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by Magnetic Nano-Fe3O4–KHSO4·SiO2
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Abstract: The present report highlights a magnetic nano-Fe3O4–
KHSO4·SiO2 catalyzed synthesis of imidazo[1,2-a]pyridines. The
synthetic strategy adopted is expedient, versatile, and offers good to
excellent yields from readily available starting materials.

Key words: multicomponent reactions, transition metals, hetero-
cycles, heterogeneous catalysis, iron

Multi-component reactions (MCRs) constitute one of the
most promising synthetic strategies, that have trans-
formed the art of organic synthesis.1 Due to their conver-
gent nature and high bond-forming index (BFI), these
reactions are capable of constructing a synthetic hub of di-
vergent molecules in an efficient fashion.2 Of special in-
terest are compounds which possess the molecular
skeleton found in natural products and drug-like mole-
cules.3 Since the vast majority of natural products and
drug-like compounds possess heterocyclic subunits, the
ability to synthesize diverse heterocyclic compounds effi-
ciently is critical. Imidazo[1,2-a]pyridines are important
fused heterocycles due to their potential biological activi-
ties. They have been used for the treatment of septic acute
lung injury (ALI), osteoporosis, and are extensively em-
ployed as PI3Kα inhibitors, mGlu2 receptors, anti-viral,
anti-cancer, anxyolytic, and anti-herpes drugs (Figure 1).4

Different methods have been applied for the synthesis of
imidazo[1,2-a]pyridines. Among these, only a few reports
deal with the one-pot synthesis of imidazo[1,2-a]pyridine
scaffolds employing different catalytic systems.5 Thus,
there is scope for developing operationally simple and ef-
ficient synthetic strategies. Magnetic Fe3O4 nanoparticles
have recently emerged as an attractive catalyst for various
synthetic transformations because of their easy recyclabil-
ity, reusability, high surface area, low toxicity, and excel-
lent activity.6 An up-to-date literature survey reveals that

there is no report on iron-catalyzed synthesis of imid-
azo[1,2-a]pyridines. In context of the above and as a part
of our current research interest,7 we report herein a facile
and straightforward synthesis of imidazo[1,2-a]pyridines
by a magnetic nano-Fe3O4–KHSO4·SiO2 catalyzed one-
pot three-component reaction of 2-aminopyridine, alde-
hyde, and alkyne (Scheme 1).

Figure 1  Biologically active imidazo[1,2-a]pyridine derivatives

In order to achieve a practical protocol for the one-pot
synthesis of imidazo[1,2-a]pyridines, the effect of a num-
ber of parameters such as catalysts, additives, and solvents
was screened for the model reaction employing 2-amino-
pyridine (1), benzaldehyde (2a), and phenylacetylene
(3a).8 The results are presented in Table 1.

N
H

Cl

N

N
CF3

Cl

mGlu2 receptor

HN
N

N

CN

O

olprinone 
(drug for the treatment of acute lung injury)

N

N

O

OMe

OMe

CF3

anti-cancer agent

N

N

COOEt
N

HN
SO2R

PI3Kα inhibitor

Scheme 1 One-pot synthesis of imidazo[1,2-a]pyridines
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The investigation was initiated by examining the effect of
various unexplored catalysts for the aforementioned mod-
el reaction. Out of all the trials, ZrOCl2·8H2O, SbCl5,
NiCl2·6H2O, and TiO2 did not result in the formation of
the product (entries 3–6). CdI2 alone produced only a trace
of the product, although a CdI2–Et3N combination
brought about 23% product yield (entries 1 and 2).
Yb(OTf)3, Yb(OTf)3–Et3N, and Yb(OTf)3–TFA afforded
lower yields (entries 7, 8 and 10); nevertheless an
Yb(OTf)3–[BMIM][BF4] combination resulted in 30%
yield (entry 9). Nano-Fe3O4 (10 mol%) notably gave the
product in 57% yield (entry 12). Further increase in the
catalyst mol% did not improve the yield (entry 13). The
amino–imino tautomerism in 2-aminopyridine and the
soft acidic centers of nano-iron did not appear to favor for-
mation of imine, which may be the reason for low yields
obtained in the presence of nano-Fe3O4 alone. To achieve
increased conversion, attention was directed towards the

use of additives and solvents, which conclusively provid-
ed Fe3O4–KHSO4·SiO2 in toluene as the best combination
(entry 14).9 The KHSO4·SiO2 additive is assumed to pro-
mote the formation of imine considerably to facilitate nu-
cleophilic attack of the C–H activated phenylacetylene to
the intermediate imine. The propargylamine, thus formed,
subsequently underwent nano-Fe3O4 catalyzed 5-exo-dig
cyclization. Other additives such as L-proline, K-10, and
P2O5 did not improve the yield (entries 17–19). 

With the optimized conditions in hand, the scope of this
methodology was extended to the reaction of a wide range
of aldehydes and alkynes with 2-aminopyridine to afford
a variety of imidazo[1,2-a]pyridines (Table 2). The find-
ings revealed that a range of reactant combinations afford-
ed good to excellent product yield, except the
combination of 2-aminopyridine, 4-(dimethylami-
no)benzaldehyde, and phenylacetylene which led to no
product (entry 8), possibly due to the coordination of the
NMe2 group with Fe3O4. Among the aromatic aldehydes,
benzaldehyde and halo-substituted benzaldehydes
showed excellent reactivity in this cyclization (entries 1–
6); whereas those bearing strong electron-donating and
electron-withdrawing groups showed appreciable lower-
ing of yield (entries 7, 10, 11 and 14). The reaction was
also feasible with an aliphatic aldehyde, but it required an
excess of KHSO4·SiO2 (entry 12). Furfural, a representa-
tive heterocyclic aldehyde, also participated in the reac-
tion with reasonably good yield (entry 13). It is worth
mentioning that the nano-Fe3O4 could be magnetically re-
covered by an external magnetic field and could be reused
six times without significant loss of activity (Figure 2).10

In conclusion, we have demonstrated the catalytic use of
magnetic nano-Fe3O4–KHSO4·SiO2 for an efficient one-
pot synthesis of imidazo[1,2-a]pyridines. The approach is
convenient, practical, versatile, and may be used as an al-
ternative to the existing synthetic methodologies.

Table 1  Screening of Reaction Conditionsa

Entry Catalyst (mol%) Additive Solvent Yield 
(%)b

1 CdI2 (10) – toluene trace

2 CdI2 (10) Et3N toluene 23

3 ZrOCl2·8H2O (10) – toluene –

4 SbCl5 (10) – toluene –

5 NiCl2·6H2O (10) – toluene –

6 TiO2 (10) – toluene –

7 Yb(OTf)3 (10) – toluene 32

8 Yb(OTf)3 (10) Et3N toluene 35

9 Yb(OTf)3 (10) – BMIM[BF4] 30

10 Yb(OTf)3 (10) TFA toluene 40

11 Fe3O4 (5) – toluene 43

12 Fe3O4 (10) – toluene 57

13 Fe3O4 (12) – toluene 57

14 Fe3O4 (10) KHSO4·SiO2 toluene 89

15 Fe3O4 (10) KHSO4·SiO2 PhCl 78

16 Fe3O4 (10) NaHSO4·SiO2 toluene 72

17 Fe3O4 (10) L-proline toluene 59

18 Fe3O4 (10) K-10 toluene 68

19 Fe3O4 (10) P2O5 toluene 64

a Using 1 (1 mmol), 2a (1 mmol), 3a (1.2 mmol) at 110 °C for 24 h.
b Isolated yield after column chromatography.

Figure 2 Recyclability of nano-Fe3O4
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Table 2  One-Pot Three-Component Coupling of 2-Amino Pyridine, Aldehyde, and Alkynea

Entry Aldehyde 2 Alkyne 3 Product 4 Time (h) Yield (%)b

1 2a 3a 4a 24 89

2 2b 3a 4b 20 86

3 2c 3a 4c 20 84

4 2d 3a 4d 20 83

5 2e 3a 4e 20 82

6 2f 3a 4f 20 83

7 2g 3a 4g 24 75

8 2h 3a 4h 24 n.r.

9 2i 3a 4i 20 79

10 2j 3a 4j 24 69

11 2k 3a 4k 24 65

12 2l 3a 4l 17 70c

13 2m 3a 4m 17 72

14 2n 3a 4n 24 55
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(10) Reusability of magnetic nano-Fe3O4: After completion of the 
reaction EtOAc was added and the Fe3O4-nanoparticles were 
recovered by the application of an external magnet. The 
recovered nanoparticles were thoroughly washed with Et2O, 
dried at 130 °C for 1 h and then reused for a new catalytic 
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15 2o 3b 4o 20 82

a Using 1 (1 mmol), 2 (1 mmol), 3 (1.2 mmol), nano-Fe3O4 (0.1 mmol) and KHSO4·SiO2 (150 mg) at 110 °C in anhyd toluene.
b Isolated yield after column chromatography. 
c Using KHSO4·SiO2 (175 mg).

Table 2  One-Pot Three-Component Coupling of 2-Amino Pyridine, Aldehyde, and Alkynea (continued)

Entry Aldehyde 2 Alkyne 3 Product 4 Time (h) Yield (%)b
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