Original paper

Histamine analogues. 32nd communication: synthesis and pharmacology of sopromidine^{*}, a potent and stereoselective isomer of the achiral H_2 -agonist impromidine

Sigurd ELZ1, Günter GERHARD2 and Walter SCHUNACK1**

¹Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 2+4, D-1000 Berlin 33, FRG, and ²Institut für Pharmazie, Johannes Gutenberg-Universität, Saarstrasse 21, D-6500 Mainz, FRG

(Received September 27, 1988, accepted December 13, 1988)

Summary — Synthesis and pharmacology of sopromidine ((R)-7) and (S)-7, 2 position isomers of impromidine derived from the enantiomeric α -methylhistamines, are reported. The enantiomers of 7 show high stereoselectivity at the atrial H₂-receptor of the guinea-pig. (R)-7 is revealed to be a full H₂-agonist with 7.4-fold potency relative to histamine, while (S)-7 is a competitive H₂-antagonist.

Résumé — Analogues de l'histamine. 32^e communication: synthèse et pharmacologie de la sopromidine, un isomère puissant et stéréosélectif de l'impromidine agoniste-H₂ achiral. La synthèse et la pharmacologie de la sopromidine ((R)-7) et de (S)-7, dérivés des antipodes de l'histamine α -méthylée et des isomères de l'impromidine, sont décrites. Les énantiomères de 7 possèdent un degré de stéréosélectivité prononcé vis-à-vis du récepteur H₂ de l'atrium du cobaye. ((R)-7 est un agoniste-H₂ total avec 7,4 fois l'activité de l'histamine, tandis que (S)-7 est un antagoniste-H₂ compétitif.

chiral H2-agonists / histamine H2-receptor / impromidine analogues / a-methylhistamine

Introduction

The existence of 2 subtypes of histamine receptors, proposed in 1966 by Ash and Schild [2], was established by the introduction of H₂-selective antagonists [3] in the early seventies. Since that time attempts have been made to develop chiral agonists of histamine which would be valuable tools to elucidate structure-activity relationships of H₁- and H₂-agonists, especially concerning receptor selectivity and stereoselectivity of the interaction between the active center of the receptor and the agonist molecule [4-11].

The enantiomers of α -methylhistamine (for nomenclature see [12]) and several closely related amines [5–9] show significant stereoselectivity towards the H₂-receptor of the guinea-pig atrium while they are equipotent at the H₁-receptor of the guinea-pig ileum. The observed affinity ratios (1.7–7.2) are rather low in accordance with Pfeiffer's rule [13], modified by Porthoghese [14], as the compounds – with the exception of the α -chloromethyl derivatives of histamine [8] – show only 0.3 up to 8.7% of the affinity of histamine. Chiral agonists, at least equipotent to histamine, would possibly show a higher degree of stereoselectivity at the H₂-receptor, provided the center of chirality is close to the active site of the molecule. Following the structural features of impromidine [15] the weak H₂-agonist α -methylhistamine was chosen to be integrated into a guanidine structure, bearing the affinity contributing cimetidine-like 2-[(5-methyl-4-imidazolyl)methyl-thio]ethyl substituent.

Results

Chemistry

(R)- and (S)- α -methylhistamine (3c) were synthesized

Scheme 1. Synthesis of (R)-(-)-/-methylhistamine ((R)-3c) from L-histidine ((S)-1) [6].

^{*}Proposed I.N.N. for $(-)-3-[(R)-2-(4-imidazolyl)-1-methylethyl]-1-{2-[(5-methyl-4-imidazolyl)methyl]thioethyl}guanidine (I.U.P.A.C.).$

^{**}Author to whom correspondence should be addressed.

260

according to Scheme 1 [6], outgoing from (S)- and (R)-histidinol (3a) which were chlorinated (SOCl₂), followed by reduction of the chloromethyl substituent with $H_2/Pd-C$. The change of the R,S-nomenclature [16] from (S)-3b to (R)-3c, e.g., is due to the alteration of the priority of substituents at the α -carbon atom, while the absolute configuration is retained. The route illustrated in Scheme 2 leads to sopromidine ((R)-7) and its (S) enantiomer, respectively. Acylation of the primary amine 4 [17] with benzoyl isothiocvanate provided the benzovl thiourea 5a which by alkaline hydrolysis and alkylation of the intermediate thiourea 5b afforded the isothiouronium iodide 6 [18].

Scheme 2. Synthesis of sopromidine and its enantiomer, outgoing from 2-[(5-methyl-4-imidazolyl)methylthio]ethylamine (4) and the stereoisomeric α -methylhistamines **3c**.

Compound 6 was condensed with (R) - and (S) -3c respec-
tively, to give the title guanidines (\hat{R}) - and (S) -7, which
were characterized as <i>meso</i> -tartrates.

Pharmacology

(R)- and (S)-7 were assayed for histaminergic activity on the isolated guinea-pig ileum (H_1) and atrium (H_2) , respectively. The results are listed in Table I. The enantiomers of 7 reveal poor H_1 -activity. Sopromidine shows only 20% of the maximal response produced by histamine, while (S)-7 is an H₁-antagonist even weaker than impromidine itself.

At the H_2 -receptor, however, sopromidine turns out to be a full agonist with 7.4-fold affinity relative histamine. The effect is due to H_2 -receptor stimulation, since the presence of 0.3 μ M propranolol does not impair the concentration response curve, while cimetidine antagonizes chronotropic stimulation competitively. Surprisingly the heart rate does not increase when (S)-7 is administered in concentrations up to 0.1 mM. On the other hand, competitive H_2 -antagonism can be observed for (S)-7 towards histamine $(pA_2 = 5.6)$ and sopromidine $((R)-7)(pA_2 = 5.4 \pm 0.2; N = 4)$. The pharmacological properties of the racemate rac-7 hint at the revealed divergency of the enantiomers, as the affinity ratio (R)-7 / rac-7 = 2.55 indicates an antagonistic contribution of (S)-7, while a totally inactive (S) enantiomer would induce an affinity ratio (R) / rac =2.0. The enantiomers of 7 show a high degree of stereoselectivity towards the H₂-receptor ((R)/(S) > 1000). Furthermore, sopromidine reveals pronounced H2-selectivity, expressed as the ratio of potencies relative to histamine at both H₂- and H₁-receptors $(H_2/H_1) = 7.4/0.017$ = 435 / 1.

Compound	H ₁ -activity guinea-pig ileum				H ₂ -activity guinea-pig atrium			
	<i>i.a.</i>	p <i>D</i> ₂	potency rel. to histamine	р <i>А</i> ₂	i.a.	pD ₂	potency rel. to histamine	pA ₂
Histamine	1.0	6.85	1	_	1.0	6.00	1	-
Impromidine [15]	0	_	_	5.5	0.99	7.68	48.1	-
(R)-7 (sopromidine)	0.2	_	0.017	-	1.0	6.87 (6.65-7.03)	7.4 (4.5–10.7)	-
(S)-7	0	-	-	4.8ª	0	_	-	5.6 ^b
rac-7°	not determined				0.8	6.46 (6.11 - 6.71)	2.9(1.3-5.1)	-
8a [10]	0.4	-	0.02	-	0.8	5.10	0.13	_

Table I. Activity of 7 and related compounds at both H₁- and H₂-receptors.

For intrinsic activity (*i.a.*), pA_2 , pD_2 , see [19, 20]. Potency of (*R*)-7 and racemic 7 with 95% confidence limits in parentheses. N = 8 experiments for (*R*)-(*S*)- and rac-7, respectively. For structures see Scheme 2 and Table II.

*0.05% relative to diphenhydramine (pA_2 =8.15). *16% relative to cimetidine (pA_2 =6.4).

•Obtained by mixing equimolar amounts of (R)-7 and (S)-7.

Discussion

Methyl branching of the histamine molecule at the α carbon atom provides weak partial H₂-agonists that show a low affinity ratio (1.7:1) in favour of the (S) enantiomer, while the maximal effect is identical (80%) [6]. Additional N^{α} -methylation halves affinity of both enantiomers, while a significant differentiation of the intrinsic activities occurs, in favour of the more active (S)- α , N^{α}-dimethylhistamine (90% versus 60%) [7]. Linking the enantiomeric α -methylhistamines with 4, an affinity contributing moiety of many H₂-antagonists, by a guanidine group leads to the enantiomers of 7 which reveal completely opposite pharmacological properties. The dualistic character of the guanidine moiety [21] is emphasized by the fact that (S)-7 which is derived from (S)-3c, is a pure H_2 -antagonist with lower affinity than histamine, while sopromidine ((R)-7)behaves as a full H₂-agonist and surmounts the potency of histamine by nearly one order of magnitude.

The equivalent derivatisation of the achiral histamine leads to **8a** [10]. Though **8a** shows increased affinity compared with the weak partial agonist N^{α} -guanylhistamine [22], it still achieves only submaximal response (80%). However, the derivatisation of homohistamine, a homologue with weak atrial contraction rate increasing properties, partially due to β_1 -stimulation ($-\log EC_{50} = 3.94$ [23]), yields N^{α} -guanylhomohistamine [24], a weak partial H₂-agonist. Combination of the latter with 4 leads to impromidine and generates a 1000-fold increase of affinity and full agonist properties in most preparations [15]. Though impromidine reveals a better fit and 6.5-fold affinity towards the H₂-receptor than sopromidine does, the latter and its (S) antipode are so far the most stereoselective tools at the H₂-receptor. Obviously the steric requirements for guanidine-like H₂-agonists differ from those observed for α -branched histamine analogues, since in the latter series compounds derived from (S)- α -methylhistamine reveal greater affinity [5-9, 11], while sopromidine is (R) configurated. Nevertheless, a tautomeric process at the imidazole nucleus [25] seems to be involved, too.

The center of chirality close to the guanidine group indicates that the N^{α}-guanyl- α -methylhistamine moiety is the agonist acitivity determinating structure while the thioether substituent related to cimetidine contributes receptor affinity [26]. This hypothesis is supported by the rather low affinity ratios observed in potent chiral impromidine analogues bearing lower alkyl substituents at the chain linking guanidine and 5-methylimidazole moiety (compounds **9b**-**d**, Table II) [27]. α -Methylimpromidine (**9e**, Table II, pD₂ = 7.16) [27], the racemic homologue of sopromidine, is significantly more potent than *rac*-**7**. The enantiomers of **9e** seem to be promising compounds for further studies on stereoselectivity in the field of chiral impromidine analogous H₂-agonists.

It is noteworthy that at the recently described central histamine H₃-autoreceptor [28] impromidine, sopromidine and (S)-7 turned out to be competitive antagonists of histamine with K_i -values of 40-60 nM [29]. On the other hand, the weak H₁- and H₂-agonist (R)- α -methylhistamine

Table II. Structures of impromidine (9a), 8a and related chiral guanidines (8b, 9b-e). (R)/(S): affinity ratio of 7-9 at the H₂-receptor of the guinea-pig atrium [10, 27].

((R)-3c) is so far the most potent and stereoselective H₃agonist with 15-fold and 120-fold activity compared with histamine and (S)-3c, respectively. Apparently the high degree of stereoselectivity towards impromidine-like chiral guanidines revealed by the atrial H₂-receptor is not observed for the H₃-receptor, since the slight difference between sopromidine and (S)-7 is not statistically significant [29].

Experimental protocols

Chemistry

Melting points (uncorrected) were determined on a Büchi melting point apparatus according to Dr. Tottoli. ¹H NMR spectra were recorded on a Bruker WM 250; chemical shifts (δ [ppm]) are relative to TMS. Optical rotations were measured using a Perkin–Elmer 241 MC. Analyses indicated by elemental symbols were within \pm 0.4% of the theoretical values and were done by the microanalytical laboratory of the Institute of Organic Chemistry, Johannes Gutenberg-Universität, Mainz.

S-Methyl-N-{2-[(5-methyl-4-imidazolyl)methylthio]ethyl}isothiouronium iodide 6

a) N-Benzoyl-N'-{2-[(5-methyl-4-imidazolyl)methylthio]ethyl}thiourea **5a.** To a solution of 0.2 mol 4, prepared from the dihydrochloride [17], in 500 ml of CHCl₃ a solution of 0.2 mol benzoyl isothiocyanate in 100 ml of CHCl₃ is added. After 30 min of stirring at room temperature the mixture is refluxed for 30 min, followed by removal of the solvent *in* vacuo. The oily residue is dissolved in *i*-PrOH and poured into water. The crude precipitate is recrystallized from MeOH. Yield 83%, mp: $160-163^{\circ}C$ (165-166 [17]). Anal. $C_{15}H_{18}N_4OS_2$ (C,H,N).

b) N-{2-{(5-Methyl-4-imidazolyl)methylthio]ethyl}thiourea **5b.** 0.15 mol **5a**, dissolved in 100 ml of MeOH, is added to an aqueous solution of 0.2 mol K₂CO₃ and stirred for 1 h at 60°C. The resulting solution is acidified (pH = 1) with aqueous HCl, benzoic acid removed with ether, the aqueous pase adjusted to pH = 9, evaporated to dryness *in vacuo* and the oily residue crystallized from EtOH. Yield 70%, mp: 111-114°C (110-112 [17]). Anal. C₈H₁₄N₄S₂ (C,H,N). c) S-Methyl-N-{2-[(5-methyl-4-imidazolyl)methylthio]ethyl}isothiouro-

c) S-Methyl-N-{2-[(5-methyl-4-imidazolyl)methylthio]ethyl}isothiouronium iodide **6.** 0.11 mol Mel is added to 0.1 mol **5b** in 100 ml of EtOH and stirred for 12 h at room temperature. The crystallization of **6** starts spontaneously and is completed after 12 h at 4°C. Yield 75%, mp: 150-151°C (128-131 [18]). Anal. C₉H₁₆N₄S₂·HI (C,H,N,S).

(R)-(-)and (S)-(+)-3-[2-(4-Imidazolyl)-1-methylethyl]-1-{2-[(5methyl-4-imidazolyl)methylthioJethyl}guanidine meso-tartrate (sopromidine = (R)-7, and (S)-7

A solution of 0.015 mol 6 and 0.015 mol (R)-(-)-3c (free base) in 30 ml of DMF and 30 ml of ether is stirred for 3 days under reduced pressure. The resulting mixture is finally heated under reflux for 2 h and evaporated to dryness *in vacuo*. The free guanidine base is obtained by ion exchange (Amberlite IRA 401). The eluate is concentrated to ≈ 50 ml and extracted continuously for 48 h (CHCl₃). The aqueous phase is evaporated to dryness, the residue is dissolved in absolute EtOH and (R)-7 precipitated by slow addition of a solution of meso-tartaric acid in abso-

precipitated by slow addition of a solution of *meso*-tartaric acid in absolute EtOH. Yield 30%, mp: $86-95^{\circ}C$, $[\alpha]_{c}^{20} = -14.0^{\circ}$ ($\beta = 1.0 \text{ g}/100 \text{ ml}$; H₂O). Anal. C₁₄H₂₃N₇S·2 C₄H₆O₆·0.75 C₂H₅OH·H₂O (C,H,N). (S)-7 *meso*-tartrate is prepared by the same procedure. Yield 30%. mp: $87-98^{\circ}C$, $[\alpha]_{c}^{20} = +13.0^{\circ}$ ($\beta = 1.0 \text{ g}/100 \text{ ml}$; H₂O). Free base of (S)-7: mp: $67-69^{\circ}C$, $[\alpha]_{c}^{20} = +26.0^{\circ}$ ($\beta = 1.0 \text{ g}/100 \text{ ml}$; H₂O). Anal. C₁₄H₂₃N₇S·2 C₄H₆O₆·0.75 C₂H₅OH (C,H,N).

The presence of 2 mol meso-tartaric acid and 0.75 mol ethanol per mol unidine base is confirmed by ¹H NMR (D₂O): $\delta = 8.62$ (s; 2-H; 1.0 H), 8.5 (s; 2-H, 1.0 H), 7.31 (s; 5-H; 1.0 H), 4.36 (s; CH of *meso*-tartrate; 4.0 H), 3.95–3.80 (m; 4-CH₂-CH-N; 1.0 H), 3.84 (s; 4-CH₂-S; 2.0 H), 3.65 (quart; ³J = 7 Hz; CH₃-CH₂-OH; 1.5 H), 3.35 (t; ³J = 6 Hz; S-CH₂CH₂-N; 2.0 H), 3.09–2.89 (m; ABX-system, $\delta_{\rm A} = 2.94$, $\delta_{\rm B} =$ 3.04 ppm, $\Delta \nu_{\rm A} \nu_{\rm B} = 23.8$ Hz, $J_{\rm AB} = 15.7$ Hz, $J_{\rm AX} = 8.0$ Hz, $J_{\rm BX} = 5.0$ Hz; 4-CH₂-CH-N; 2.0 H), 2.68 (t; ³J = 6 Hz; S-CH₂CH₂-N; 2.0 H), 2.29 (s; 5-CH₃; 3.0 H), 1.29 (d; ³J = 6.5 Hz; α-CH₃; 3.0 H), 1.18 (t; ³J = 7 Hz; CH₂-CH-OH-2 H) $\dot{7}$ Hz; CH₃-CH₂-OH; 2.2 H).

Pharmacology

H_1 -activity on the isolated guinea-pig ileum

Heum strips of ≈ 3 cm from guinea-pigs (300-500 g) of either sex were placed in a 10 ml organ bath and loaded with 0.5 g (Tyrode solution gassed with carbogen, 37°C). Concentration-response curves were recorded isotonically (cumulative technique as described by [19, 20]. pD_2 , pA_2 and intrinsic activity [19, 20] were calculated by adaptation to the sigmoid function $y = a \cdot (1 + e^{(-bx + c)})^{-1}$ [30]; a, b, c were determined by non linear regression. Calculations were performed on an HP 9845 B (programmes: Dr. K. Wegner). The effects of H1-agonists could be antagonized by 0.1 µM diphenhydramine and were not sensitive to the presence of atropine.

H_2 -activity on the spontaneously beating guinea-pig atrium

Atria from guinea-pig (300-500 g) of either sex were attached to a tissue holder, loaded with 1.0 g and placed in a 60 ml organ bath (McEwen solution [3] gassed with carbogen, 32.5°C). After 30-40 min of equilibration concentration – response curves were recorded isometrically (cumulative technique) as described by [19, 20]. pD_2 , pA_2 and intrinsic activity [19, 20] were calculated as described above. The effect of H₂agonists could be antagonized by 1 μ M cimetidine and was not sensitive to the presence of $0.3 \ \mu$ M propranolol. For H₂-blockers competitive antagonism was observed. Schild plot slopes were not significantly different from unity.

Acknowledgments

The authors would like to thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for supporting this work.

References

- 1 Elz S., Kimmel U., Buschauer A. & Schunack W. (1988) Sci. Pharm. 56, 229
- 2 Ash A.S.F. & Schild H.O. (1966) Br. J. Pharmacol. Chemother. 27, 427
- 3 Black J.W., Duncan W.A.M., Durant G.J., Ganellin C.R. & Parsons M.E. (1972) Nature (London) 236, 385
- 4 Ganellin C.R. (1982) in: Pharmacology of Histamine Receptors (Ganellin C.R. & Parsons M.E., eds.), Wright PSG, Bristol, pp. 10-102
- 5 Schwarz S. & Schunack W. (1979) Arch. Pharm. (Weinheim) 312, 933
- 6 Gerhard G. & Schunack W. (1980) Arch. Pharm. (Weinheim) 313, 709
- 7 Gerhard G. & Schunack W. (1980) Arch. Pharm. (Weinheim) 313, 780
- 8 Gerhard G. & Schunack W. (1981) Arch. Pharm. (Weinheim) 314, 1040
- 9 Schwarz S. & Schunack W. (1982) Arch. Pharm. (Weinheim) 315, 674
- 10 Büyüktimkin S. & Schunack W. (1983) Pharm. Ztg. Sci. Ed. 128, 1239
- 11 Schunack W., Schwarz S., Gerhard G., Büyüktimkin S. & Elz S. (1985) in: Frontiers in Histamine Research (C.R. Ganellin & J.C. Schwartz, eds.), Pergamon Press, Oxford, pp. 39-46
- 12 Black J.W. & Ganellin C.R. (1974) Experientia 30, 111
- 13 Pfeiffer C.C. (1956) Science 124, 29
- 14 Porthoghese P.S. (1970) Ann. Rev. Pharmacol. 10, 51
- 15 Durant G.J., Duncan W.A.M., Ganellin C.R., Parsons M.E., Blakemore R.C. & Rasmussen A.C. (1978) Nature (London) 276, 403
 16 Cahn R.S. & Ingold C.K. (1951) J. Chem. Soc. 612
 17 Durant G.J., Emmett J.C. & Ganellin C.R. (5.10.1972) Ger. Offen. 2011454 (1072) Chem. Astron. 77, 164704.
- 2211454; (1972) Chem. Abstr. 77, 164704y 18 Durant G.J. & Ganellin C.R. (30.1.1975) Ger. Offen. 2433625; (1975) Chem Abstr. 82, 156303e
- 19 Van Rossum J.M. (1963) Arch. Int. Pharmacodyn. Ther. 143, 299
- 20 Lennartz H.-G., Hepp M. & Schunack W. (1978) Eur. J. Med. Chem. Chim. Ther. 13, 229
- 21 Ganellin C.R. (1978) Farm. Tijdschr. Belg. 55, 4 22 Durant G.J., Parsons M.E. & Black J.W. (1975) J. Med. Chem. 18, 830
- 23 Banning J.W., Griffith R.K. & Dipietro R.A. (1985) Agents Actions 17, 138
- 24 Parsons M.E., Blakemore R.C., Durant G.J., Ganellin C.R. & Rasmussen A.C. (1975) Agents Actions 5, 464
- 25 Weinstein H., Chou D., Johnson C.L., Kang S. & Green J.P. (1976) Mol. Pharmacol. 12, 738
- 26 Durant G.J., Ganellin C.R., Hills D.W., Miles P.D., Parsons M.E., Pepper E.S. & White G.R. (1985) J. Med. Chem. 28, 1414
- Elz S. & Schunack W. (1988) Arzneim. -Forsch. / Drug Res. 38, 327
 Arrang J.-M., Garbarg M., Lancelot J.-C., Lecomte J.-M., Pollard H., Robba M., Schunack W. & Schwartz J.-C. (1987) Nature (London) 327, 117
- 29 Arrang J.-M., Schwartz J.-C. & Schunack W. (1985) Eur. J. Pharmacol. 117, 109
- 30 Hafner D., Heinen E. & Noack E. (1977) Arzneim.-Forsch. / Drug Res. 27, 1871