DOI: 10.1002/asia.200900503

Efficient Preparation of Photoswitchable Dithienylethene-Linker-Conjugates by Palladium-Catalyzed Coupling Reactions of Terminal Alkynes with Thienyl Chlorides and Other Aryl Halides

Marc Zastrow,^[a] Sujatha Thyagarajan,^[b] Saleh A. Ahmed,^[a] Paul Haase,^[a] Sabine Seedorff,^[a] Dmitri Gelman,^[c] Josef Wachtveitl,^[d] Elena Galoppini,^[b] and Karola Rück-Braun*^[a]

In memory of Herbert Schumann

Abstract: Three photochromic dithienylethene-linker-conjugates with an adamantane core containing different spacer lengths and footprint areas with carboxylic anchoring groups are synthesized. The synthetic routes start either from the ethynylene-linker 5 or the iodo-substituted linker 8. Reaction conditions for the final Sonogashira coupling step between ethynylenelinker 5 with the chloro-substituted dithienylethene 4 in the presence of $[PdCl_2(CH_3CN)_2]/X$ -Phos and Cs_2CO_3 or K_3PO_4 are optimized using 2-chloro-5-methylthiophene (9) and triethylsilylacetylene or triisopropylsilylacetylene (**10 a,b**) as model compounds. Experimental conditions are found to suppress the activation of the C(sp)–Si

Keywords: cross-coupling • palladium • photochromism • thiophene • tripodal ligands bond in TIPS-acetylene **10b**, a reaction leading to a subsequent cross-coupling reaction to form by-product **12**. Furthermore, activation of the C(sp)-Si bond in the presence of the fluorinated backbone of the chloro-substituted dithienylethene **4** can also be prevented. The photochromic properties of the conjugate **3** and its precursor dithienylethene **7b** are also investigated.

- [a] M. Zastrow, Dr. S. A. Ahmed,⁺ P. Haase, S. Seedorff, Prof. Dr. K. Rück-Braun Institut für Organische Chemie Technische Universität Berlin Strasse des 17. Juni 135, 10623 Berlin (Germany) Fax: (+49)30-314-28625 E-mail: krueck@chem.tu-berlin.de
- [b] S. Thyagarajan, Prof. E. Galoppini
 Department of Chemistry
 Rutgers University
 73 Warren Street, 07102 Newark (USA)
- [c] Dr. D. Gelman
 Department of Organic Chemistry
 Hebrew Institute of Jerusalem
 Givat Ram, 91904 Jerusalem (Israel)
- [d] Prof. Dr. J. Wachtveitl Institut für Physikalische und Theoretische Chemie Goethe-Universität Frankfurt am Main Max-von-Laue Str. 7, 60438 Frankfurt (Germany)
- [*] Permanent address: Chemistry Department Faculty of Science Assiut University, 71516 Assiut (Egypt)
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/asia.200900503.

Introduction

A major challenge in developing functional modules for molecular electronics, photovoltaics, or biosensor technology is tuning and controlling energy and electron transfer between dye adsorbates and semiconductor and metal substrates.^[1-4] A detailed understanding of the elementary processes on the surfaces, and their photoinduced dynamics requires a rational molecular design of model compounds.^[5-7] It has been demonstrated that many properties of molecular adsorbate systems already depend upon the surface-immobilization strategy.^[4,8] For example, the formation of aggregates strongly depends upon the orientation of single dye molecules and their lateral interaction on the metal or semiconductor surface. Small and large footprint tripodal linkers with three anchoring groups have been used by us and others to bind dyes,^[9-11] Ru-bpy,^[6] and other metal complexes,^[12] as well as photoswitches^[3,13-15] to the surface of metal-oxide nanoparticles and metals. Such systems allow control of the dye-surface distance by varying the spacer length.^[16] Tripodal linkers are also useful for preventing unwanted aggregate formation, as the coverage of the surface is controllable by the size of the footprint area. The syntheses of tripodal linkers

CHEMISTRY

involve Pd-catalyzed cross-coupling reactions as key steps.^[13,17,18] Generally, small linker units derived from 1,3,5,7-tetraphenyladamantane having the three binding groups attached to the para position of the phenyl residues, already contain an alkyne spacer for the attachment of a chromophore. Then, the chromophore-linker-conjugate is prepared by a Sonogashira coupling reaction of the ethynylsubstituted tripodal linker system with an iodo- or bromosubstituted chromophoric unit.^[9,13,14] More recently, linker systems with larger footprints were obtained by an alternative synthetic route, whereby the iodo-substituted linker precursor is coupled with the ethynyl-substituted chromophore.^[18] We followed both synthetic routes towards the preparation of the challenging tripodal dithienylethenelinker-conjugates 1, 2, (Scheme 1) and 3 (Scheme 2) containing different spacer lengths and footprint areas, and bearing carboxylic acid anchoring groups for the attachment of photoswitches to semiconductor nanoparticles. Such photochromic systems are useful for studying the dynamics of lightcontrollable interfacial electron transfer. Thus, in a module containing a dye-diarylethene-semiconductor triad, reversible modulation of electronic interactions by light could open access towards new applications. Previously, related concepts were successfully demonstrated in solution for photoswitchable donor-bridge-acceptor systems.^[19-23] We herein report the synthesis of dithienylethene-linker-conjugates for long-term studies of the ultrafast dynamics of the electron transfer in dve-diarvlethene-semiconductor triad systems.

In view of the recent development of powerful Sonogashira coupling methods that allow cross-coupling of the less reactive aryl chlorides by using electron-rich phosphines,^[24] and copper-free conditions to avoid homocoupling,^[25] the

Abstract in German: Beschrieben wird die Synthese von drei photochromen Dithienylethen-Linker-Konjugaten, bestehend aus einer zentralen Adamantaneinheit, Carbonsäure-Ankergruppen, sowie variierenden "Spacerlängen" und unterschiedlichen Fußabdrücken. Die synthetischen Routen zu diesen Verbindungen beginnen entweder ausgehend von dem Ethinylen-Linker 5 oder von dem Iod-substituierten Linker 8. Für die finale Sonogashira-Kupplung wurden dabei Reaktionsbedingungen zwischen dem Ethinylen-Linker 5 und dem Chlor-substituierten Dithienvlethen 4 in Gegenwart von [PdCl₂(CH₃CN)₂]/X-Phos und Cs₂CO₃ oder K₃PO₄ verwendet, die anhand von Modellstudien mit 2-Chlor-5-methylthiophen (9) und Triethylsilylacetylen oder Triisopropylsilylacetylen (10 a,b) optimiert wurden. Dabei wurden experimentelle Bedingungen gefunden, um die Aktivierung der C(sp)-Si-Bindung von TIPS-Acetylen 10b zu unterdrücken, welche ansonsten zu dem Nebenprodukt 12 führte. Darüber hinaus konnte die Aktivierung der C(sp)-Si-Bindung in Anwesenheit des fluorierten Rückgrats des chlor-substituierten Dithienvlethen 4 verhindert werden. Schließlich wurden die photochromen Eigenschaften des Konjugates 3 und der Vorläuferverbindung 7b untersucht.

Scheme 1. Structures of the dithienylethene-linker-conjugates 1 and 2 and design of their synthesis starting from the ethynylene-linker 5 and the chloro- and bromo-substituted dithienylethenes 4 and 6.

Scheme 2. Synthetic pathway toward dithienylethene-linker-conjugate **3** with the ethynylene-substituted dithienylethene **7b** and the iodo-substituted linker **8**.

chloro-substituted dithienylethene $\mathbf{4}^{[26]}$ and the ethynyl-substituted linker system $\mathbf{5}^{[6]}$ were used as starting materials for the synthesis of the linker-conjugate **1** (Scheme 1).

The general and efficient palladium-catalyzed method developed by Gelman and Buchwald involves the use of [PdCl₂(CH₃CN)₂] and X-Phos (2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl) in acetonitrile or dioxane at 70– 90°C, in combination with inorganic bases, such as Cs₂CO₃

Chem. Asian J. 2010, 5, 1202-1212

or K₃PO₄.^[25] In these studies, copper salts were found to enhance the rate of oligomerization of the alkyne and to suppress the coupling process. To prevent this side reaction, either copper-free conditions were employed or the alkyne was added slowly to the reaction mixture. However, thiophene is a π -electron-rich heterocycle. Even though halogenated thiophenes have been frequently employed in crosscoupling reactions,^[27] most of the cross-coupling protocols were developed for iodo-substituted or activated bromoand chloro-substituted thiophenes, that is, substituted with electron-withdrawing groups to facilitate the oxidative addition step. Differences in reactivity between 2-halo- and 3halothiophenes were not found to be very pronounced. For example, Erker et al. thoroughly investigated the palladiumcatalyzed cyanation of thiophene halides employing Pd₂ (dba)₃ and dppf as catalyst system in the presence of Zn powder and Zn(CN)₂ in DMA at 80 °C or 120 °C.^[28] Generally, mild reaction conditions for bromo- and chloro-substituted thiophenes are still rare, especially for compounds containing electron-releasing groups.^[29,30] More recently, electron-rich 2-methyl-substituted iodo- and bromothiophenes were successfully employed in Suzuki-Miyaura reactions^[31] or Heck-Mizoroki coupling procedures at elevated temperature (80-140°C).[32] Sonogashira reaction methods for a range of alkynes with halothiophenes were thoroughly investigated by Santelli employing 2-iodo-, 2-bromo-, and 3bromothiophenes by using $[Pd(C_3H_5)Cl]_2/Tedicvp, K_2CO_3,$ CuI in DMF at 100°C for 20 h.[33] Also, copper-free microwave-assisted procedures were developed for aryl chlorides and were successfully applied in the coupling of 2-chlorothiophenes.^[34] Again, in most cases, heat was necessary to promote the oxidative addition step to palladium, including cross-coupling reactions involving an electron-rich N-heterocyclic-carbene ligand.^[32] The copper-free protocol of Gelman and Buchwald was extended by Novák and coworkers by using Pd/C in the presence of X-Phos, and was successfully employed for the coupling of 2-chlorothiophene to phenylacetylene in DMA in the presence of K₂CO₃ at 110 °C.^[35] Recently, Beller reported copper-free palladiumcatalyzed Sonogashira conditions for the coupling of 3-chlorothiophene using N-substituted heteroaryl phosphines at 90 °C in toluene in the presence of Na₂CO₃.^[36] This survey of the literature demonstrates the challenges still associated with the coupling of halo-substituted thiophenes. Herein, we report on solutions for Sonogashira coupling reactions of the chloro-substituted dithienylethene 4 for the synthesis of conjugate 1, and the model compound 2-chloro-5-methylthiophene (9) (Table 1). Methods published previously by our groups for the key coupling reactions in the syntheses of the tripodal dithienvlethene-linker-conjugates 2 (Scheme 1) and 3 (Scheme 2) were investigated, using common catalysts, for example, Pd(PPh₃)₄, Pd₂(dba)₃/P(o-tol)₃, or [PdCl₂ (PhCN)₂]/[(tBu)₃PH]BF₄ with or without CuI as cocatalyst in the presence of NEt₃ or DIPA.^[13,14,18]

Accordingly, the bromo-substituted precursor 6 and the linker system 5 were selected as useful starting materials for conjugate 2 (Scheme 1). For the synthesis of conjugate 3,

Table 1. Model Sonogashira coupling reactions with thiophene 9 and TES- or TIPS-acetylene 10 a,b.

	\ + H—	≡–R	[PdCl ₂ (CH ₃ CN) X-Phos base (2.6 equiv	2] /)		
			solvent (c = 0.5 м),	s R		
9	10a :	R = TES			11a : R = TES	
	10b:	R = TIPS				
					11c: R = TIPS	
	S	=-<	, Л _з н	, L	S-S	
		12	13		14	
Entry	Acetylene	Base	Solvent	<i>t</i> [h]	Yield $[\%]^{[a]}$ 11 a/c	
1	10 a	Cs ₂ CO ₃	CH ₃ CN	17 ^[b]	76 ^[c,d]	
2	10 a	Cs_2CO_3	CH ₃ CN	4	63 ^[c,e]	
3	10 b	Cs_2CO_3	CH ₃ CN	$2.5^{[b]}$	83 ^[c]	
4	10 b	Cs_2CO_3	DMF	18 ^[f]	30 ^[c,g]	
5	10 b	Cs_2CO_3	dioxane	$17^{[f]}$	33 ^[c,h]	
6	10 b	Cs_2CO_3	toluene/DMF	18 ^[f]	54 ^[c]	
7	10 b	Cs_2CO_3	toluene/CH ₃ CN	$17^{[f]}$	50 ^[c]	
8	10 b	Cs_2CO_3	CH ₃ CN	$2.5^{[b]}$	92 ^[i]	
9	10 b	K_3PO_4	CH ₃ CN	24 ^[f]	67 ^[i]	
10	10 b	K_3PO_4	CH ₃ CN	24 ^[b,j]	85 ^[i]	

[a] Yield of isolated product. [b] Complete conversion according to TLC. [c] Ratio cat/ligand [mol%] = 1:3. [d] Ratio 11a/12 = 77:23. [e] Ratio 11a/12 = 85:15. [f] No further conversion according to TLC. [g] Ratio 11c/14 = 82:18. [h] Ratio 11c/12/14 = 84:8:8. [i] Ratio cat/ligand [mol%] = 10:30. [j] The reaction was conducted at 80°C.

the alkynyl-substituted dithienylethene **7b** and the iodo-substituted linker building block **8** were chosen (Scheme 2).

Results and Discussion

To find the optimal reaction conditions for the valuable starting material 4, we carried out model studies with 2chloro-5-methylthiophene (9) and triethylsilylacetylene (TES-acetylene) (10a) or triisopropylsilylacetylene (TIPSacetylene) (10b) (Table 1). The first coupling reaction of 9 and TES-acetylene 10a (1.3 equiv) was accomplished with [PdCl₂(CH₃CN)₂] (1 mol %), X-Phos (3 mol %), and Cs₂CO₃ (2.6 equiv) in dry acetonitrile (0.5 M) containing < 10 ppmwater at 100 °C (Table 1, entry 1). The cross-coupling product 11a was isolated in 76% yield after 17 h reaction time, workup, and flash chromatography. The dithienylethynylene 12 (Table 1, entry 1) was also isolated (ratio 11a/12 = 77:23; ¹H NMR spectroscopy of the crude product mixture). Exact turnover and the formation of the hydrodehalogenated byproduct **13** was not ascertained by ¹H NMR spectroscopy because of the low boiling point of 2-methylthiophene (13) (b.p.: 110–113 °C).^[37] However, the mass balance was satisfying, and by shortening the reaction times, the amount of byproduct 12 could be minimized at the expense of incomplete turnover. Thus, after 4 h, predominant formation of product 11a (ratio 11a/12 = 85:15) was observed, and 11a was isolated in 63% yield by flash chromatography (Table 1, entry 2). The formation of compound 12 can be understood as two consecutive Sonogashira reactions, because formation of 12 takes place in one step without the detection and isolation of the supposed intermediate 11b (Table 1). A coupled reaction either demands the Pd-mediated activation or the unwanted deprotection of the C(sp)-Si bond. Sila-Sonogashira reactions are usually run in the presence of fluoride ions.^[38] However, Pombo-Villar^[39] and others^[40-42] demonstrated that the C(sp)-SiMe₃ bond is also directly activated or deprotected by the appropriate choice of catalysts, additives (Bu₄NX, X=Br, Cl),^[39,42] CuI,^[39] or other reaction conditions (Cs₂CO₃, 150 °C).^[40,41] Interestingly, in this case, the C(sp)-SiEt₃ bond was previously observed to be stable under similar reaction conditions, but with shorter reaction times.^[25] However, for TIPS-substituted acetylene 10b, complete conversion of the starting material was observed after 2.5 h, and product 11c was isolated in 83% yield (Table 1, entry 3). Side products were not detected. When the reaction was carried out in DMF or dioxane, conversion was incomplete (Table 1, entries 4 and 5), and the formation of a new by-product, the homocoupled product 14 (¹H NMR),

was observed. Furthermore, the formation of dithienylethynylene **12** was also observed (ratio in DMF: **11c/14**=82:18; ratio in dioxane: **11c/12/14**=84:8:8; Table 1, entries 4 and 5). The formation of the homocoupled product **14** from the chloro-substituted thiophene **9** was previously observed in the literature in the absence of a transmetallation partner.^[43]

The use of a 2:1 mixture of toluene and DMF as the reaction solvent yielded the cross-coupling product **11c** in 54%

yield after 18 h without formation of by-products. Moreover, a reaction carried out in a 2:1 mixture of toluene and acetonitrile proceeded without formation of by-products, and **11c** was obtained in 50% yield (Table 1, entries 6 and 7). Actually, the yield of **11c** was increased by using a higher loading of the palladium catalyst (10 mol%) and X-Phos (30 mol%), analogous to a report previously published by Lautens and co-workers for a related catalyst precursor.^[44] Finally, in acetonitrile and in the presence of Cs₂CO₃ at 100 °C after 2.5 h workup and flash chromatography, product **11c** was isolated in 92% yield (Table 1, entry 8). Also, reactions with K₃PO₄ were tested (Table 1, entries 9 and 10). Therefore, similar to Cs CO served. Fortunately, with K₃PO₄ the reaction temperature could be decreased to 80 °C. After 24 h, complete consumption of the starting material was monitored by TLC, and 11c was isolated in 85% yield after flash chromatography (Table 1, entry 10). The results summarized in Table 1 demonstrate an influence of a) the reaction time and b) the solvent, as the best yields were observed for short reaction times in acetonitrile. Also, the moisture content of the bases and the solvents, and the differences in the solubility and the basicity of the bases, may have contributed to the reaction outcome.^[45-47] All these factors similarly affect a palladium-mediated C(sp)-SiR3 activation, as well as the cleavage^[48] of the TES-group and the TIPS-group (Table 1, entry 5). However, in the cases examined, the deprotected alkyne 11b was not detected by ¹H NMR spectroscopy of the crude products.

On route to the photoswitch-linker-conjugate 1, the synthesis of compounds **15**a,b (Scheme 3) was tested, as both compounds are also valuable starting materials for the prep-

Scheme 3. Synthesis of the ethynylene-dithienylethenes **15**a,**b** by model Sonogashira coupling reactions of the chloro-substituted dithienylethene **4** with the acetylenes **10**a,**b**.

aration of additional conjugates with spacer lengths different from 1–3. Thus, the chloro-substituted dithienylethene 4 (Scheme 3) was dissolved in acetonitrile (0.5 mL, 0.2 M solution) and treated with [PdCl₂(CH₃CN)₂] (1 mol%), X-Phos (3 mol%), and Cs₂CO₃ (2.6 equivalents) in the presence of TES-acetylene 10a (1.3 equivalents) at 90 °C. After 17 h, conversion of the chloride 4 was complete. However, bisthienylethynylene 16 (Scheme 3, Table 2), which was isolated in 40% yield, and the hydrodehalogenated by-product 17 were the only products obtained, and the cross-coupling product 15a was not observed. When the concentration of compound 4 in anhydrous redistilled acetonitrile was raised

Therefore, similar to Cs₂CO₃, also K₃PO₄, derived from Sigma–Aldrich (K₃PO₄·1.5H₂O and K₃PO₄·7H₂O),^[45] was dried for 5 h at 300 °C. By running the reaction at 100 °C for 24 h (TLC monitoring), product **11c** was obtained in 67 % yield (Table 1, entry 9). The formation of by-products was not ob-

Table 2. Optimization of the Sonogashira coupling reaction of dithienylethene 4 with TES- or TIPS-acetylene 10 a,b.

Entry	Acetylene	Base	<i>T</i> [°C]	<i>t</i> [h]	Ratio ^[a] 15:16:17	Yield [%] ^[b] 15	Yield [%] ^[b] 16
1	10 a	Cs_2CO_3	90 ^[c,d]	17	0:82:18	_	40
2	10 b	Cs_2CO_3	100 ^[e,f]	2.5	0:65:35	-	19
3	10b	K ₃ PO ₄	80 ^[e,f]	24	71:18:11	58	10
4	10 b	K_3PO_4	100 ^[e,f]	24	90:0:10	51	-
- 1							

[a] ¹H NMR of the crude reaction mixture. [b] Yield of isolated product. [c] 0.2 M solution. [d] Ratio cat/ligand [mol %] = 1:3. [e] 0.5 M solution. [f] Ratio cat/ligand [mol %] = 10:30.

to 0.5 M, the rate of conversion decreased to 22 % (¹H NMR spectroscopy), and only traces of **16** were isolated. Next, the coupling of the chloro-substituted dithienylethene **4** with TIPS-acetylene **10b** (1.3 equiv) was investigated in the presence of catalyst (10 mol %) and ligand (30 mol %) in combination with Cs₂CO₃ at 100 °C in acetonitrile (0.5 M).

After 2.5 h, complete consumption of the starting material was detected. Surprisingly, the ¹H NMR analysis after workup, indicated that product 15b was not formed, although the more stable TIPS-acetylene 10b was used. Instead, the dithienylethynylene 16 (Scheme 3) was determined (Table 2, entry 2) besides the hydrodehalogenated by-product 17. Compound 16 was isolated in 19% yield. However, when using K₃PO₄ instead of Cs₂CO₃, complete consumption of the starting material was observed at 80 °C as well as 100°C, and product 15b was isolated in 58% or 51% yields, respectively (Table 2, entries 3 and 4). In the presence of K₃PO₄, only traces of the by-products 16 and 17 were detected. A possible explanation for the results obtained, is the C-F activation at the perfluorocyclopentene moiety when using Cs₂CO₃, leading to the presence of fluoride ions.^[49,50] Then, activation of the TIPS residue of 15b by fluoride ions and a subsequent Sila-Sonogashira coupling explains the formation of compound 16. Obviously, this side reaction can be reduced by using K₃PO₄ instead of Cs₂CO₃.

The coupling of the chloro-substituted dithienylethene **4** with the sterically hindered tripodal ethynylene-linker **5** also proceeded well when applying K_3PO_4 in acetonitrile at 80 °C for 4 h (Scheme 4).

The predominant formation of product 1 (ratio 1:4:17 = 78:16:6) was ascertained by ¹H NMR spectroscopy. The tripodal dithienylethene-linker-conjugate 1 was isolated in

Scheme 4. Preparation of the dithienylethene-linker-conjugates 1 and 2. Reagents and conditions: a) 10 mol % [PdCl₂(CH₃CN)₂], 30 mol % X-Phos, K_3PO_4 (2.6 equiv), CH₃CN, 80 °C, 4 h, 1: 65 %, 2: 76 %.

65% yield after flash chromatography. Furthermore, the bromo-substituted precursor 6 was cleanly and completely coupled with 5 under identical conditions furnishing the conjugate 2 in 76% yield (Scheme 4). The challenging dithienylethene-linker-conjugate 3 with the large footprint was prepared by following a recently published procedure.^[18] Dithienylethene 7a was synthesized starting from literatureknown compounds as described in the experimental section. Desilylation with NaOH in methanol at RT gave 7b^[23] in 92% yield. Standard Sonogashira-coupling conditions were employed for the coupling of 8 (0.002 M) with 7b (2 equiv) by applying a recently published procedure by Galoppini^[18] using $Pd_2(dba)_3$ (50 mol%) and $P(o-tol)_3$ (300 mol%) in the presence of triethylamine/THF at 60 °C for 24 h. After flash chromatography, the yields of conjugate 3 ranged between 25 and 38%. Subsequent deprotection of the methylester functionalities of 3 with NaOH in THF afforded the free acid 18 in 82% yield. For comparison, we also studied the coupling of 7b with 8 under the aforementioned reaction conditions. Compound 8 (0.1 M) dissolved in acetonitrile was treated with 7b (1.3 equiv) in the presence of Pd-catalyst (10 mol %), X-Phos (30 mol %), and K_3PO_4 at $80 \degree C$ for 20 h. After workup and flash chromatography, conjugate 3 was isolated in 25% yield (Scheme 5). Neither longer reaction times (up to 65.5 h), nor an increase in concentration (0.5 M) changed the result. Furthermore, during scale-up by a factor of two, the yield decreased drastically, and product

Scheme 5. Synthesis of the dithienylethene-linker-conjugate **3**. Reagents and conditions: a) NaOH, MeOH, RT, 2.5 h, **7b**: 92%; b) 50 mol % Pd_2 (dba)₃, 300 mol % P(o-tol)₃, NEt₃, THF, 60°C, 24 h, **3**: 38%; or c) 10 mol % [PdCl₂(CH₃CN)₂], 30 mol % X-Phos, K₃PO₄ (2.6 equiv), CH₃CN, 80°C, 20 h, **3**: 25%; d) NaOH, MeOH, RT, 47 h, **18**: 82%.

1206 www.chemasianj.org

3 was isolated in 7% yield. In all coupling reactions with the iodo-substituted linker **8**, establishing turnover numbers and the yield of by-products were difficult because of the similar spectral properties of linker **8** and product **3**, which complicate the determination of the ratios by ¹H NMR spectroscopy.

Interestingly, when the commercially available K_3PO_4 was dried to constant weight for the coupling of **8** with **7b** under otherwise identical conditions, the cross-coupling reaction did not proceed. Similar unpredictable influences of the drying procedure were previously reported for bases in palladium- as well as copper-mediated coupling reactions.^[45–47]

Photochromism

All dithienylethenes described in this paper were isolated as mixtures of the open-isomer (*O*-isomer) and the closed-isomer (*C*-isomer) in a ratio of *O*/*C*-isomer \geq 95:5. Pure samples of the open-isomers of compounds **7b** and **3** were prepared by ring-closing with 326 nm light, followed by ring-opening with 607 nm light (Scheme 6).

Scheme 6. Photochromism of the dithienylethene-linker-conjugate **3** and the dithienylethene **7b**.

The UV/Vis data of the open- and closed-isomers of dithienylethene **7b** and the corresponding linker-conjugate **3** in THF at room temperature are shown in Figures 1 and 2, respectively. The absorption maxima of the isomeric forms of both compounds are summarized in Table 3.

The *O*-isomer of compound 7b shows a maximum at 308 nm, whereas for the *O*-isomer of the dithienylethenelinker-conjugate **3**, two maxima at 290 nm and 306 nm are verse ring-opening was investigated by irradiation at 607 nm. The ratios of the two isomers for both compounds in the photostationary state (pss) at 326 nm were determined by ¹H NMR spectroscopy in [D₈]THF. For compounds **7b** and **3**, ratios of O/C=5:95 and O/C=11:89 were calculated, respectively.

Table 3.	Spectrosco	bic data	of the	dithien	vlethenes	7b	and 3.
10010 01	opeenooeo	pre aata	01 1110	care and an	,	. ~	

1	1 2			
Compound	$\lambda_{\max} O$ -isomer ^[a] (ϵ) ^[b]	$\lambda_{ m max}~ m pss^{[a]}~(\epsilon)^{[b]}$	$\lambda_{iso}^{[a]}$	$pss_{326} (O/C)^{[c]}$
7b	308 (38.8)	335 (25.1), 379 ^[d] (15.1), 600 (17.5)	328	5:95
3	290 (102.4), 306 (92.3), 333 ^[d] (41.9)	290 (91.2), 306 (71.4), 360 (33.5), 390 ^[d] (23.5), 600 (20.4)	348	11:89

[a] [nm]. [b] [10³ cm⁻¹ M⁻¹]. [c] Ratios determined by ¹H NMR spectroscopy in [D₈]THF in the pss upon illumination at 326 nm. [d] Shoulder.

Figure 1. UV/Vis absorption spectrum of dithienylethene **7b** (*O*-isomer = solid line, pss = dotted line, $c = 2.5 \times 10^{-5} \text{ mol } \text{L}^{-1}$) in THF pss (326 nm) reached after 400 s.

and 600 nm. The absorption band at 335 nm of compound **7b** is red-shifted by 25 nm by the tripodal system **3**, and the maximum at 600 nm is slightly broadened. This effect can be assigned to the extended π system of the linker. The clear conversion of the isomers into each other is indicated by isosbestics points (328 nm for **7b** and at 348 nm for **3**). The reting was investigated by irradiation at iso of the two isomers for both compounds

observed. The pericyclic ringclosure to the blue colored *C*isomer is achieved by irradiation with 326 nm light. For the

C-isomer of 7b, two new

maxima at 335 nm and 600 nm are monitored, whereas the

maxima of the C-isomer of con-

jugate 3 are found at 360 nm

Figure 2. UV/Vis absorption spectrum of conjugate **3** (*O*-isomer=solid line, pss=dashed line, $c=1.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$) in THF; pss (326 nm) reached after 540 s.

Conclusions

The dithienylethene-linker-conjugates 1 and 2 have been synthesized from the ethynylene-linker 5, and the halo-substituted dithienylethenes 4 and 6 by Sonogashira cross-coupling. For the chloro-substituted dithienylethene 4, model studies were required for the optimization of the reaction conditions in the presence of [PdCl₂(CH₃CN)₂]/X-Phos and Cs₂CO₃ or K₃PO₄ to prevent homocoupling of the ethynylene-linker 5. Dithienylethene 4 and 2-chloro-5-methylthiophene (9) were investigated in the model Sonogashira-coupling reactions with TES-acetylene and TIPS-acetylene 10 a,b. A strong influence of the reaction time, the solvent, and the base was observed. Conditions were found for the solvent acetonitrile that allow for suppression of the activation of the C(sp)-Si bond of TIPS-acetylene either in transformations of the electron-rich thiophene 9 or in the presence of the fluorinated backbone of the chloro-substituted dithienylethene 4. However, in transformations of dithienylethene 4, the activation of the C(sp)-Si bond and hydrodehalogenation could only be minimized by using K₃PO₄. Finally, conjugate 3 was synthesized from the corresponding iodo-substituted linker 8 and the ethynylene-substituted dithienylethene 7b, and was successfully deprotected yielding compound 18. The photochromic properties of the conjugate 3 and its precursor dithienylethene 7b have also been investigated. Currently, we are investigating the dynamics of the electron transfer through the novel dithienylethene-linkerconjugates reported herein.

Experimental Section

Solvents were purified according to standard procedures.^[51] Anhydrous DMF and CH₃CN were purchased from Acros in AcrosSeal bottles. 5-Chloro-2-methylthiophene (**9**, 95.8%) was purchased from Alfa Aesar. Triethylsilylacetylene (**10a**, 96.6%), triisopropylsilylacetylene (**10b**, > 99%), and [PdCl₂(CH₃CN)₂] (99%) were purchased from Acros, and 2-

dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (X-Phos) (97%) was commercially available from Sigma-Aldrich. Cs2CO3 (catalogue number 441902-50G, 99%) and K₃PO₄ (catalogue number P5629-25G, tribasic \geq 98%) were purchased from Sigma–Aldrich and stored in a desiccator. Small portions (1-2 g) were removed and heated in a Schlenk tube under vacuum $(2.0 \times 10^{-2} \text{ mbar})$ for five hours at 300 °C before use. When larger amounts of K₃PO₄ were used and dried to constant mass, no conversion to the coupling product could be monitored. Flash column chromatography was performed on silica gel (ICN silica, 32-63 µm, 60 Å, ICN Biomedicals GmbH). Thin-layer chromatography (TLC) was performed on Merck plates (silica gel 60 F254). Melting points were determined with a Büchi SMP-20 or with a Leica Gallen III melting-point apparatus (uncorrected). ¹H NMR and ¹³C NMR spectra were recorded on either a Bruker AM 400 or a Bruker DRX 500 spectrometer at room temperature; residual solvent protons were used as the internal standard {CDCl3: $\delta({}^{1}\text{H}) = 7.26, \quad \delta({}^{13}\text{C}) = 77.16; \quad [D_8]\text{THF}: \quad \delta({}^{1}\text{H}) = 3.58, \quad \delta({}^{13}\text{C}) = 66.40].$ Chemical shifts are given in ppm relative to tetramethylsilane (TMS) and coupling constants in Hz. Overlapping carbon atoms in ¹³C NMR spectra for the compounds 1, 2, 3, 7b, and 18 were identified by standard techniques, based on heteronuclear decoupling NMR spectroscopy. The resonances of the carbon atoms of the fluorinated cyclopentene moiety of the compounds 1, 2, 3, 6, 7a, 7b, 15b, 16, and 18 could not be observed because of the low intensity and extensive coupling. Low-resolution electron-impact mass spectra (EIMS, 70 eV) or fast atom bombardment mass spectra (FAB) were recorded with a Finnigan MAT 95 SO. ESI spectra were recorded on an LTQ Orbitrap XL. GC-MS analysis was obtained with an HP-6890 gas chromatograph. IR spectra were recorded with a Nicolet Avatar 360 spectrometer as ATR. Elemental analyses were carried out on a Vario El from Analytik Jena. 3,5-Dibromo-2-methylthiophene^[52] was synthesized in 73% yield according to a procedure for the preparation of 3-bromobenzo[b]thiophen-2-carbaldehyde.^[53] 3-Bromo-2methylthiophen-5-ylboronic acid^[54] was synthesized in 80% yield according to a procedure published for 2,5-dimethylthiophen-3-ylboronic acid.^[55] The known precursors 3-bromo-2-methyl-5-(4-methoxyphenyl)thiophene,^[56] 3-bromo-2-methyl-5-[4-(trimethylsilylethynyl)phenyl]thiophene,[57] 1-[5-(4-methoxy-phenyl)-2-methylthien-3-yl]perfluorocyclopentene,^[58] and 5-chloro-3-iodo-2-methylthiophene^[59] were essentially prepared by literature-known procedures. 1-(4-Ethynylphenyl)-3,5,7-tris-(4carboethoxyphenyl)adamantane (5)^[6] and 1-(4-iodophenyl)-3,5,7-[(3-carbomethoxyphenyl)-4-ethynylphenyl]adamantane $(8)^{[18]}$ were synthesized by following the published methods. Photoirradiation was carried out using a high-pressure 200 W mercury short arc lamp (HBO, Osram) with a 326 nm interference filter (Amko) and a 1000 W Xe-lamp (XBO, Osram) with a 607 nm interference filter (Amko) until a photostationary state (pss) was reached. UV/Vis spectra were measured on a Shimadzu UV-1601 UV/Visible spectrophotometer.

X-ray Crystallographic Analysis of 6 (O-isomer)

 $C_{28}H_{19}BrF_6OS_2$: $M_r = 629.46 \text{ gmol}^{-1}$; crystal size $0.30 \times 0.27 \times 0.16 \text{ mm}$; monoclinic crystal system with space group P21/c and Z=4, a=25.5489(7), b = 9.1126(3), c = 10.9269(3) Å; $\alpha = \gamma = 90^{\circ}$, $\beta = 93.171(3)^{\circ}$; V =2540.07(13) Å³, $\rho_{\text{calcd.}} = 1.646 \text{ Mgm}^{-3}$; F(000) = 1264; linear absorption coefficient $\mu = 1.849 \text{ mm}^{-1}$; type of diffractometer: Siemens SMART CCD; T=150(2) K; Mo_{Ka} radiation; θ range 2.99–25.00°; index ranges $-30 \le$ $h \leq 30, -10 \leq k \leq 10, -12 \leq l \leq 12$; reflections collected 16389; independent ent reflections 4456 ($R_{int} = 0.0468$); observed reflections 346 [$I > 2\sigma(I)$], reflection used for refinement 4456; program system used: SHELXS-97, SHELXL-97, and SHELXTL; empirical absorption correction, direct methods, full-matrix refinement at F^2 with all independent reflections, weighting Scheme SHELXL; goodness-of-fit parameter (based on F^2) S=0.862; residual densities $\Delta \rho_{max}$ and $\Delta \rho_{min}$ =0.598 and 0.372 eÅ⁻³. Hydrogen atoms: refined with riding model, refined with temperature factor 1.5 times U_{eq} of the carbon atoms; non-hydrogen atoms: refined anisotropically. Data/restraints/parameters: 4456/6/346; R index (all data): wR2 (based on F^2)=0.0654; R index (conventional) $[I > 2\sigma(I)]$: R1 (based on F)=0.0330.^[60]

Syntheses

6: 1-[5-(4-Methoxyphenyl)-2-methylthienyl-3-yl]-2-[2-methyl-5-(4-bromophenyl)-thien-3-yl]-3,3,4,4,5,5-hexafluorocyclopentene (6) was synthesized according to a method described by Feringa and co-workers for related compounds.^[61] A solution of 4 (80.0 mg, 0.15 mmol) in Et₂O (2 mL) was slowly treated with n-butyllithium (1.6 m in hexane, 0.1 mL, 0.15 mmol, 1.00 equiv) at room temperature. After stirring for 1 h at this temperature, tri-n-butylborate (41.4 mg, 0.18 mmol, 1.20 equiv) was added in one portion, and stirring was continued for one hour. Then, 1bromo-4-iodobenzene (88.0 mg, 0.31 mmol, 2.00 equiv), Pd(PPh₃)₄ (7.8 mg, 6.7 µmol, 4.5 mol%), THF (2 mL), and Na2CO3 (20% w/w, 1 mL) were added, and the mixture was heated to reflux for 16 h. After this time, TLC monitoring indicated complete conversion of the starting material and the reaction mixture was quenched with water (4 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3×10 mL). The combined organic layers were dried (MgSO₄) and evaporated in vacuo. The crude product was purified by flash chromatography on silica gel using hexane/CH2Cl2 (7:1) to give product 6 as a blue solid (66.0 mg, 0.10 mmol, 66%); mixture of isomers (O-isomer/Cisomer \geq 95:5 as determined by ¹H NMR). For X-ray analysis, compound 6 could be separated by recrystallization from CH₂Cl₂ as slightly blue crystals. C-isomer: $R_f = 0.29$ (hexane/CH₂Cl₂, 7:1); O-isomer: $R_f = 0.25$ (hexane/CH₂Cl₂, 7:1); m.p.: 183-185 °C; IR (ATR): $\tilde{\nu}$ = 3069, 3002, 2956, 2941, 2919, 2853, 2837, 1704, 1610, 1554, 1515, 1497, 1474, 1466, 1440, 1401, 1394, 1337, 1299, 1274, 1253, 1192, 1180, 1138, 1112, 1092, 1074, 1054, 1036, 1009, 950, 898, 889, 819 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.52 - 7.49$ (m, 2H), 7.48–7.45 (m, 2H), 7.42–7.38 (m, 2H) 7.27 (brs, 1H), 7.15 (brs, 1H), 6.94-6.90 (m, 2H), 3.84 (s, 3H), 1.97 (s, 3H), 1.95 ppm (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.7$, 142.4, 141.9, 141.0, 140.4, 132.5, 132.3, 127.2, 127.1, 126.3, 126.2, 125.8, 123.0, 121.9, 121.4, 114.6, 55.6, 14.7, 14.6 ppm; HRMS (EI): m/z (%) calcd for C₂₈H₁₉BrF₆OS₂: 627.9965; found: 627.9966; elemental analysis: calcd (%) for $C_{28}H_{19}BrF_6OS_2$ (629.47): C 53.43, H 3.04; found: C 53.41, H 3.23.

7a: 1-[5-(4-Methoxyphenyl)-2-methylthienyl-3-yl]-2-{2-methyl-5-[4-(trimethylsilyl-ethynyl)phenyl]thien-3-yl}-3,3,4,4,5,5-hexafluorocyclopentene (7a) was prepared analogously to a procedure described by Gust and coworkers:^[23] A solution of 3-bromo-2-methyl-5-(4-trimethylsilylethynylphenyl)thiophene^[57] (192 mg, 0.55 mmol) in THF (4 mL) was cooled to -78°C under argon atmosphere and treated dropwise with n-butyllithium (1.6 m in hexane, 0.34 mL, 0.55 mmol, 1.00 equiv). After stirring for 45 min at -78°C, a solution containing 1-[5-(4-methoxyphenyl)-2-methylthien-3-yl]perfluorocyclopentene^[58] (200 mg, 0.50 mmol, 0.90 equiv) in THF (2 mL) was cooled to -78°C, and added by using a cannula to the lithiated thiophene. The resulting yellow solution was stirred for 4 h at this temperature and then allowed to warm up to room temperature. Stirring was continued for a total of 16 h until TLC monitoring indicated complete conversion of the starting material. The reaction mixture was quenched with HCl (20 mL, 1 M) and then extracted with CH_2Cl_2 (3× 25 mL). The combined organic layers were washed with water (25 mL), dried (MgSO₄), and evaporated in vacuo. The crude product was purified by flash chromatography on silica gel using hexane/CH₂Cl₂ (5:1) to give compound 7a as a blue solid (230 mg, 0.36 mmol, 71 %); mixture of isomers (*O*-isomer/*C*-isomer \geq 95:5 as determined by ¹H NMR). *C*-isomer: $R_{\rm f} = 0.77$ (hexane/CH₂Cl₂, 2:1); O-isomer: $R_{\rm f} = 0.72$ (hexane/CH₂Cl₂, 2:1); m.p.: 80-83 °C; IR (ATR): v=3076, 3032, 3001, 2959, 2935, 2855, 2837, 2157, 1705, 1610, 1556, 1516, 1475, 1492, 1466, 1441, 1337, 1301, 1273, 1251, 1190, 1179, 1138, 1111, 1092, 1055, 988, 898, 887, 864, 843, 822 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.47 - 7.45$ (m, 6H), 7.30 (brs, 1H), 7.15 (brs, 1H), 6.93-6.90 (m, 2H), 3.84 (s, 3H), 1.97 (s, 3H), 1.95 (s, 3H), 0.27 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ =159.7, 142.4, 142.1, 141.5, 140.4, 133.4, 132.7, 127.1, 126.3, 126.2, 125.8, 125.3, 123.1, 122.6, 121.4, 114.5, 104.8, 95.7, 55.6, 14.8, 14.7, 0.1 ppm; HRMS (EI): m/z (%) calcd for C₃₃H₂₉F₆OS₂Si: 647.1333 [*M*⁺+H]; found: 647.1332; elemental analysis: calcd (%) for C33H28F6OS2Si (646.78): C 61.28, H 4.36; found: C 61.40. H 4.63.

1-[5-(4-Methoxyphenyl)-2-methylthienyl-3-yl]-2-[2-methyl-5-(4-ethynyl-phenyl)-thien-3-yl]-3,3,4,4,5,5-hexafluorocyclopentene (**7b**):^[43] To a vigorously stirred solution of the TMS-protected dithienylethene **7a** (100 mg,

0.15 mmol) in MeOH (7 mL), NaOH (45.0 mg, 1.13 mmol, 7.30 equiv) was added. After stirring for 2.5 h at ambient temperature, TLC indicated complete conversion of the starting material. Then, water (10 mL) and CH2Cl2 (10 mL) were added to the blue reaction mixture. The aqueous phase was separated and extracted with CH2Cl2 (10 mL). The combined organic layers were dried (MgSO4) and evaporated in vacuo. The crude product was purified by flash chromatography on silica gel using hexane/ CH₂Cl₂ (2:1) to give product **7b** as a blue solid (82.0 mg, 0.14 mmol, 92%); mixture of isomers (O-isomer : C-isomer \geq 95:5 as determined by ¹H NMR). *C*-isomer: $R_f = 0.65$ (hexane/CH₂Cl₂, 2:1); *O*-isomer: $R_f = 0.60$ (hexane/CH₂Cl₂, 2:1); m.p.: 125-127 °C; IR (ATR): $\tilde{\nu}$ =3301, 3075, 3032, 3001, 2954, 2924, 2853, 2107, 1717, 1662, 1608, 1572, 1557, 1515, 1492, 1475, 1465, 1440, 1394, 1380, 1338, 1301, 1274, 1252, 1190, 1179, 1138, 1110, 1092, 1055, 1035 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.50$ (s, 4H), 7.49-7.45 (m, 2H), 7.31 (brs, 1H), 7.16 (brs, 1H), 6.94-6.90 (m, 2H), 3.84 (s, 3H), 3.15 (s, 1H), 1.99 (s, 3H), 1.96 ppm (s, 3H); ¹³C NMR $(100 \text{ MHz}, \text{ CDCl}_3)$; $\delta = 159.7, 142.4, 142.2, 141.4, 140.4, 133.8, 132.9,$ 127.1, 126.3 (2C), 125.8, 125.5, 123.3, 121.6, 121.4, 114.6, 83.4, 78.5, 55.6, 14.8, 14.6 ppm; MS (70 eV): m/z (%): 574 (100) [M⁺], 559 (22), 544 (20), 151 (10), 69 (10); HRMS (EI): *m*/*z* (%) calcd for C₃₀H₂₀F₆OS₂: 574.0860; found: 574.0853.

General procedure for the Sonogashira cross-coupling of 2-chloro-5methylthiophene (9) with silylprotected acetylenes: A thick-walled Schlenk tube was evacuated, heated under vacuum, and refilled with argon three times. Then, the Schlenk tube was charged with [PdCl₂ (CH₃CN)₂], X-Phos, and Cs₂CO₃ or K₃PO₄ (2.60 equiv) followed by the thienyl chloride 9 (61.3 mg, 0.46 mmol) and acetonitrile (0.92 mL) under a positive pressure of argon. The yellow suspension was degassed (5 min, ultrasound) and then stirred for 30 min at room temperature. Afterwards, the alkyne (0.60 mmol, 1.3 equiv) was added using a syringe, and the tube was sealed with a teflon valve. The reaction mixture was stirred at the desired temperature for the indicated period of time (TLC monitoring). After complete consumption of the starting material, the resulting suspension was allowed to reach room temperature, was diluted with water (5 mL), and extracted with CH2Cl2 (3×15 mL). The combined organic layers were dried (MgSO₄), concentrated in vacuo, and the residue was purified by flash chromatography on silica gel (hexane) to provide the desired product.

2-(Triethylsilylethynyl)-5-methylthiophene (**11a**): According to the general procedure, compound **11a** was obtained by the reaction of 2-chloro-5-methylthiophene (**9**) (61.3 mg, 0.46 mmol) with triethylsilylacetylene (**10a**) (84.2 mg, 0.60 mmol, 1.30 equiv), [PdCl₂(CH₃CN)₂] (1.2 mg, 4.6 µmol, 1 mol%), X-Phos (6.6 mg, 13.8 µmol, 3 mol%), and Cs₂CO₃ (391 mg, 1.20 mmol, 2.60 equiv) for 17 h at 100°C in acetonitrile (0.92 mL) to give product **11a** (83.0 mg, 0.35 mmol, 76%) as a yellow oil. R_r =0.49 (hexane); IR (ATR): $\tilde{\nu}$ =3074, 2955, 2934, 2912, 2874, 2734, 2143, 1744, 1537, 1458, 1414, 1379, 1236, 1178, 1154, 1018, 1007, 974, 797, 762, 735, 728 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =7.03 (d, *J*=3.5 Hz, 1H), 6.59 (dq, *J*=1.0 Hz, 3.4 Hz, 1H), 2.45 (d, *J*=1.0 Hz, 3H), 1.04 (t, *J*=7.9 Hz, 9H), 0.67 ppm (q, *J*=7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ =142.1, 133.0, 125.2, 121.1, 99.3, 95.5, 15.5, 7.6, 4.5 ppm; MS (70 eV): m/z (%) calcd for C₁₃H₂₀SSi: 236.1055; found: 236.1065.

2-(Triisopropysilylethynyl)-5-methylthiophene (**11 c**): **Method A**: According to the general procedure, compound **11c** was obtained by the reaction of 2-chloro-5-methylthiophene (**9**) (61.3 mg, 0.46 mmol) with triisopropylsilylacetylene (**10b**) (109 mg, 0.60 mmol, 1.30 equiv), $[PdCl_2 (CH_3CN)_2]$ (12.0 mg, 46.2 µmol, 10 mol%), X-Phos (66.1 mg, 138 µmol, 30 mol%), and Cs₂CO₃ (391 mg, 1.20 mmol, 2.60 equiv) at 100 °C for 2.5 h in acetonitrile (0.92 mL) to give product **11c** as a yellow oil (118 mg, 0.43 mmol, 92%).

Method B: According to the general procedure, compound **11c** was obtained by the reaction of 2-chloro-5-methylthiophene (**9**) (61.3 mg, 0.46 mmol) with triisopropylsilylacetylene (**10b**) (109 mg, 0.60 mmol, 1.30 equiv), [PdCl₂(CH₃CN)₂] (12.0 mg, 46.2 µmol, 10 mol%), X-Phos (66.1 mg, 138 µmol, 30 mol%), and K₃PO₄ (255 mg, 1.20 mmol, 2.60 equiv) for 17 h at 80 °C in acetonitrile (0.92 mL) to give product **11c** as a yellow oil (110 mg, 0.39 mmol, 85%). $R_{\rm f}$ =0.64 (hexane); IR (ATR):

Chem. Asian J. 2010, 5, 1202-1212

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

$$\begin{split} & \bar{\nu} \!=\! 3073,\,2957,\,2936,\,2942,\,2924,\,2891,\,2865,\,2143,\,1744,\,1537,\,1462,\,1383,\\ & 1178,\,1154,\,996,\,883,\,797,\,754~\text{cm}^{-1};\,^1\text{H}\,\text{NMR}\,\,(400~\text{MHz},\,\text{CDCl}_3);\,\delta\!=\!7.03\\ & (d,\,J\!=\!3.6~\text{Hz},\,1\,\text{H}),\,6.60\,\,(dq,\,J\!=\!1.1~\text{Hz},\,3.6~\text{Hz},\,1\,\text{H}),\,2.45\,\,(d,\,J\!=\!1.1~\text{Hz},\,3\,\text{H}),\,1.12~\text{ppm}\,\,(s,\,21\,\text{H});\,^{13}\text{C}\,\text{NMR}\,\,(100~\text{MHz},\,\text{CDCl}_3);\,\delta\!=\!141.9,\,132.7,\\ & 125.2,\,121.4,\,100.0,\,94.4,\,18.8,\,15.5,\,11.5~\text{ppm};\,\text{HRMS}\,\,(\text{EI});\,\textit{m/z}\,\,(\%)\,\,\text{calcd}\\ & \text{for}\,\,C_{16}H_{26}\text{SSi}:\,278.1524;\,\text{found}:\,278.1517;\,\text{elemental analysis: calcd}\,\,(\%)\\ & \text{for}\,\,C_{16}H_{26}\text{SSi}\,(278.5);\,C\,69.00,\,\text{H}\,9.41;\,\text{found}:\,C\,68.88,\,\text{H}\,9.41. \end{split} \end{split}$$

1-[5-(4-Methoxyphenyl)-2-methylthienyl-3-yl]-2-[2-methyl-5-(triisopropylsilyl-ethynyl)thien-3-yl]-3,3,4,4,5,5-hexafluorocyclopentene (15b): Α thick-walled Schlenk tube was evacuated, heated under vacuum, and refilled with argon three times. Then, the Schlenk tube was charged under a positive pressure of argon with dithienylethene 4 (50.0 mg, 98.2 µmol), [PdCl₂(CH₃CN)₂] (2.5 mg, 9.8 µmol, 10 mol%), X-Phos (14.0 mg, 29.4 µmol, 30 mol %), K3PO4 (54.1 mg, 255 µmol, 2.60 equiv), and acetonitrile (0.20 mL). The bluish suspension was degassed (5 min, ultrasound) and stirred for 30 min, before triisopropylsilylacetylene (10b) (23.2 mg, 127 µmol, 1.3 equiv) was added using a syringe. The Schlenk tube was sealed with a teflon valve, and the resulting suspension was stirred for 24 h at 80°C (TLC monitoring). The resulting brown suspension was allowed to reach room temperature, was diluted with water (5 mL), and extracted with CH₂Cl₂ (3×15 mL). The combined organic layers were dried (MgSO₄) and evaporated in vacuo. The crude product was purified by flash chromatography on silica gel using hexane/EtOAc (10:1) to give product 15b as a bluish solid (37.0 mg, 56.5 µmol, 58%) besides by-product 16; mixture of isomers (O-isomer : C-isomer \geq 95:5 as determined by ¹H NMR). C-isomer: $R_f = 0.73$ (hexane/CH₂Cl₂, 2:1); O-isomer: $R_f =$ 0.67 (hexane/CH₂Cl₂, 2:1); m.p.: 104-107 °C; IR (ATR): v=2956, 2943, 2865, 2146, 1709, 1610, 1572, 1554, 1515, 1473, 1463, 1441, 1420, 1337, 1300, 1273, 1253, 1192, 1178, 1137, 1112, 1090, 1051, 1037, 987, 883, 823, 735 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.48–7.44 (m, 2 H), 7.21 (br s, 1H), 7.12 (br s, 1H), 6.93-6.90 (m, 2H), 3.84 (s, 3H), 1.95 (s, 3H), 1.90 (s, 3H), 1.12 ppm (s, 21 H); 13 C NMR (100 MHz, CDCl₃): $\delta = 159.7$, 143.2, 142.5, 140.5, 131.9, 127.1, 126.3, 125.6, 125.0, 122.1, 121.3, 114.5, 98.3, 96.8, 55.6, 18.8, 14.7, 14.6, 11.4 ppm; HRMS (EI): m/z (%) calcd for $C_{33}H_{36}F_6OS_2Si:$ 654.1881; found 654.1874; elemental analysis: calcd (%) for C33H36F6OS2Si (654.84): C 60.53, H 5.54; found: C 60.49, H 5.80.

16: 1,2-Bis{[5-(4-methoxyphenyl)-2-methylthiophen-3-yl)-2-(5-phenyl-2-methylthiopen-3-yl]-3,3,4,4,5,5-hexafluorocyclopentene]ethyne (**16**) was isolated as a blue solid (4.8 mg, 4.9 µmol, 10%); mixture of isomers (*O*-isomer : *C*-isomer ≥ 95:5 as determined by ¹H NMR). *C*-isomer: *R*_f=0.14 (hexane/CH₂Cl₂, 5:1); *O*-isomer: *R*_f=0.10 (hexane/CH₂Cl₂, 5:1); m.p.: 160–162 °C; IR (ATR): $\bar{\nu}$ =3075, 3033, 3000, 2956, 2924, 2853, 1725, 1706, 1610, 1554, 1515, 1473, 1465, 1440, 1337, 1273, 1253, 1192, 1138, 1113, 1091, 1053, 1035, 986, 899, 822 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =7.47–7.45 (m, *J*=8.8 Hz, 4H), 7.29 (brs, 2H), 7.13 (brs, 2H), 6.93–6.91 (m, *J*=8.8 Hz, 4H), 3.84 (s, 6H), 1.94 (s, 6H), 1.93 ppm (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ =159.8, 144.2, 142.6, 140.5, 132.3, 127.1, 126.3, 125.6, 125.5, 121.3, 120.9, 114.6, 86.1, 55.6, 14.7 ppm (2 C); MS (70 eV): *m*/z (%): 970 (100) [*M*⁺], 546 (10), 312 (22), 191 (15), 130 (20), 119 (62), 105 (70), 91 (20), 77 (18); HRMS (EI): *m*/z (%) calcd for C₄₆H₃₀F₁₂O₂S₄: 970.0937; found: 970.0933.

Dithienvlethene-linker-conjugate 1: A thick-walled Schlenk tube was evacuated, heated under vacuum, and refilled with argon three times. Then, the Schlenk tube was charged under a positive pressure of argon with dithienylethene 4 (35.0 mg, 68.7 µmol), [PdCl₂(CH₃CN)₂] (1.8 mg, 6.9 µmol, 10 mol%), X-Phos (9.8 mg, 20.6 µmol, 30 mol%), K₃PO₄ (38.0 mg, 179 µmol, 2.60 equiv), and acetonitrile (0.14 mL). The bluish suspension was degassed (5 min, ultrasound) and stirred for 30 min before the tripod 5 (60.7 mg, 89.3 µmol, 1.30 equiv) was added. Afterwards, the Schlenk tube was sealed with a teflon valve, and the suspension was stirred for 4 h at 80 °C (TLC monitoring). The resulting suspension was allowed to reach room temperature, and was diluted with water (15 mL) and EtOAc (15 mL). The aqueous phase was separated and extracted with EtOAc (3×15 mL). The combined organic layers were dried (MgSO₄) and evaporated in vacuo. The crude product was purified by flash chromatography on silica gel using hexane/EtOAc (5:1) to give product 1 as a bluish solid (52.0 mg, 45.1 µmol, 65%); mixture of isomers (O-isomer : C-isomer \geq 95:5 as determined by ¹H NMR). O/C-isomer: $R_{\rm f}$ =0.35 (hexane/EtOAc 5:1); m.p.: 119–122 °C; IR (ATR): $\tilde{\nu}$ =3523, 3059, 3038, 2978, 2929, 2902, 2853, 1714, 1609, 1571, 1553, 1509, 1475, 1464, 1443, 1366, 1338, 1275, 1253, 1188, 1179, 1143, 1104, 1019, 986, 897, 854, 831, 762 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =8.05 (d, *J*=8.4 Hz, 6H), 7.56 (d, *J*=8.5 Hz, 6H) 7.53–7.45 (m, 6H), 7.28 (brs, 1 H), 7.14 (brs, 1 H), 6.93–6.90 (m, 2 H), 4.39 (q, *J*=7.1 Hz, 6H), 3.83 (s, 3 H), 2.21–2.20 (m, 12 H), 1.95 (s, 3 H), 1.94 (s, 3 H) 1.40 ppm (t, *J*=7.1 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃): δ =166.6, 159.7, 153.8, 149.5, 143.4, 142.5, 140.5, 131.7, 131.6, 129.9, 128.8, 127.1, 126.2, 125.6, 125.3, 125.2, 121.8, 121.2 (2 C), 120.7, 114.5, 93.8, 81.7, 61.1, 55.5, 46.8 (2 C), 39.7, 39.5, 14.7, 14.6, 14.5 ppm; HRMS (EI): *m*/*z* (%) calcd for C₆₇H₅₆F₆O₇S₂ [*M*⁺−2H]: 1150.3372; found: 1150.3321; elemental analysis: calcd (%) for C₆₇H₅₈F₆OrS₂ (1153.29): C 69.78, H 5.07; found: C 70.07, H 5.33.

Dithienylethene-linker-conjugate 2: A thick-walled Schlenk tube was evacuated, heated under vacuum, and refilled with argon three times. Then, the Schlenk tube was charged under a positive pressure of argon with dithienylethene 6 (30.0 mg, 47.6 µmol), [PdCl₂(CH₃CN)₂] (1.2 mg, 4.8 µmol, 10 mol%), X-Phos (6.8 mg, 14.3 µmol, 30 mol%), K₃PO₄ (26.1 mg, 123 µmol, 2.60 equiv), and acetonitrile (0.01 mL). The bluish suspension was degassed (5 min, ultrasound) and stirred for 30 min before compound 5 (42.0 mg, 61.9 µmol, 1.30 equiv) was added. Afterwards, the Schlenk tube was sealed with a teflon valve and the suspension was stirred at 80°C for 4 h (TLC monitoring). Then, the resulting suspension was allowed to reach room temperature and was diluted with water (15 mL) and EtOAc (15 mL). The aqueous phase was separated and extracted with EtOAc (3×15 mL). The combined organic layers were dried (MgSO₄) and evaporated in vacuo. The crude product was purified by flash chromatography on silica gel using hexane/EtOAc (5:1) to give compound 2 as a bluish solid (45.0 mg, 36.6 µmol, 76%); mixture of isomers (O-isomer : C-isomer \geq 95:5 as determined by ¹H NMR). O/Cisomer: $R_f = 0.32$ (hexane/EtOAc, 5:1); m.p.: 140–143 °C; IR (ATR): $\tilde{\nu} =$ 2979, 2932, 2902, 2854, 1716, 1609, 1515, 1336, 1277, 1255, 1188, 1106, 1019, 989, 833, 763 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.05$ (d, J =8.8 Hz, 6H), 7.57-7.52 (m, 12H), 7.49-7.45 (m, 4H), 7.31 (brs, 1H), 7.15 (brs, 1H), 6.93-6.90 (m, 2H), 4.38 (q, J=7.1 Hz, 6H), 3.84 (s, 3H), 2.21 (s, 12H), 1.99 (s, 3H), 1.97 (s, 3H) 1.40 ppm (t, J = 7.1 Hz, 9H); ¹³C NMR $(100 \text{ MHz}, \text{ CDCl}_3): \delta = 166.6, 159.7, 153.9, 149.2, 142.4, 142.0, 141.6,$ 140.4, 133.2, 132.3, 131.9, 130.0, 128.9, 127.1, 126.3 (2 C), 125.8, 125.5, 125.24, 125.18, 123.1, 122.8, 121.4 (2C), 114.5, 90.6, 89.2, 61.1, 55.5, 46.9, 46.8, 39.8, 39.5, 14.8, 14.7, 14.5 ppm; MS (70 eV): m/z (%): 1226 (30) [M+ -2H], 712 (10) 655 (10), 549 (17), 433 (10), 368 (17), 278 (15), 214 (18), 163 (20), 139 (42), 97 (57), 71 (65), 57 (100); HRMS (EI): m/z (%) calcd for $C_{73}H_{60}F_6O_7S_2$ [*M*⁺-2H]: 1226.3685; found: 1226.3727.

Dithienylethene-linker-conjugate 3: **Method A**: A flask was charged with iodo-tripod **8** (50.0 mg, 48.0 µmol), dithienylethene **7b** (55.0 mg, 96.2 µmol, 2.00 equiv), Pd₂(dba)₃ (22.0 mg, 24.0 µmol, 50 mol%), P(*o*-tol)₃ (43.8 mg, 144 µmol, 300 mol%) in Et₃N (7.4 mL), and dry THF (15 mL). The resulting reaction mixture was stirred at 60°C for 24 h under argon atmosphere (TLC monitoring), then cooled to room temperature and poured into water (20 mL). Then, the reaction mixture was extracted with CH₂Cl₂ (3×20 mL). The combined organic layers were washed with water (10 mL), dried (MgSO₄), and evaporated in vacuo. The crude product was purified by flash chromatography on silica gel using hexane/EtOAc (4:1) to give compound **3** as a blue solid (27.0 mg, 18.1 µmol, 38%); mixture of isomers (*O*-isomer : *C*-isomer \geq 95:5 as determined by ¹H NMR).

Method B: A thick-walled Schlenk tube was evacuated, heated under vacuum, and refilled with argon three times. Then, the Schlenk tube was charged under a positive pressure of argon with iodo-tripod **8** (25.0 mg, 24.0 μ mol), [PdCl₂(CH₃CN)₂] (0.6 mg, 2.4 μ mol, 10 mol%), X-Phos (3.4 mg, 7.2 μ mol, 30 mol%), K₃PO₄ (13.3 mg, 62.4 μ mol, 2.60 equiv), and acetonitrile (240 μ L). The bluish suspension was degassed (5 min, ultrasound) and stirred for 30 min before the dithienylethene **7b** (17.9 mg, 31.2 μ mol, 1.30 equiv) was added. Afterwards, the Schlenk tube was sealed with a teflon valve, and the suspension was allowed to reach room temperature, and diluted with water (5 mL) and EtOAc (5 mL). The aqueous phase was separated and extracted with EtOAc (3×5 mL).

www.chemasianj.org

AN ASIAN JOURNAL

The combined organic layers were dried (MgSO₄) and evaporated in vacuo. The crude product was purified by flash chromatography on silica gel using hexane/EtOAc (4:1) to give product 3 as a bluish solid (9.0 mg, 6.0 $\mu mol,$ 25 %); mixture of isomers (O-isomer : C-isomer \geq 95:5 as determined by ¹H NMR). *O/C*-isomer: $R_f = 0.19$ (hexane/EtOAc, 5:1); m.p.: 111-114°C; IR (ATR): \tilde{v} = 3495, 3068, 3033, 2952, 2923, 2851, 2208, 1908, 1725, 1600, 1579, 1511, 1491, 1463, 1438, 1406, 1357, 1338, 1321, 1304, 1279, 1257, 1191, 1179, 1143, 1112, 1103, 1080, 1054, 1018, 988, 897, 888, 832, 754 cm^-1; ¹H NMR (400 MHz, CDCl₃): δ = 8.22 (t, J = 1.64 Hz, 3H), 8.00 (dt, J=1.60 Hz, 7.84 Hz, 3H), 7.71 (dt, J=1.48 Hz, 7.80 Hz, 3H), 7.57-7.41 (m, 25H), 7.32 (brs, 1H), 7.16 (brs, 1H), 6.93-6.90 (m, 2H), 3.94 (s, 9H), 3.84 (s, 3H), 2.19 (s, 12H), 1.98 (s, 3H), 1.96 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.6$, 159.7, 149.6, 149.5, 142.4, 142.0, 141.6, 140.4, 135.8, 133.2, 132.9, 132.3, 132.0, 131.9, 130.6, 129.3, 128.7, 127.1, 126.30, 126.27, 125.8, 125.5, 125.32, 125.30, 124.0, 123.1, 122.9, 121.4, 121.3, 121.0, 114.6, 90.7, 90.3, 89.2, 88.4, 55.6, 52.4, 47.0 (2 C), 39.6 (2C), 14.8, 14.7 ppm; MS (70 eV): m/z (%): 1490 (100) [M⁺+3H], 1412 (10), 1253 (20), 1251 (25); HRMS (ESI): m/z (%) calcd for $C_{94}H_{69}F_6O_7S_2$: 1487.4383; found: 1487.4373.

Dithienylethene-linker-conjugate 18: The methyl ester 3 (5.0 mg, 3.4 µmol) was dissolved in THF (0.8 mL), and NaOH (1 M, 0.2 mL) was added. The resulting solution was stirred at room temperature until TLC monitoring indicated no further conversion of the starting material (47 h). Then, the mixture was extracted with CH₂Cl₂ (3×1 mL). Afterwards, the aqueous phase was acidified with HCl (2 M, 0.2 mL) and extracted with CHCl₃ (3×1 mL). Subsequent evaporation of the solvent in vacuo afforded compound 18 as a blue solid (4.0 mg, 2.8 µmol, 82%); mixture of isomers (O-isomer : C-isomer \geq 95:5 as determined by ¹H NMR). O/C-isomer: $R_f = 0.68$ (EtOAc/AcOH, 80:1); m.p.: 201– 204°C; IR (ATR): $\tilde{\nu}$ =3335, 3065, 3034, 2927, 2852, 2616, 2210, 1911, 1704, 1602, 1559, 1511, 1463, 1439, 1386, 1273, 1253, 1180, 1137, 1114, 1054, 1035, 988, 833, 768, 760 cm⁻¹; ¹H NMR (400 MHz, $[D_8]$ THF): $\delta =$ 8.16 (s, 3H), 7.98 (d, J=7.7 Hz, 3H), 7.70 (d, J=7.8 Hz, 3H), 7.69-7.63 (m, 9H), 7.56-7.44 (m, 17H), 7.27 (brs, 1H), 6.94-6.92 (m, 2H), 3.79 (s, 3H), 2.24 (s, 12H), 2.02 (s, 3H), 2.00 ppm (s, 3H); ¹³C NMR (100 MHz, $[D_8]$ THF): $\delta = 165.9$, 159.9, 150.3, 150.2, 142.6, 142.0, 141.6, 140.2, 135.0, 132.9, 132.5, 131.9, 131.4, 131.3, 129.1, 128.4, 126.6, 126.0, 125.8 (2C), 125.5, 125.3 (2 C), 125.2, 123.7, 123.0, 122.9, 121.0, 120.8, 120.6, 114.2, 90.5, 89.9, 88.5, 87.8, 54.6, 46.5 (2C), 39.5 (2C), 13.6, 13.5 ppm; MS (FAB): m/z (%): 1444 (10) [M⁺], 413 (15), 282 (45), 242 (100); HRMS (ESI): m/z (%) calcd for $C_{91}H_{61}F_6O_7S_2$ [M^+ -H]: 1443.3757; found: 1443.3784.

Acknowledgements

This work was supported by the German–Israeli Foundation for Scientific Research and Development (Grant No. 894/05, D.G. and K.R.-B.), the Deutsche Forschungsgemeinschaft (SFB 658, B6 and Cluster of Excellence 314, A4, K.R.-B.) and the Fonds der Chemischen Industrie (K.R.-B.). Part of this work was also supported by the Alexander von Humboldt-Stiftung through a research grant to Dr. Saleh A. Ahmed. E.G. thanks ACS PRF (46663-AC10) and NSF (NIRT 030829) for funding.

- P. Piotrowiak, E. Galoppini, Q, Wei, G. J. Meyer, P. Wiewiór, J. Am. Chem. Soc. 2003, 125, 5278–5279.
- [2] R. Huber, J.-E. Moser, M. Grätzel, J. Wachtveitl, J. Phys. Chem. B 2002, 106, 6494–6499, and references therein.
- [3] S. Wagner, F. Leyssner, C. Kördel, S. Zarwell, R. Schmidt, M. Weinelt, K. Rück-Braun, M. Wolf, P. Tegeder, *Phys. Chem. Chem. Phys.* 2009, 11, 6242–6248.
- [4] P. Dietrich, F. Michalik, R. Schmidt, C. Gahl, G. Mao, M. Breusing, M. B. Raschke, B. Priewisch, T. Elsässer, R. Mendelsohn, M. Weinelt, K. Rück-Braun, *Appl. Phys. A* 2008, 93, 285–292.
- [5] L. Dworak, V. V. Matylitsky, J. Wachtveitl, *ChemPhysChem* 2009, 10, 384–391.

- [6] E. Galoppini, W. Guo, W. Zhang, P. G. Hoertz, P. Qu, G. J. Meyer, J. Am. Chem. Soc. 2002, 124, 7801–7811.
- [7] M. Myahkostupov, P. Piotrowiak, D. Wang, E. Galoppini, J. Phys. Chem. C 2007, 111, 2827–2829.
- [8] E. Galoppini, Coord. Chem. Rev. 2004, 248, 1283-1297.
- [9] M. Lamberto, C. Pagba, P. Piotrowiak, E. Galoppini, *Tetrahedron Lett.* 2005, 46, 4895–4899.
- [10] Y. Shirai, L. Cheng, B. Chen, J. M. Tour, J. Am. Chem. Soc. 2006, 128, 13479-13489.
- [11] S. Thyagarajan, E. Galoppini, P. Persson, J. M. Giaimuccio, G. J. Meyer, *Langmuir* 2009, 25, 9219–9226.
- [12] L. Wei, K. Padmaja, W. J. Youngblood, A. B. Lysenko, J. S. Lindsey, D. F. Bocian, J. Org. Chem. 2004, 69, 1461–1469.
- [13] S. Zarwell, K. Rück-Braun, Tetrahedron Lett. 2008, 49, 4020-4025.
- [14] S. Zarwell, S. Dietrich, C. Schulz, P. Dietrich, F. Michalik, K. Rück-Braun, Eur. J. Org. Chem. 2009, 2088–2095.
- [15] D. Takamatsu, Y. Yamakoshi, K.-I. Fukui, J. Phys. Chem. B 2006, 110, 1968–1970.
- [16] C. C. Clark, G. J. Meyer, Q. Wei, E. Galoppini, J. Phys. Chem. B 2006, 110, 11044–11046.
- [17] W. Guo, E. Galoppini, G. Rydja, G. Pardi, *Tetrahedron Lett.* 2000, 41, 7419–7421.
- [18] S. Thyagarajan, A. Liu, O. A. Famoyin, M. Lamberto, E. Galoppini, *Tetrahedron* 2007, 63, 7550–7559.
- [19] J. M. Endtner, F. Effenberger, A. Hartschuh, H. Port, J. Am. Chem. Soc. 2000, 122, 3037–3046.
- [20] J. H. Hurenkamp, J. J. D. de Jong, W. R. Browne, J. H. van Esch, B. L. Feringa, Org. Biomol. Chem. 2008, 6, 1268–1277.
- [21] M. Berberich, A.-M. Krause, M. Orlandi, F. Scandola, F. Würthner, Angew. Chem. 2008, 120, 6718–6721; Angew. Chem. Int. Ed. 2008, 47, 6616–6619.
- [22] T. Fukaminato, T. Umemoto, Y. Iwata, M. Irie, *Chem. Lett.* **2005**, *34*, 676–677.
- [23] P. A. Liddell, G. Kodis, A. L. Moore, T. A. Moore, D. Gust, J. Am. Chem. Soc. 2002, 124, 7668–7669.
- [24] A. Köllhofer, T. Pullmann, H. Plenio, Angew. Chem. 2003, 115, 1086–1088; Angew. Chem. Int. Ed. 2003, 42, 1056–1058.
- [25] D. Gelman, S. L. Buchwald, Angew. Chem. 2003, 115, 6175–6178; Angew. Chem. Int. Ed. 2003, 42, 5993–5996.
- [26] J. Areephong, W. R. Browne, B. L. Feringa, Org. Biomol. Chem. 2007, 5, 1170–1174.
- [27] S. Schröter, C. Stock, T. Bach, Tetrahedron 2005, 61, 2245-2267.
- [28] T. Erker, S. Nemec, Synthesis 2004, 23-25.
- [29] K. Billingsley, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 3358– 3366.
- [30] C. Torborg, A. Zapf, M. Beller, ChemSusChem 2008, 1, 91-96.
- [31] Y. Kitamura, S. Sako, T. Udzu, A. Tsutsui, T. Maegawa, Y. Monguchi, H. Sajiki, *Chem. Commun.* 2007, 5069–5071.
- [32] E. A. B. Kantchev, G.-R. Peh, C. Zhang, J. Y. Ying, Org. Lett. 2008, 10, 3949–3952.
- [33] M. Feuerstein, H. Doucet, M. Santelli, *Tetrahedron Lett.* 2005, 46, 1717–1720.
- [34] C. Yi, R. Hua, H. Zeng, Q. Huang, Adv. Synth. Catal. 2007, 349, 1738–1742.
- [35] A. Komáromi, Z. Novák, Chem. Commun. 2008, 4968-4970.
- [36] C. Torborg, J. Huang, T. Schulz, B. Schäffner, A. Zapf, A. Spannenberg, A. Börner, M. Beller, *Chem. Eur. J.* 2009, 15, 1329–1336.
- [37] W. J. King, F. F. Nord, J. Org. Chem. 1949, 14, 638-642.
- [38] Y. Hatanaka, T. Hiyama, J. Org. Chem. 1988, 53, 918-920.
- [39] U.S. Sørensen, E. Pombo-Villar, Tetrahedron 2005, 61, 2697-2703.
- [40] H. Huang, H. Liu, H. Jiang, K. Chen, J. Org. Chem. 2008, 73, 6037– 6040.
- [41] C. Yi, R. Hua, J. Org. Chem. 2006, 71, 2535-2537.
- [42] D. A. Alonso, C. Nájera, M. C. Pacheco, Adv. Synth. Catal. 2003, 345, 1146–1158.
- [43] J. Hassan, L. Lavenot, C. Gozzi, M. Lemaire, *Tetrahedron* 1999, 40, 857–858.

- [44] C. Blaszykowski, E. Aktoudianakis, D. Alberico, C. Bressy, D. G. Hulcoop, F. Jafarpour, A. Joushaghani, B. Laleu, M. Lautens, J. Org. Chem. 2008, 73, 1888–1897.
- [45] K. Dooleweerdt, H. Birkedal, T. Ruhland, T. Skrydstrup, J. Org. Chem. 2008, 73, 9447–9450.
- [46] A. Klapars, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 7421–7428.
- [47] C. Meyers, B. U. W. Maes, K. T. J. Loones, G. Bal, G. L. F. Lemière, R. A. Dommisse, J. Org. Chem. 2004, 69, 6010–6017.
- [48] P. J. Kocieński, Protecting Groups, Georg Thieme Verlag Stuttgart, New York, 1994.
- [49] N. S. Stoyanov, N. Ramchandani, D. M. Lemal, *Tetrahedron Lett.* 1999, 40, 6549–6552.
- [50] K. Mikami, Y. Itoh, M. Yamanaka, Chem. Rev. 2004, 104, 1-16.
- [51] D. D. Perrin, W. L. F. Armarego, Purification of Laboratory Chemicals, 4th ed., Butterworth-Heinemann, 1996.
- [52] R. Lantz, A.-B. Hörnfeldt, Chem. Scr. 1972, 2, 9-15.
- [53] W. Ried, H. Bender, Chem. Ber. 1955, 88, 34-38.
- [54] S. L. Gilat, S. H. Kawai, J.-M. Lehn, Chem. Eur. J. 1995, 1, 275–284.

- [55] S. V. Shorunov, M. M. Krayushkin, F. M. Stoyanovich, M. Irie, *Russ. J. Org. Chem.* 2006, 42, 1490–1497.
- [56] S. H. Kawai, S. L. Gilat, R. Ponsinet, J.-M. Lehn, Chem. Eur. J. 1995, 1, 285–293.
- [57] A. Osuka, D. Fujikane, H. Shinmori, S. Kobatake, M. Irie, J. Org. Chem. 2001, 66, 3913–3923.
- [58] A. Fernández-Acebes, J.-M. Lehn, Chem. Eur. J. 1999, 5, 3285-3292.
- [59] G. Engelmann, R. Stößer, G. Koßmehl, W. Jugelt, H.-P. Welzel, J. Chem. Soc. Perkin Trans. 2 1996, 2015–2019.
- [60] CCDC 747599 [for 6 (O-isomer)] contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre at www.ccdc.cam.ac.uk/data_request/cif.
- [61] J. J. D. de Jong, L. N. Lucas, R. Hania, A. Pugzlys, R. M. Kellogg, B. L. Feringa, K. Duppen, J. H. van Esch, *Eur. J. Org. Chem.* 2003, 1887–1893.

Received: September 28, 2009 Published online: March 25, 2010