero)aromatic (2g−2o) substituents at this position
underwent trans-carboamination to provide the corresponding
indole derivatives, demonstrating the generality of this reaction.
Substrates with aromatic R substituents containing an electron-
withdrawing group required a longer reaction time (2h−2k vs
2l, 2m). Functional groups such as benzylic C−H (2h) and aryl
halides (2l, 2m) remained intact during this transformation,
suggesting that the reaction proceeded under mild conditions. It
is noteworthy that heteroaryl moieties such as pyridine (2n) and
thiophene (2o) can be easily substituted at the 2-position of the
indoles. Such compounds are not only potential bidentate
ligands but also important from a medicinal point of view. The
silyl variant (2p) did not work for the transformation.6b The
scale-up of 2a from 1a at the 3 mmol scale was straightforward
despite the slower conversion.
Next, the substituent on the aniline moiety was varied

(Scheme 3). Regardless of the electron density of the

Table 1. Optimization of Reaction Conditionsa

entry ligand solvent yield (%)b

1 DPPF CH3CN 32
2 DPPP CH3CN 0
3 DPEPhos CH3CN 11
4 BINAP CH3CN 11
5 (S)-SEGPhos CH3CN 0
6 bpy CH3CN 10
7 tBubpy CH3CN 3

8 TerPy CH3CN 0
9 PCy3 CH3CN 95 (E/Z = 2.5/1)
10 (p-tolyl)3P CH3CN 85 (E/Z = 1.2/1)
11 PyPhos CH3CN 98
12 PyPhos DCM 13
13 PyPhos THF 19
14 PyPhos dioxane 11
15 PyPhos DMF 30
16 PyPhos toluene 0
17 PyPhos TFE 0
18 PyPhos CH3OH trace
19c PyPhos CH3CN 29
20d PyPhos CH3CN 0
21 CH3CN 0

aReaction conditions: 1a (0.1 mmol). bYields were determined by 1H
NMR using 1,3,5-trimethoxybenzene as an internal standard.
cReaction under air. dReaction without Ni(COD)2. DPPF {1,1′-
ferrocenediyl -bis(diphenylphosphine)}, DPPP {1,3-bis-
( d i p h e n y l p h o s p h i n o ) p r o p a n e } , DPEPh o s { b i s [ ( 2 -
d ipheny lphosph ino)pheny l ]e ther} , BINAP {(2 ,2 ′ -b i s -
(diphenylphosphino)-1,1′-binaphthyl)}, (S)-SEGPhos {(S)-(−)-5,5′-
bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole}, bpy {2,2′-bipyri-
dine}, tBubpy {4,4′-di-tert-butyl-2,2′-dipyridyl}, PCy3 {tricyclohex-
ylphosphine}, TerPy {2,2′:6′,2″-terpyridine}, (p-tolyl)3P {tri(p-tolyl)
phosphine}, PyPhos {2-[2-(diphenylphosphanyl)ethyl]pyridine}

Scheme 2. Substrate Scope with Variations on Alkyne
Moietya,b,c

aReaction conditions: 1 (0.3 mmol), under inert atmosphere.
bIsolated yields are reported. cIn some reactions, E/Z isomerization
was observed during the reaction course, and the E/Z ratio is based
on an average of at least two runs. d3 mmol scale. eThe reaction was
conducted at 80 °C.
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substituents, reactions proceeded efficiently to give the
corresponding indole derivatives in good to excellent yields
(4a−4i). Interestingly, in the case of 3- or 6-substituted aniline
substrates, only Z-isomers reacted to give the corresponding
indoles with Z-selectivity (4b, 4f). The modification of the
methylester moiety to ethylester (4j) and ketone (4k) analogues
was not problematic to give the corresponding products,
whereas the terminal enamine (4l) was not a suitable substrate.
N-Substitution with benzoyl instead of the tosyl group also led
to product formation (4n) despite longer reaction time and
higher temperature. However, theN-Me derivative (4m) did not
work for the transformation well.
Some reactions provided E/Z mixtures of the product

dependent on the substituent pattern. The control experiments
showed that E/Z isomerization occurred over time during the
reaction course (Scheme 4). The reaction with E/Z mixtures of
substrate 1n produced only the corresponding E product under
standard conditions (Scheme 4a). The E/Z ratio was changed
when isolated E/Z mixtures of 2b was resubjected to the

reaction conditions (Scheme 4b). E/Z isomerization might
occur under the Ni-catalyzed conditions through coordination
with the acrylate system.8,12,13 The change of the E/Z ratio
during the reaction course was also observed in the reaction of
1d, where unpredictably the E-isomer was changed to Z,
resulting in the formation of (Z)-2d as the major product
(Scheme S1). It is likely that the steric hindrance of the isopropyl
substituent affected the Z-selectivity. In the same context, only
Z-isomers of 3b and 3f having substitution at the 3- or 6-position
reacted to yield (Z)-4b and (Z)-4f, respectively (Scheme 3).
Further, a cross-over experiment of 3g and 3j did not show

crossing-over phenomena, supporting the efficient intramolec-
ular process (Scheme S2).
Based on the above observations, a plausible mechanism for

the reaction of 1a is proposed (Scheme 5). The Ni(0) complex

A formed by the chelation between Ni(0) and PyPhos
undergoes an oxidative cyclization with the alkyne and alkene
moiety of 2-propynyl anilinoacrylate 1a to give nickelacycle
intermediate B. Then B undergoes C−N bond cleavage to
generate Ni-carbenoid intermediate C. The syn/anti rotation of
C to give a zwitterionic Ni intermediate C′,8 followed by N−Ni
coordination, generates six-membered intermediate D. Finally,
D undergoes reductive elimination to give the corresponding
indole 2a with 3-alkenyl substitution.
The developed method could be extended to the benzofuran

synthesis, showing the generality of the process (Scheme 6). An
O analogue 5 was converted to the corresponding benzofuran 6
in 98% yield.14

Next, the synthetic utility of this reaction was successfully
verified by its application for the synthesis of functionalized
carbazole (Scheme 7). Carbazole is also considered to be a
highly important N-heterocycle because of the ubiquity of its
structural motif in numerous bioactive natural products,
pharmaceutical agents, and diverse novel functional materials.15

Indole products obtained via the present reaction pathway could

Scheme 3. Substrate Scopea,b

aReaction conditions: 1 (0.3 mmol), under inert atmosphere.
bIsolated yields are reported. cOnly Z-isomer of the starting material
reacted to give Z-isomer of the product. dThe reaction was conducted
at 80 °C.

Scheme 4. Control Experiment to Investigate E/Z Selectivity

Scheme 5. Proposed Mechanism

Scheme 6. Benzofuran Synthesis

Organic Letters pubs.acs.org/OrgLett Letter

https://dx.doi.org/10.1021/acs.orglett.0c03148
Org. Lett. XXXX, XXX, XXX−XXX

C

http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.0c03148/suppl_file/ol0c03148_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.0c03148/suppl_file/ol0c03148_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c03148?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c03148?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c03148?fig=sch4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c03148?fig=sch4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c03148?fig=sch5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c03148?fig=sch5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c03148?fig=sch6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c03148?fig=sch6&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://dx.doi.org/10.1021/acs.orglett.0c03148?ref=pdf


be easily transformed to the corresponding functionalized
carbazoles by a simple method.16 Methyl 3-(2-methyl-1H-indol-
3-yl)acrylates (2a, 4c, and 4d) with N,N-dimethylformamide
dimethyl acetal (7) in pyrrolidine/DMF solution sequentially
underwent cyclization to carbazole and detosylation, producing
the corresponding functionalized N−H carbazoles. Both
electron-donating −OMe (8b) and electron-withdrawing −F
(8c) substituents were suitable for the transformation. Notably,
carbazoles 8a and 8b are naturally occurring alkaloids.17

In conclusion, a synthetic route for accessing multifunction-
alized indoles was developed through Ni-catalyzed trans-
carboamination using 2-alkynylanilinoacrylate. C−N bond
cleavage of a nickelacycle intermediate and syn/anti-rotation
of the alkenyl-Ni intermediate are the key steps of this trans-
carboamination. This approach allows the synthesis of 3-alkenyl
indoles, which is otherwise challenging through the previous
method that uses 2-alkynyl aniline derivatives. Notably, these
functionalized indoles could undergo one-step conversion to the
relevant carbazoles, another highly important N-heterocyclic
compound, thus indicating the high utility of the product.
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