



Tetrahedron Letters 40 (1999) 5013-5014

## Influence of the Chiral Auxiliary on the Stereoselectivity of the $S_{RN}1$ C-Alkylation of 2-Nitropropionate Anions

## Robert Nouguier\*, Valérie Béraud, Patrice Vanelle, Michel P. Crozet

Laboratoire de Chimie Moléculaire Organique - UMR 6517 Universités d'Aix-Marseille 1 et 3, Avenue Normandie-Niemen 13397 Marseille Cedex 20 - France

## Received 6 April 1999; accepted 4 May 1999

**Abstract**: A series of carbohydrate-derived 2-nitropropionate anions was reacted with p-nitrobenzyl chloride under  $S_{RN}^{-1}$  reactions conditions, the diastereomeric ratios were moderate, but increased when the carbohydrate moiety was replaced by the more bulky 8-phenylmenthol. © 1999 Elsevier Science Ltd. All rights reserved.

We have recently described  $^{1}$  an efficient method for the synthesis of  $C^{\alpha\alpha}$ -unsymmetrically disubstituted nitroesters by electron transfer C-alkylation of ethyl 2-nitropropionate anion. To demonstrate the utility of the method, the nitroester  $\Pi$  obtained from  $S_{RN}$ 1 reaction of  $\Pi$  with p-nitrobenzyl chloride, was transformed into 2-( $\pm$ )-amino-3-(4-aminophenyl)-2-methylpropionic acid  $\Pi$ V. The synthetic potential of this reaction is now extended even further in the synthesis of optically pure aminoacids.

To this goal, we first have screened a series of easily accessible chiral auxiliaries 1a-e derived from carbohydrates (1a from D-arabinose<sup>2</sup>, 1b-c from D-fructose<sup>3</sup>,<sup>4</sup>, 1d-e from D-glucose<sup>5</sup>). The bromoesters 2 were obtained as a mixture of diastereomers by reaction of 1 with racemic 2-bromopropanoic bromide. By the Kornblum procedure<sup>6</sup> the nitro esters 3 were obtained and then submitted to the  $S_{RN}1$  reaction with p-nitrobenzyl chloride. The C-alkylation products 4a-f were isolated in good to moderate yields as a mixture of diastereomers. The diastereomeric ratios (dr) were determined by  $^1H$  NMR. As no asymmetric induction occurred with 3a, we decided to increase the bulkiness at the anomeric position of the carbohydrate. With the spiro sugars 1b-c easily accessible from cheap D-fructose the dr was increased to 60:40 and the diastereomers of the alkylated products were easily separable. To try to understand the role of the nature of the substituents adjacent to the carbon bearing the nitropropionate, we synthetized the two isomeric 2-0 and 3-0-benzylethers of the methyl 4,6-0-benzylidene- $\alpha$ -D-glucopyranoside by the stannylene method  $^5$  but the dr was always 60:40.

As 8-phenylmenthol has been successfully used as chiral auxiliary for radical  $^7$  and ionic  $^8$  alkylations of malonic-type derivatives, we anticipate that the anion of the nitroester 3f will react with the p-nitrobenzyl radical with high diastereoselectivity. At room temperature the dr was 80:20, at lower temperatures either the reaction was inhibited (-40 °C) or  $S_N2$  O-alkylation became preponderant (0 °C).

Therefore, based on these findings, the design of new chiral auxiliaries was envisaged to reach high levels of induction. The camphor-derived alcohol  $1\,g$  was synthetized, nevertheless it has been impossible to prepare the corresponding bromoester  $2\,g$ .

|       | r-oh →          | CH₃ /<br>R-O₂C → Br → | CH₃<br>R-O₂C—NC | $P_2 \longrightarrow P_1 - O_2 C \longrightarrow P_2 - O_2 C \longrightarrow P_3 + O_3 C \longrightarrow P_3 + O_$ |
|-------|-----------------|-----------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 1a-g            | H<br>2a-f             | H<br>3a-f       | ĊH₂C <sub>6</sub> H₄ <i>p</i> NO₂<br>4a-f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| entry | R <del></del>   | (i) yield             | (ii) yield      | (iii) yield - diastereomeric ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| a     | ОМе             | 82%                   | 55%             | 87% - 50:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| b     | X TO            | 97%                   | 50%             | 50% - 60:40 <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C     |                 | 96%                   | 70%             | 51% - 60:40*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| d     | PH 7023         | 58%                   | 32%             | 84% - 60:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •     | Ph              | OMe<br>85%<br>OMe     | 40%             | 86% - 62:38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| f     | ₹ <sup>Ph</sup> | 97%                   | 80%             | 22% - 80:20**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| g     | 42.             | 0%                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

i: CH<sub>3</sub>CHBrCOBr, CH<sub>2</sub>Cl<sub>2</sub>, Py, -5°C->RT, 2 h; ii: NaNO<sub>2</sub>, phloroglucinol, DMF, RT, 2 h; ii: CiCH<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>-p-NO<sub>2</sub>, NaH, DMF, 150 Watt sun lamp, RT, 1 h; see ref 1 for exp. details.

In conclusion, we have tested the ability of six chiral alcohols for the asymmetric induction in the  $S_{RN}1$  reaction of p-nitrobenzyl chloride and 2-nitropropionate anions. The dr was not very high, but in the case of 4b and 4c the diastereomers were easily separated. As there is only one example of asymmetric induction in the litterature  $(S_{RN}1)$  reaction of a chiral amide enolate and the radical from 1-iodonaphthalene), the design of efficient other chiral alcohols with bulky substituents on the adjacent carbon (camphor-derived auxiliaries) is now in progress for  $S_{RN}1$  synthesis of enantiomerically pure disubstituted aminoacids.

## References

- 1 Béraud, V.; Perfetti, P.; Pfister, C.; Kaafarani, M.; Vanelle, P.; Crozet, M. P. Tetrahedron 1998, 54, 4923-4934.
- 2 Paquette, L. A.; Bailey, S. J. Org. Chem. 1995, 60, 7849-7856.
- 3 Nouguier, R.; Mignon, V.; Gras, J.-L. J. Org. Chem. 1999, 64, 1412-14.
- 4 Mio, S.; Kumagawa, Y.; Sugai, S. Tetrahedron 1991, 47, 2133-2144.
- 5 Jenkins, D.; Dubreuil, D; Potter, B. J. Chem. Soc. Perkin Trans. 1 1996, 1365-1372.
- 6 Kornblum, N.; Blackwood, R.; Powers, J. J. Am. Chem. Soc. 1957, 79, 2507-2515.
- 7 Hamon, D.; Massy-Westropp, R.; Razzino, P. Tetrahedron 1995, 51, 4183-4194.
- 8 Ihara, M.; Takahashi, M.; Tanigushi, N.; Yasui, K.; Niitsuma, H.; Fukumoto, K. J. Chem. Soc. Perkin Trans 1. 1991, 525-535.
- 9 Lotz, G.; Palacios, S.; Rossi, R. Tetrahedron Lett. 1994, 35, 7711-7714.

<sup>\*</sup> Separated by semi-prep. HPLC on SiO2, 4b: mp 161°C and 113°C, 4c: mp 96°C and 88°C .

<sup>\*\*</sup> The newly created asymmetric carbon is S in the major isomer, see ref 8 for a discussion.