

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 1193-1196

Novel pyridinyl and pyrimidinylcarbazole sulfonamides as antiproliferative agents

Laixing Hu,^{a,b} Zhuo-rong Li,^b Yue-ming Wang,^b Yanbin Wu,^b Jian-Dong Jiang^{b,*} and David W. Boykin^{a,*}

^aDepartment of Chemistry, Georgia State University, Atlanta, GA 30303-3083, USA

^bInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China

> Received 11 October 2006; revised 8 December 2006; accepted 8 December 2006 Available online 15 December 2006

Abstract—A series of azaheterocyclic carbazole sulfonamides was synthesized and evaluated for antiproliferative activity. The most potent compounds N-(2,6-dimethoxypyridine-3-yl)-9-ethyl and 9-methylcarbazole-3-sulfonamide (13 and 14) gave significant cytotoxicity (IC₅₀ = 122 and 101 nM). Compound 13 displayed submicromolar activities against seven human tumor cell lines. The SARs of this series of sulfonamides which includes the influence of azaheterocycle rings, sulfonamide linkage, and the carbazole ring are described.

© 2007 Elsevier Ltd. All rights reserved.

Since the discovery of E-7010 in 1992 (1, Fig. 1),¹ sulfonamides have emerged as an important class of anticancer agents which interact with a wide range of different cellular targets.² For example, sulfonamides cause disruption of microtubule assembly, show carbonic anhydrase inhibition, and target transcription factor NF-Y and matrix metalloproteinase (MMP). Some of these compounds, such as T-138067, E-7010, E7070, and HMN-214 (1-4, Fig. 1), have entered clinical trials.^{3–6} Recently, more sulfonamide anticancer agents with novel molecular targets, such as methionine aminopeptidase type II inhibitors, antagonists of MDM2 oncoprotein, and inhibitors of tyrosine and Raf-kinases, have been reported.^{7–9} Various novel sulfonamides with different mechanisms of action can be useful for the treatment of drug-resistant malignant tumors, which remain a major challenge in cancer chemotherapy.¹⁰

Recently, we reported *N*-phenyl carbazole sulfonamides which are structurally related to combretastatin A4 (CA4) (5, Fig. 1)^{11,12} and exhibit potent antiproliferative

Figure 1. Antitumor sulfonamides in clinical trials, CA4 and carbazole sulfonamides.

activities in vitro and in vivo antitumor effectiveness.¹³ As is well known, CA4 strongly inhibits the polymerization

Keywords: Antiproliferative agents; Sulfonamides.

^{*} Corresponding authors. Tel.: +1 404 651 3798; fax: +1 404 651 1416 (D.W.B.); tel.: +86 10 6316 5290; fax: +86 10 6301 7302 (J.-D.J.); e-mail addresses: dboykin@gsu.edu; jiandong.jiang@mssm.edu

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2006.12.034

of tubulin by binding to the colchicine site and exerts irreversible vascular shutdown within solid tumors.^{11,12} A water-soluble phosphate prodrug of CA4 (**6**, Fig. 1) is now in phase II clinical trials.¹⁴ Preliminary studies with the lead carbazole sulfonamide 7 (Fig. 1) showed that it induced G_2/M phase arrest and apoptosis, however, it only weakly inhibited tubulin assembly. These results clearly demonstrated that the mode of action of these new sulfonamides is different from that of CA4.¹³ The SARs of this series of carbazole sulfonamides also were very different from those of CA4 analogues,^{15,16} both the 3,4,5-trimethoxy phenyl lead compound **7** and the 2,4-dimethoxy substituted compound **8** (Fig. 1) have similar potent activities against human tumor cell lines.

As a part of our continuing efforts to discover more potent carbazole sulfonamides and explore the SAR of this system, we have examined the replacement of 2,4dimethoxyphenyl with pyridinyl and pyrimidinyl groups. Moreover, in the CA4 series, 4-methoxy-3pyridinyl has been successfully used as a replacement for 4-methoxy-3-hydroxyphenyl (B ring of CA4) and it also gave improved water solubility.¹⁷ Here, we present our results for the novel *N*-azaheterocyclic carbazole sulfonamides.

The synthesis of *N*-azaheterocyclic carbazole sulfonamides **13–22** used our previously reported approach¹³ by the reaction of various commercially available substituted azaheteroarylamines with 9-ethyl- or 9-methyl carbazole sulfonyl chlorides¹⁸ (Scheme 1).

The 2,6-dimethoxypyridinyl indole sulfonamide 27 was synthesized by the route illustrated in Scheme 2. 1-Formyl-5-indolinesulfonyl chloride 24 was obtained from commercially available 1-formyl-5-indoline 23 using Gupta's method.¹⁹ Then, 24 was allowed to react with 3-amino-2,6-dimethoxypyridine using the TEA/DMF procedure to generate sulfonamide 25. After reduction of 25, the indoline compound 26 was aromatized to yield the indole sulfonamide 27.¹⁹

Carbazole compound **35** and the CA4 pyridine analogue **39** were prepared through classical Wittig couplings using ylide **33** and aldehydes **34** and **37** (Scheme 3). Regioselective bromination of **28** was achieved by *N*-bromosuccinimide (NBS) with pyridine in acetonitrile.²⁰ Metalation of 3-bromo-2,6-dimethoxypyridine **29** with *n*-butyllithium followed by the addition of DMF gave the corresponding aldehyde **30**.²¹ Then, following Pettit's procedure: reduction, bromination, and reaction

Scheme 1. Reagents and conditions: (a) $CISO_3H$, CH_2Cl_2 , $-5 \circ C$, 2 h, 9: 89%; 10: 92%; (b) POCl_3, PCl_5, 90 $\circ C$, 2 h, 11: 57%; 12: 64%; (c) 13–19: R^2 – NH_2 , NEt_3 , DMF, rt, 3 h; (d) 20–22: R^2 – NH_2 , Py, refulx, 2 h.

Scheme 2. Reagents and conditions: (a) $CISO_3H$, $CICH_2CH_2CI$, -5 °C; then $SOCI_2$, 0-5 °C, 3 h, 91%; (b) 2,6-MeO_2Py-3-NH₂HCI, NEt₃, DMF, rt, 3 h, 85%; (c) NaBH₄, CF₃CO₂H, THF, 0-5 °C, 3 h, 91%; (d) DDQ, THF, 0-25 °C, overnight, 78%.

Scheme 3. Reagents and conditions: (a) NBS, CH₃CN, 0 °C, 2 h, 77%; (b) BuLi, THF, -78 °C, 1 h; then DMF, 2 h, 71%; (c) NaBH₄, CH₃OH, 0 °C, 2 h, 89%; (d) PBr₃, CH₂Cl₂, 0 °C, 12 h, 74%; (e) PPh₃, Toluene, reflux, 2 h, 89%; (f) 33, NaH, CH₂Cl₂, 0–22 °C, 18 h, 35: 65%; 38: 45%, *Z/E* = 1.5:1; (g) *t*-BuMe₂SiCl, (*i*-Pr)₂NEt, DMF, 1 h, 94%; (h) TBAF, THF, 0.5 h, 90%.

with triphenylphosphine (PPh₃), we obtained ylide $33.^{22}$ Finally, carbazole compounds 35 Z/E were prepared by Wittig coupling of ylide 33 and *N*-ethyl-3-carbazolecarboxaldehyde 34 with NaH in CH₂Cl₂.²³ *tert*-Butyldimethylsilyl (TBDMS)-protected 38 was obtained using the same procedure employing TBDMS-protected benzaldehyde $37.^{24}$ After deprotection of the TBDMS group with tetra-butylammonium fluoride in THF, the desired compounds 39 Z/E were obtained.²⁴

Antiproliferative activities of the new compounds against human CEM Leukemia cells were evaluated as previously reported¹³ (Table 1). The new 2,6-dimethoxypyridinyl carbazole sulfonamide **13** has significant activity with an IC₅₀ value of 122 nM, about 2-fold less

 Table 1. Antiproliferatative activity of new compounds in CEM leukemia cells

$\langle \neg \rangle$	O_2
	N-R-
N 1	<i>~</i>

Compound	\mathbb{R}^1	R ²	Cytotoxicity IC ₅₀ ^a (nM)
7	Et	3,4,5-MeO3Ph	56
8	Et	2,4-MeO ₂ Ph	57
13	Et	2,6-MeO ₂ Py-3-yl	122
14	Me	2,6-MeO ₂ Py-3-yl	101
15	Et	6-MeOPy-3-yl	649
16	Et	2-MeOPy-3-yl	786
17	Et	2,6-Me ₂ Py-3-yl	>2000
18	Et	2,6-Cl ₂ Py-3-yl	>2000
19	Et	2,6-Cl ₂ Py-4-yl	>2000
20	Et	6-MeOPm-4-yl	>2000
21	Et	2,6-MeO ₂ Pm-4-yl	>2000
22	Et	4,6-MeO ₂ Pm-2-yl	>2000
26			>2000
27			712
35Z			>2000
35 E			>2000
39 Z			342
39 E			>2000
Podophyllotoxin			7.2
CA4			1.9

^a Values were determined as described in Ref. 13.

than that of lead compound 7 and the close analogue 8. The cytotoxicity of the N-9 methyl substituted compound 14 is slightly more potent than that of N-9 ethyl compound 13 in accordance with the SAR previously noted for N-phenyl carbazole sulfonamides.¹³ The monomethoxypyridinyl compounds 15 and 16 are 5-6 times less effective than the 2,6-dimethoxypyridinyl compound 13. The ortho-methoxy analogue 16 is less active than the para-substituted analogue 15. However, the *para*-methoxy pyridinyl carbazole sulfonamide 15 (IC_{50}) value $0.65 \,\mu\text{M}$) is more active than the 4-methoxy and 3,4-dimethoxy substituted phenyl carbazole sulfona-mides (IC₅₀ value >10 and 2.4 μ M).¹³ These results suggest that a meta-pyridinyl ring is a reasonable replacement for the phenyl group and provides good antiproliferative activity. Also, a different influence on the cytotoxicity was noted for the pyridinyl system as compared to the phenyl one. The 2,6-dimethyl and dichloro substituted pyridinyl compounds 17, 18, and 19 were much less active than the 2,6-dimethoxypyridinyl

compound 13. These results demonstrate that dimethoxy substitution of the pyridine ring plays a pivotal role in affecting cytotoxicity. In marked contrast to the pyridine results, replacement of ring A with mono- or dimethoxy substituted pyrimidines as in 20–22 results in complete loss of activity. This result may be due to the reduced electron density of pyrimidine ring, we previously noted that replacement of the 3,5-dimethoxy groups in the sulfonamide series by the strong withdrawing group CF_3 in ring A also resulted in loss of activity.¹³ Based on the above results, the 2,6-dimethoxypyridinyl substituted carbazole sulfonamides **13** and **14** merit further study.

Replacement of the carbazole by N-methylindole yielded compound 27 which resulted in a 7-fold decrease in cytotoxicity compared to 14. The corresponding N-methylindolinyl compound 26 also showed a reduction in activity. These results indicate that the carbazole ring is important to achieve significant activity. Finally, the isomeric olefin compounds 35 were both inactive against the CEM cell line. This result shows that the sulfonamide linkage is necessary for activity in this system. We also replaced the 3,4,5-trimethoxyphenyl with a 2,6dimethoxypyridinyl in the CA4 molecule by preparation of the analogues 39Z/E. The Z isomer of 39 was 180fold less potent than CA4 and 39E has no activity. These data are consistent with the SARs of CA4 analogues and further demonstrate that 3,4,5-trimethoxyphenyl group in the A ring of CA4 is necessary for achieving potent antiproliferative activity.^{15,16} However, **39**Z has better activity than its close 2,3,4-trimethoxyphenyl CA4 analogue which reduced the cytotoxicity by more than five orders of magnitude in comparison with the corresponding 3,4,5-trimethoxyphenyl compound and CA4.¹⁵

Both the 2, 6-dimethoxypyridinyl substituted carbazole sulfonamides **13** and **14** showed good activity against human CEM cell line and a very slight increase in water solubility. Compound **13** was selected for evaluation against seven different human tumor cell lines for direct comparison with **7** and **8**. The data for **13** along with those of **7**, **8**, CA4, and podophyllotoxin are shown in Table 2. The IC₅₀ value of **13** are below 1 μ M in the cell lines studied. The IC₅₀ values of **13** in the least sensitive cell line Bel-7402 hepatoma (IC₅₀ = 976 nM) is 5- and 10-fold less than that for **7** and **8**. Molt-3 leukemia cells showed the highest sensitivity (IC₅₀ = 22 nM), about the same as lead compound **7** and 2-fold more than compound **8** but 2-fold less than CA4. The sensitivities

Table 2. Antiproliferatative activity of 13 in human tumor cell lines

Cell line	Human tumor	IC_{50}^{a} (nM)					
		7	8	13	CA4	Podophyllotoxin	
CEM	T-cell leukemia	56	57	122	1.9	7.2	
Molt-3	T-cell leukemia	20	48	22	9.3	14	
Bel-7402	Hepatoma	201	96	976	10	9.1	
MCF-7	Breast cancer	89	48	241	12	15	
DU-145	Prostate cancer	603	144	729	9.3	52	
PC-3	Prostate cancer	201	144	603	2.8	10	
DND-1	Melanoma	89	120	193	2.5	12	

^a Values were determined as described in Ref. 13.

of MCF-7 breast cancer cells, melanoma, and DU-145 and PC-3 prostate cancer cells to compound 13 were 1–3 times less than 7.

To summarize, we have described the synthesis and SAR of novel azaheterocycle carbazole sulfonamides based upon lead compound 7. 2,6-Dimethoxypyridinyl substituted carbazole sulfonamides 13 and 14 displayed potent antiproliferative activities, slightly less active than lead compound 7. Compound 13 showed good activities against several human tumor cell lines. Interestingly, preliminary data suggest that 14 does not phosphorylate bcl-2 as did 7. Further studies are underway to explain the differences in the activity of pyridinyl series. In vivo efficacy studies for both 13 and 14 are ongoing.

Acknowledgments

We thank the National Natural Science Foundation of the PR China (30500630) and the Technology Development Program of the Georgia State University Center of Biotechnology and Drug Design for support of this work.

References and notes

- Yoshino, Y.; Ueda, N.; Niijima, J.; Sugumi, H.; Kotake, Y.; Koyanagi, N.; Yoshimatsu, K.; Asada, M.; Watanabe, T.; Nagasu, T.; Tsukahara, K.; Iijima, A.; Kitoh, K. J. Med. Chem. 1992, 35, 2496.
- Casini, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. T. Curr. Cancer Drug Targets 2002, 2, 55.
- Shan, B.; Medina, J. C.; Santha, E.; Frankmoelle, W. P.; Chou, T.-C.; Learned, R. M.; Narbut, M. R.; Stott, D.; Wu, P.; Jaen, J. C.; Rosen, T.; Timmermans, P. B. M. W. M.; Beckmann, H. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 5686.
- Segretti, J. A.; Polakowski, J. S.; Koch, K. A.; Marsh, K. C.; Bauch, J. L.; Rosenber, S. H.; Sham, H. L.; Cox, B. F.; Reinhart, G. A. *Cancer Chemother. Pharmacol.* 2004, 54, 273.
- Abbate, F.; Casini, A.; Owa, T.; Scozzafava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2004, 14, 217.
- Tanaka, H.; Ohshima, N.; Ikenoya, M.; Komori, K.; Katoh, F.; Hidaka, H. *Cancer Res.* 2003, 63, 6942.
- Kawai, M.; BaMaung, N. Y.; Fidanze, S. D.; Erickson, S. A.; Tedrow, J. S.; Sanders, W. J.; Vasudevan, A.; Park, C.;

Hutchins, C.; Comess, K. M.; Kalvin, D.; Wang, J.; Zhang, Q.; Lou, P.; Tucker-Garcia, L.; Bouska, J.; Bell, R. L.; Lesniewski, R.; Henkin, J.; Sheppard, G. S. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 3574.

- Wang, S.; Gibson, D.; Duncan, K.; Bailey, K.; Thomas, M.; MacCallum, D.; Zheleva, D.; Turner, N.J.; Fischer, P.M. WO 2004005278.
- 9. Hoelzemann, G.; Crassier, H.; Jonczyk, A.; Staehle, W.; Rautenberg, W. WO 2005105797.
- 10. Dumontet, C.; Sikic, B. I. J. Clin. Oncol. 1999, 17, 1061.
- (a) Pettit, G. R.; Cragg, G. M.; Singh, S. B. J. Nat. Prod. 1987, 50, 386; (b) Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.; Garcia-Kendall, D. Experientia 1989, 45, 209.
- 12. Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A. A. J. Med. Chem. 2006, 49, 3033.
- Hu, L.; Li, Z.-R.; Li, Y.; Qu, J.; Ling, Y.-H.; Jiang, J.-D.; Boykin, D. W. J. Med. Chem. 2006, 49, 6273.
- Young, S. L.; Chaplin, D. J. Expert Opin. Investig. Drugs 2004, 13, 1171.
- Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A. K.; Lin, C. M.; Hamel, E. J. Med. Chem. 1991, 34, 2579.
- Cushman, M.; Nagarathnam, D.; Gopal, D.; He, H.-M.; Lin, C. M.; Hamel, E. J. Med. Chem. 1992, 35, 2293.
- Hatanaka, T.; Fujita, K.; Ohsumi, K.; Nakagawa, R.; Fukuda, Y.; Nihei, Y.; Suga, Y.; Akiyama, y.; Tsuji, T. Bioorg. Med. Chem. Lett. 1998, 8, 3371.
- Mitsumori, S.; Tsuri, T.; Honma, T.; Hiramatsu, Y.; Okada, T.; Hashizume, H.; Inagaki, M.; Arimura, A.; Yasui, K.; Asanuma, F.; Kishino, J.; Ohtani, M. J. Med. Chem. 2003, 46, 2436.
- Gupta, A. K.; King, S. A.; Lee, E. C.; Morton, H. E.; Plata, D. J.; Pu, Y. M.; Sharma, P. N. WO 2002024648.
- Canibano, V.; Rodriguez, J. F.; Santos, M.; Sanz-Tejedor, A.; Carreno, M. C.; Gonzalez, G.; Garcia-Ruano, J. L. Synthesis 2001, 14, 2175.
- 21. Kunishima, M.; Friedman, J. E.; Rokita, S. E. J. Am. Chem. Soc. 1999, 121, 4722.
- Pettit, G. R.; Grealish, M. P.; Jung, M. K.; Hamel, E.; Pettit, R. K.; Chapuis, J. C.; Schmidt, J. M. J. Med. Chem. 2002, 45, 2534.
- Pinney, K. G.; Mejia, M. P.; Villalobos, V. M.; Rosenquist, B. E.; Pettit, G. R.; Verdier-Pinard, P.; Hamel, E. *Bioorg. Med. Chem.* 2000, 8, 2417.
- 24. Pettit, G. R.; Singh, S. B.; Cragg, G. M. J. Org. Chem. 1985, 50, 3404.