NEW VARIATION OF SYNTHESIS OF d, l-ESTRA-3,17β-DIOL

T. A. Serebryakova, A. V. Zakharychev,

UDC 542.91:547.92

M. A. Mal'gina, S. N. Ananchenko,

and I. V. Torgov

One of the important steps in the total synthesis of natural estrogens is the trans-reduction of the $\Delta^{8\,(9)}$ double bond, which is accomplished by the Birch method. However, the latter is not applicable to 3-hydroxysteroids [1, 2]. We established that the ionic reduction of $\Delta^{8\,(9)}$ -dehydroestradiol with a mixture of Et₃SiH and CF₃COOH, with subsequent saponification of the formed trifluoroacetates, gives d,l-estradiol in 96% yield. These data made it possible to propose a new variation for the total synthesis of d,l-estradiol, starting with 6-hydroxytetralone, by the following scheme*

The overall yield of d, l-estradiol is 37% when based on 6-methoxytetralone, which exceeds the yields of the known methods.

LITERATURE CITED

- 1. V. E. Limanov, S. N. Ananchenko, and I. V. Torgov, Izv. Akad. Nauk SSSR, Ser. Khim., 1814 (1964).
- 2. G. H. Douglas, J. M. H. Graves, D. Hartley, G. A. Hughes, B. J. McLoughlin, J. Siddal, and H. Smith, J. Chem. Soc., 5072 (1963).

^{*}The first compound is 6-methoxytetralone.

M. M. Shemyakin Institute of the Chemistry of Natural Compounds, Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 8, pp. 1916-1917, August, 1973. Original article submitted April 24, 1973.

^{• 1974} Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.