
ChemComm

Chemical Communications

www.rsc.org/chemcomm

Number 12 | 28 March 2009 | Pages 1421–1584

ISSN 1359-7345

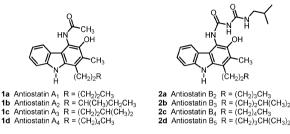
RSCPublishing

COMMUNICATION Hans-Joachim Knölker *et al.* First total synthesis of the whole series of the antiostatins A and B FEATURE ARTICLE Alessandra Lattanzi α,α-Diarylprolinols: bifunctional organocatalysts for asymmetric synthesis

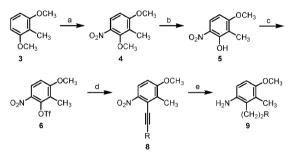
First total synthesis of the whole series of the antiostatins A and B^{\dagger}

Kerstin E. Knott, Stefan Auschill, Anne Jäger and Hans-Joachim Knölker*

Received (in Cambridge, UK) 25th November 2008, Accepted 19th December 2008 First published as an Advance Article on the web 20th January 2009 DOI: 10.1039/b821039j


The first synthesis of the whole antiostatin family is described by using an iron-mediated carbazole synthesis, regioselective nitration at C-4 and establishing 5-isobutyl-1-nitrobiuret as a reagent for introduction of the antiostatin B side chain at C-4.

Currently, carbazoles are of high interest due to their pharmacological potential.¹ In 1990, Seto *et al.* at the University of Tokyo isolated the antiostatins A_1 to A_4 and B_2 to B_5 from *Streptomyces cyaneus* 2007-SV₁ (Fig. 1).² They exhibit a strong inhibitory activity against free radical induced lipid peroxidation. The antiostatins are structurally unique because of their nitrogen substituent at C-4, which is part of an isobutylbiuret side chain for the antiostatins B. So far, no synthesis has been reported for any member of this family of carbazoles, despite synthetic efforts by several groups in the field.^{3,4} In the present paper, we describe the first total synthesis of all antiostatins.


Our strategy is based on the iron-mediated carbazole synthesis.⁵ We decided to introduce the nitrogen substituent at C-4 after completion of the carbazole ring system. Thus, a monocyclic precursor was designed which is easily exploitable for access to all different antiostatins by introduction of the different alkyl side chains at C-1 using a Sonogashira–Hagihara coupling (Scheme 1).

Nitration of 2,6-dimethoxytoluene (3) followed by regioselective ether cleavage of 4 afforded the nitrophenol 5 (Scheme 1). Conversion to the aryl triflate 6 paved the way for introduction of different alkyl chains at C-1 of the carbazole nucleus.⁶ Except for **7b** and **7f**, all required alkynes are commercially available. 6-Methylhept-1-yne (7f) was prepared in two steps from 1-bromo-4-methylpentane.⁷ For the stereogenic centre in the side chain of antiostatin A_2 (1b), we assumed an S configuration in analogy to other chiral carbazole alkaloids: carbazoguinocin A and D,^{8,9} and carbazomadurin B.^{10,11} Thus, (S)-3-methylpent-1-yne (7b) has been prepared in three steps from commercial (S)-2-methylbutan-1-ol by oxidation with the Dess-Martin reagent¹² and subsequent Corey-Fuchs homologation to the terminal alkyne.¹³[‡] Sonogashira–Hagihara coupling¹⁴ of aryl triflate 6 with the alkynes 7 led to the alkynylarenes 8, which on catalytic hydrogenation provided the arylamines 9 (Table 1).

Electrophilic substitution of the arylamines 9 by reaction with the iron complex salt 10 afforded the iron complexes 11

Fig. 1 Antiostatins A_1 - A_4 and B_2 - B_5 .

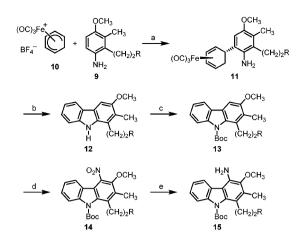
Scheme 1 Synthesis of the arylamines 9. Reagents and conditions: (a) claycop, Ac₂O, Et₂O, rt, 1 h, 94%; (b) AlCl₃, CH₂Cl₂, rt, 21 h, 96%; (c) Tf₂O, Et₃N, CH₂Cl₂, -20 °C, 97%; (d) cat. Pd(PPh₃)₂Cl₂, cat. CuI, $H- \equiv -R$ (7a–f), Bu₄NI, CH₃CN–Et₃N (5 : 1), reflux, 3–5 h; (e) 1–5 bar H₂, 10% Pd/C, CH₃OH–CH₂Cl₂ (or EtOAc), rt, 3–5 d; yields for 8 and 9: Table 1.

(Scheme 2, Table 1). Oxidative cyclization of **11** using an excess of ferricenium hexafluorophosphate in the presence of sodium carbonate led to the carbazoles **12**.¹⁵ Direct nitration at C-4 of the unprotected carbazoles **12** was limited. Thus, nitration of **12d** (NO₂BF₄ in THF at -50 to -20 °C, 64%) afforded regioselectively **22d**, an intermediate for antiostatin B₄ (**2c**) (see Scheme 5). However, after transformation to the corresponding *tert*-butyl carbamates **13**, nitration with claycop provided the 4-nitrocarbazoles **14** in excellent yields. Catalytic hydrogenation of **14a**-d led to the 9-Boc-4-aminocarbazoles **15a**-d, the precursors for the antiostatin A series.

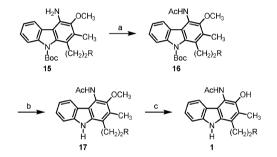
For the synthesis of the antiostatins A, the carbazoles **15a–d** were acetylated at the amino group to afford the acetamides **16a–d** (Scheme 3). Conversion to **17a–d** by thermal removal of the Boc group¹⁶ and subsequent cleavage of the methyl ether provided the antiostatins A₁ to A₄ (**1a–d**). The spectroscopic data and melting points of the antiostatins A₁ to A₄ (**1a–d**) were in good agreement with those reported for the natural products by Seto *et al.*²§ The ¹H NMR spectrum of our synthetic antiostatin A₂ ((S)-**1b**), with $[\alpha]_{D}^{20} = +5.0$

Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany. E-mail: hans-joachim.knoelker@tu-dresden.de; Fax: +49 (0)351 463 37030

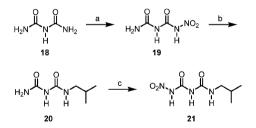
[†] Electronic supplementary information (ESI) available: Copies of the ¹H and ¹³C NMR spectra of all antiostatins. CCDC numbers 708519–708521. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b821039j


(c 0.5, CHCl₃), was identical to the spectrum obtained from an authentic sample of the natural product (see ESI[†]), kindly provided by Prof. Seto and Dr Shin-ya. Due to the small amount available of the natural product (0.4 mg), the absolute configuration of natural antiostatin A₂ could not be determined yet.

We have developed an efficient reagent for introduction of the antiostatin B side chain at C-4. Nitration of biuret (18) using the classical procedure reported by Thiele and Uhlfelder in 1898 led to 1-nitrobiuret (19) (Scheme 4).¹⁷ Alkylation with isobutylamine by adaptation of literature procedures gave 1-isobutylbiuret (20).¹⁸ A further nitration finally provided 5-isobutyl-1-nitrobiuret (21), which has been structurally confirmed by X-ray analysis (Fig. 2).¶


For an access to antiostatin B series, the unprotected 4-aminocarbazoles were required. Removal of the Boc protecting group from the 9-Boc-4-nitrocarbazoles 14c-f provided the unprotected 4-nitrocarbazoles 22c-f (Scheme 5). This three-step route to the 4-nitrocarbazoles 22 proceeds in much better overall yield compared to the direct nitration of the carbazoles 12 (cf. above). Catalytic hydrogenation of the 4-nitrocarbazoles 22c-f led to the 4-aminocarbazoles 23c-f, which have been structurally confirmed by an X-ray analysis of 23d (Fig. 3). Slow addition of a solution of 5-isobutyl-1nitrobiuret (21) in acetonitrile to a solution of the aminocarbazoles 23c-f in acetonitrile at reflux afforded the 5-isobutyl-1-(carbazol-4-yl)biurets 24c-f. The structural assignments have been unequivocally confirmed by an X-ray crystal structure determination of O-methylantiostatin B_4 (24d) (Fig. 4). Finally, cleavage of the ether provided the antiostatins B_2 to B_5 (2a-d). The spectroscopic data of the antiostatins B_2 to B_5 (2a-d) were in full agreement with those reported for the natural products.²§

In conclusion, we have developed a highly efficient synthesis of the whole series of the antiostatins A and B. Due to the flexibility of our modular approach, we can introduce all the different alkyl chains at C-1 *via* a palladium(0)-catalysed coupling and, at the stage of an advanced precursor, focus either on the antiostatins A or B. For the antiostatins B, 5-isobutyl-1-nitrobiuret has been devised as reagent for elaboration of the isobutylbiuret side chain at C-4 by reaction with the corresponding aminocarbazole.


We are grateful to Prof. H. Seto and Dr K. Shin-ya for providing us the files of the original ¹H NMR spectra of antiostatin A_1 and B_4 , and for sending us the sample of natural antiostatin A_2 . We thank the BASF, Ludwigshafen, for a gift of pentacarbonyliron.

Scheme 2 Synthesis of the 9-Boc-4-aminocarbazoles 15. Reagents and conditions: (a) CH₃CN, 82 $^{\circ}$ C, 1–2 h; (b) Cp₂FePF₆, Na₂CO₃, CH₂Cl₂, rt, 3–5 d; (c) Boc₂O, DMAP, CH₃CN, rt, 20–24 h; (d) claycop, Ac₂O, Et₂O, rt, 4.5–20 h; (e) 5 bar H₂, 30% Pd/C, CH₃OH–CH₂Cl₂, rt, 3–7 d; yields: Table 1.

Scheme 3 Synthesis of the antiostatins A_1 – A_4 (1a–d). Reagents and conditions: (a) AcCl, Et₃N, THF, 0 °C to reflux, 13–24 h, 81–97%; (b) 180 °C, 45 min, 100%; (c) BBr₃, CH₂Cl₂, -78 to -20 °C, 6–24 h, 65–94%.

Scheme 4 Synthesis of 5-isobutyl-1-nitrobiuret (21). Reagents and conditions: (a) conc. H_2SO_4 , conc. HNO_3 , 0 °C to rt, 2 h, 51%; (b) *i*-BuNH₂, EtOH, rt, 2 h, then 150 °C until melt, 99%; (c) conc. H_2SO_4 , conc. HNO_3 , 0 °C, 2 h, 24% (after recrystallization from EtOH).

Table 1 Transformation of the aryl triflate 6 into the 9-Boc-4-nitrocarbazoles 14 and the 9-Boc-4-aminocarbazoles 15 via the iron-mediated synthesis^a

7	R	8, yield (%)	9, yield (%)	11, yield (%)	12, yield (%)	13, yield (%)	14, yield (%)	15, yield (%)
7a	(CH ₂) ₂ CH ₃	100	100	100	63	93	81	100
7b	(S)-CH(CH ₃)CH ₂ CH ₃	90	88	95	93	100	81	100
7c	$(CH_2)_2CH(CH_3)_2$	98	95	89	93	98	83	99
7d	$(CH_2)_4CH_3$	100	100	100	96	100	91	92
7e	$(CH_2)_3CH_3$	82	96	96	81	100	90	_
7f	$(CH_2)_3CH(CH_3)_2$	85	84	100	91	100	81	

^{*a*} The 9-Boc-4-aminocarbazoles **15a–d** have been applied as synthetic precursors for the antiostatins A_1 to A_4 (**1a–d**) (Scheme 3). The 9-Boc-4-nitrocarbazoles **14c–f** have been applied as synthetic precursors for the antiostatins B_2 to B_5 (**2a–d**) (Scheme 5).

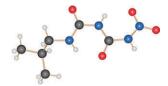
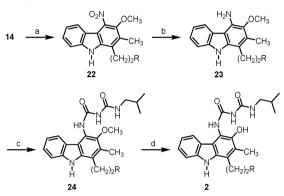



Fig. 2 X-Ray structure of 5-isobutyl-1-nitrobiuret (21).

Scheme 5 Synthesis of the antiostatins B_2-B_5 (2a-d). Reagents and conditions: (a) 180 °C, 45 min, 100%; (b) 5 bar H₂, 30% Pd/C, EtOAc, rt, 3–5 d, 82–100%; (c) 21, CH₃CN, reflux, 4.5–5 h, 83–91%; (d) BBr₃, CH₂Cl₂, -78 to 0 °C, 2–3.5 h, 74–94%.

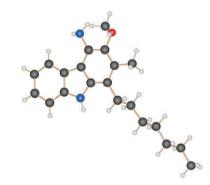


Fig. 3 X-Ray structure of the 4-aminocarbazole 23d.

Fig. 4 X-Ray structure of *O*-methylantiostatin B₄ (**24d**).

Notes and references

[‡] Synthesis of (*S*)-3-methylpent-1-yne (**7b**): 1. (*S*)-2-methylbutan-1-ol, Dess–Martin periodinane, ¹² CH₂Cl₂, rt, 50 min, 83% (*S*)-2-methylbutanal; 2. Corey–Fuchs procedure: ¹³ (a) CBr₄, Zn, PPh₃, CH₂Cl₂, rt, 14 h, 77%; (b) BuLi, THF, -78 °C, 1 h, then rt, 2.5 h, 50%.

 $\$ Selected data. Antiostatin A1 (1a): yellow solid, mp 190–192 °C; $^1\mathrm{H}$ NMR (500 MHz, acetone- d_6): $\delta = 0.92$ (t, J = 7.2 Hz, 3 H), 1.37–1.42 (m, 2 H), 1.43-1.51 (m, 2 H), 1.65-1.71 (m, 2 H), 2.41 (s, 3 H), 2.50 (s, 3 H), 3.00 (m, 2 H), 7.12 (t, J = 7.9 Hz, 1 H), 7.33 (t, J = 7.9 Hz, 1 H), 7.46 $(d, J = 7.9 \text{ Hz}, 1 \text{ H}), 8.08 \text{ (s)} \text{ and } 8.10 \text{ (s}, \Sigma 1 \text{ H}), 8.16 \text{ (d}, J = 7.9 \text{ Hz}, 1 \text{ H}),$ 9.72 (br s, 1 H), 10.21 (br s, 1 H). Antiostatin A₂ ((S)-1b): mp 185 °C. Antiostatin A₃ (1c): mp 191-192 °C. Antiostatin A₄ (1d): mp 180–183 °C. Antiostatin \mathbf{B}_2 (2a): mp 119–120 °C. Antiostatin \mathbf{B}_3 (2b): mp 119–120 °C. Antiostatin B₄ (2c): Yellow solid, mp 117–120 °C; ¹H NMR (500 MHz, acetone- d_6): $\delta = 0.91$ (t, J = 6.9 Hz, 3 H), 1.02 (d, J =6.7 Hz, 6 H), 1.28-1.43 (m, 6 H), 1.48-1.54 (m, 2 H), 1.66-1.72 (m, 2 H), 1.90–1.95 (m, 1 H), 2.43 (s, 3 H), 3.02 (m, 2 H), 3.23 (t, J = 6.2 Hz, 2 H), 6.90 (br s, 1 H), 7.13 (t, J = 8.0 Hz, 1 H), 7.33–7.37 (m, 1 H), 7.48 (d, J =8.0 Hz, 1 H), 8.27 (br s, 1 H), 8.44 (br d, J = 7.5 Hz, 1 H), 8.91 (br s, 1 H), 10.23 (br s, 1 H), 10.94 (br s, 1 H); ¹³C NMR and DEPT (125 MHz, acetone- d_6): $\delta = 12.78$ (CH₃), 14.33 (CH₃), 20.21 (2 CH₃), 23.29 (CH₂), 29.17 (CH₂), 29.51 (CH), 30.05 (CH₂), 30.47 (CH₂), 30.57 (CH₂), 32.64 (CH₂), 47.58 (CH₂), 111.45 (CH), 114.90 (C), 116.67 (C), 119.11 (CH), 121.99 (CH), 122.81 (C), 122.92 (C), 125.44 (CH), 125.52 (C), 134.71 (C), 140.84 (C), 142.99 (C), 154.73 (C=O), 155.99 (C=O). Antiostatin B₅ (2d): mp 92 °C.

¶ Crystal data for **21**: C₆H₁₂N₄O₄, $M_r = 204.20 \text{ g mol}^{-1}$, orthorhombic, *Pbca*, $\lambda = 0.71073$ Å, a = 10.571(1), b = 6.448(1), c = 28.570(3) Å, V = 1947.4(4) Å³, Z = 8, $\rho_{calcd} = 1.393 \text{ g cm}^{-3}$, $\mu = 0.117 \text{ mm}^{-1}$, T = 198(2) K, θ range = 3.44–25.00°, reflections collected: 13855, independent: 1543 ($R_{int} = 0.0342$), $R_1 = 0.0386$, $wR_2 = 0.0919 [I > 2\sigma(I)]$. Crystal data for **23d**: C₂₁H₂₈N₂O, $M_r = 324.45 \text{ g mol}^{-1}$, monoclinic, $P2_1/c$, $\lambda = 0.71073$ Å, a = 15.921(3), b = 4.739(1), c = 26.736(5) Å, $\beta = 113.91(3)^\circ$, V = 1844.1(6) Å³, Z = 4, $\rho_{calcd} = 1.169 \text{ g cm}^{-3}$, $\mu = 0.072 \text{ mm}^{-1}$, T = 198(2) K, θ range = 3.05–26.00°, reflections collected: 27.882, independent: 3615 ($R_{int} = 0.0538$), $R_1 = 0.0528$, $wR_2 = 0.1061 [I > 2I(I)]$. Crystal data for **24d**: C₂₇H₃₈N₄O₃, $M_r = 466.61 \text{ g mol}^{-1}$, hexagonal, R_3 , $\lambda = 0.71073$ Å, a = 2.7586(4), c = 19.842(4) Å, V = 13077(4) Å³, Z = 18, $\rho_{calcd} = 1.067 \text{ g cm}^{-3}$, $\mu = 0.070 \text{ mm}^{-1}$, T = 198(2) K, θ range = 3.05–25.40°, reflections collected: 5332 ($R_{int} = 0.0424$), $R_1 = 0.0704$, $wR_2 = 0.2044 [I > 2I(I)]$. The structures were solved by direct methods and refined by full-matrix least-squares on F^2 .

- For some recent reviews, see: (a) H.-J. Knölker and K. R. Reddy, *Chem. Rev.*, 2002, **102**, 4303; (b) H.-J. Knölker, *Top. Curr. Chem.*, 2005, **244**, 115; (c) H.-J. Knölker and K. R. Reddy, in *The Alkaloids*, ed. G. A. Cordell, Academic Press, Amsterdam, 2008, vol. 65, p. 1; (d) H.-J. Knölker, *Chem. Lett.*, 2009, **38**(1), 8.
- 2 C.-J. Mo, K. Shin-ya, K. Furihata, K. Furihata, A. Shimazu, Y. Hayakawa and H. Seto, *J. Antibiot.*, 1990, **43**, 1337.
- 3 T. Choshi, H. Fujimoto, E. Sugino and S. Hibino, *Heterocycles*, 1996, **43**, 1847.
- 4 (a) G. W. Gribble *et al.*, *Curr. Org. Chem.*, 2005, **9**, 1493; (b) G. W. Gribble, *Invited Lecture 12, 23rd European Colloquium on Heterocyclic Chemistry*, Antwerp, Belgium, September 9–13, 2008.
- 5 H.-J. Knölker, Chem. Soc. Rev., 1999, 28, 151.
- 6 H.-J. Knölker, W. Fröhner and R. Heinrich, *Synlett*, 2004, 2705. 7 N. M. Carballeira, D. Sanabria, N. L. Ayala and C. Cruz,
- Tetrahedron Lett., 2004, **45**, 3761.
- 8 K. Tanaka, K. Shin-ya, K. Furihata and H. Seto, J. Antibiot., 1995, 48, 326.
- 9 K. Shin and K. Ogasawara, Synlett, 1996, 922.
- 10 N. Kotada, K. Shin-ya, K. Furihata, Y. Hayakawa and H. Seto, J. Antibiot., 1997, 50, 770.
- 11 J. Knöll and H.-J. Knölker, Synlett, 2006, 651.
- 12 D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4155.
- 13 (a) E. J. Corey and P. L. Fuchs, *Tetrahedron Lett.*, 1972, 3769; (b) L. F. Tietze, R. R. Singidi, K. M. Gericke, H. Böckemeier and H. Laatsch, *Eur. J. Org. Chem.*, 2007, 5875.
- 14 (a) K. Sonogashira, Y. Tohda and N. Hagihara, *Tetrahedron Lett.*, 1975, 16, 4467; (b) R. Chinchilla and C. Nájera, *Chem. Rev.*, 2007, 107, 874.
- 15 H.-J. Knölker and T. Hopfmann, Tetrahedron, 2002, 58, 8937.
- 16 V. H. Rawal and M. P. Cava, Tetrahedron Lett., 1985, 26, 6141.
- 17 J. Thiele and E. Uhlfelder, Justus Liebigs Ann. Chem., 1898, 303, 93.
- 18 (a) T. L. Davis and K. C. Blanchard, J. Am. Chem. Soc., 1929, 51, 1801; (b) T. L. Davis and N. Constan, J. Am. Chem. Soc., 1936, 58, 1800; (c) W. K. Detweiler and E. D. Amstutz, J. Am. Chem. Soc., 1951, 73, 5451; (d) D. A. Dunnigan and W. J. Close, J. Am. Chem. Soc., 1953, 75, 3615; (e) M. J. Plater, J. P. Sinclair, S. Aiken, T. Gelbrich and M. B. Hursthouse, Tetrahedron, 2004, 60, 6385.