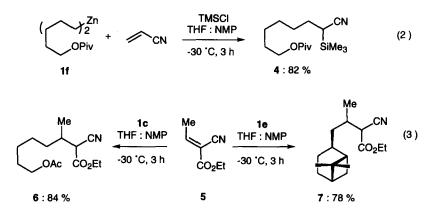


PII: S0040-4039(96)00915-X

Uncatalyzed Conjugate Additions of Diorganozincs in N-Methylpyrrolidinone


Ch. Kishan Reddy, A. Devasagayaraj and P. Knochel* Fachbereich Chemie der Philipps-Universität Marburg D - 35032 Marburg, Germany

Abstract: Diorganozincs efficiently add to enones, unsaturated nitriles and nitroolefins in a mixture of THF and NMP furnishing the corresponding Michael adducts in good to excellent yields. Copyright © 1996 Elsevier Science Ltd

The conjugate addition of organometallics to enones is an important synthetic transformation.¹ Organocuprates used as stoichiometric reagents have proven to be very efficient, ^{1,2} however alternative procedures involving the use of catalytic amounts of copper salts and stoichiometric amounts of a magnesium^{2,3} zinc⁴ or aluminium reagent⁵ have been developed. The performance of copper free 1,4addition reactions of organometallics is especially interesting and Rieke has recently shown that *secondary* and *tertiary* alkylzinc halides were reactive enough to add to enones in the presence of BF₃·OEt₂ (1.5 equiv).⁶ Herein, we wish to report a method allowing the addition of primary and secondary diorganozincs to enones as well as to related Michael acceptors. Whereas primary diorganozincs⁷ do not add to enones like cyclohexenone in THF, we have found that a smooth addition reaction of R₂Zn (1) to enones 2 occurs by using N-methylpyrrolidinone (NMP) as cosolvent. It furnishes the 1,4-addition products 3 in 72-83 % isolated yield (eq 1 and Table 1). Thus the reaction of Pent₂Zn (1 equiv) with cyclohexenone **2a** (1 equiv) in a THF: NMP (1:1) mixture in the presence of chlorotrimethylsilane⁸ (TMSCl; 1.0 equiv) at -30 °C affords within 1 h of reaction time, 3-pentylcyclohexanone (**3a**; entry 1 of Table 1) in 83 % isolated yield. More complex zinc reagents like dimyrtanylzinc **1e⁹** (entries 5 and 8) or functionalized diorganozincs (entries 2, 3, 7 and 10) add to cyclohexenone with similar yields.

$$R_{2}Zn + \frac{0}{1} + \frac{1}{2} + \frac{TMSCI}{-30 \cdot C, 1-3 \text{ h}} + \frac{0}{3 : 72-83 \%}$$
(1)

Additions to cyclopentenone **2b** or an acyclic ketone like 3-penten-2-one (**2c**) proceed as well. However, the addition to β -disubstituted enones is not possible and the addition of alkylzinc iodides instead of dialkylzincs⁹ is significantly slower and affords the conjugate addition products only in the presence of bromotrimethylsilane¹⁰ (1.0 equiv) in moderate yield (entries 3 and 4 of Table 1).

Interestingly, the amount of NMP used for these reactions can be considerably reduced and the addition of Pent₂Zn to cyclohexenone in the presence of only one equivalent of NMP affords **2a** in 84 % yield. Another polar solvent like DMSO is not suited for promoting these Michael additions and provide low yields of the 1,4-addition product. Remarkably, this procedure can be extended to other Michael acceptors and the reaction of (PivO(CH₂)₅)₂Zn (**1f**) with acrylonitrile in the presence of TMSCl provides the conjugate addition product **4** with incorporation of the TMS moiety at the α position in 82 % yield (eq 2).

$$R^{1} \xrightarrow{NO_{2}} R_{2}Zn \xrightarrow{THF : NMP} R^{1} \xrightarrow{NO_{2}} (4)$$
8a : R¹ = Ph; R = (CH₂)₅OAc : 84 %
8b : R¹ = Hex; R = (CH₂)₅OAc : 85 %
8c : R¹ = Hex; R = Pent : 89 %
8d : R¹ = Hex; R = c-Hex : 83 %

The substituted nitrile 5 adds the zinc reagents 1c and 1e giving the adducts 6 and 7 in respectively 84 % and 78 % yield (eq 3). The reaction of diorganozincs with aryl substituted nitroolefins can be complicated by an ipso-substitution of the nitro group in solvents like ether or THF.¹¹ By using a THF:NMP mixture, a smooth addition reaction occurs under mild conditions furnishing the expected nitroalkanes 8a-d in 83-89 % isolated yield (eq 4). The origin of the reaction rate increase in NMP is not clear but may result from the ionization of the diorganozinc providing a more reactive organometallic system: $RZn(NMP)^+ R_3Zn^{-,12}$

In summary, we have shown that diorganozincs add efficiently to a range of Michael acceptors 1^3 in a solvent mixture of THF and NMP. Studies of the scope of this reaction, its mechanism and applications in asymmetric synthesis using chiral NMP derivatives are currently underway in our laboratory.

Acknowledgments:

This work was supported by the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft (SFB 260). A. D. and C. K. R. thank the Alexander-von-Humboldt-Stiftung for a fellowship. We thank also the BASF AG, Witco GmbH, Schering AG, Bayer AG, Sipsy, Chemetall GmbH and Chiroscience for the generous support and the gift of chemicals.

entry	enone	R ₂ Zn	product	yield (%) ^a
1	Ŷ		O R	
		1a : R = Pent	$3\mathbf{a}: \mathbf{R} = \text{Pent}$	83
2	2a	1b : R = PivO(CH ₂) ₃	$\mathbf{3b}$: R = (CH ₂) ₃ OPiv	72
2 3 4	2a	$1c: R = AcO(CH_2)5$	$3\mathbf{c}$: R = (CH ₂)5OAc	74 ^b
4	2a	$\mathbf{1d}: \mathbf{R} = c \cdot \mathbf{Hex}$	$3\mathbf{d}:\mathbf{R}=c\text{-Hex}$	82 (51) ^c
5	2a	1e : R = Myrt	° 3e	78
	L L		°₹∕~ [₽]	
6		$\mathbf{1d}: \mathbf{R} = c \text{-} \mathbf{Hex}$	$3\mathbf{f}: \mathbf{R} = c$ -Hex	82
7	2b	$1c: R = (CH_2)5OAc$	$3\mathbf{g}$: R = (CH ₂) ₅ OAc	83
8	2b	1e : R = Myrt	° 3h	79
9 10 11	Me 2c Me	1a : R = Pent 1c : R = (CH ₂)5OAc 1d : R = c-Hex	$\mathbf{A} = \mathbf{A} \mathbf{A} \mathbf{B}$ $\mathbf{A} \mathbf{B} \mathbf{A} \mathbf{B}$ $\mathbf{A} \mathbf{B} \mathbf{B} \mathbf{B} \mathbf{B}$ $\mathbf{A} \mathbf{B} $	81 82 82

Table 1. 1,4-Addition Products **3a-k** obtained by the Reaction of Diorganozincs **1a-e** to Enones **2a-c** in NMP (-30 °C, 1-3 h).

^a Isolated yield of analytically pure products. ^b By using the corresponding alkylzinc iodide, a yield of 20 % is obtained in the presence of TMSCl and 45 % in the presence of TMSBr. ^c Yield obtained by using c-HexZnI (1.0 equiv) and TMSBr (1.0 equiv).

References and Notes.

- Kozlowski, J. A. in *Comprehensive Organic Synthesis*, Ed. Trost, B. M.; Fleming, I.; Semmelhack, M. F. Vol. 4, p. 169-198.
- (2) (a) Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41, 135. (b) Lipshutz, B. H. Synlett 1990, 119.
 (c) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390.
- (3) (a) Cahiez, G.; Alami, M. Tetrahedron 1989,45, 4163. (b) Cahiez, G.; Alami, M. Tetrahedron Lett. 1989, 30, 3541. (c) Cahiez, G.; Alami, M. Tetrahedron Lett. 1990, 31, 7423. (d) Reetz, M. T.; Kindler, A. J. Chem. Soc., Chem. Commun. 1994, 2509. (e) Reetz, M. T.; Kindler, A. J. Organomet. Chem. 1995, 502, C5.
- (4) (a) Nakamura, E.; Aoki, S.; Sekiya, K.; Oshino, H.; Kuwajima, I. J. Am. Chem. Soc. 1987, 109, 8056. (b) Tamaru, Y.; Tanigawa, H.; Yamamoto, T.; Yoshida, Z. Angew. Chem., Int. Ed. Engl. 1989, 28, 351. (c) Lipshutz, B. H.; Wood, M. R.; Tirado, R. J. Am. Chem. Soc. 1995, 117, 6126. A Ni(II)-catalyzed Michael addition has also been developed: (d) Soai, K.; Yokoyama, S.; Hayasaka, T.; Ebihara, K. J. Org. Chem. 1988, 53, 4149. (e) Soai, K.; Hayasaka, T.; Ugajin, S.; Yokoyama, S.

Chem. Lett. 1988, 1571. (f) Bolm, C.; Ewald, M.; Felder, M. Chem. Ber. 1992, 125, 1205. (g) Jansen, J. F. G. A.; Feringa, B. L. Tetrahedron: Asymm. 1992, 3, 581. (h) Asami, M.; Usui, K.; Higuchi, S.; Inoue, S. Chem. Lett. 1994, 297,

- (5) (a) Westermann, J.; Nickisch, K. Angew. Chem., Int. Ed. Engl. 1993, 32, 1368. (b) Maruoka, K.;
 Shimada, I.; Akakura, M.; Yamamoto, H. Synlett 1994, 847. (c) Pecuniso, A.; Menicagli, R. J. Org. Chem. 1989, 54, 2391. (d) Kabbara, J.; Flemming, S.; Nickisch, K.; Neh, H.; Westermann, J. Synlett 1994, 679.
- (6) Hanson, M. V.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 10775.
- (7) For the preparation and the reactivity of diorganozincs, see: (a) Knochel, P.; Singer, R. Chem. Rev. 1993, 93, 2117. (b) Knochel, P. Synlett 1995, 393.
- (a) Alexakis, A.; Berlan, J.; Besace, Y. Tetrahedron Lett. 1986, 27, 1047. (b) Horiguchi, Y.; Matsuzawa, S.; Nakamura, E.; Kuwajima, I. Tetrahedron Lett. 1986, 27, 4025. (c) Nakamura, E.; Matsuzawa, S.; Horiguchi, Y.; Kuwajima, I. Tetrahedron Lett. 1986, 27, 4029.
- (9) Langer, F.; Devasagayaraj, A.; Chavant, P.-Y.; Knochel, P. Synlett 1994, 410.
- (10) Iodotrimethylsilane activated additions of organocopper reagents to enoates have been reported: (a) Bergdahl, M.; Lindstedt, E.-L.; Nilsson, M.; Olsson, T. Tetrahedron 1988, 44, 2055. (b) Bergdahl, M.; Lindstedt, E.-L.; Nilsson, M.; Olsson, T. Tetrahedron 1989, 45, 535.
- (11) Seebach, D.; Schäfer, H.; Schmidt, B., Schreiber, M. Angew. Chem, Ind. Ed. Engl. 1992, 31, 1587.
- (12) Fabicon, R. M.; Pajerski, A. D.; Richey, H. G. J. Am. Chem. Soc. 1993, 115, 9333.
- (13) Typical procedure : Preparation of 3-Myrtanylcyclopentanone (3 h).

A 25 mL two-necked flask was charged with β -pinene (1.36 g, 10 mmol) and diethylborane (2.0 g, 10 mmol) in ether, was added at 0 °C. The resulting solution was stirred for 15 min, was allowed to warm to rt and was further stirred for 1 h. It was then cooled to 0 °C and the solvents were removed by applying high vacuum (0.1 mmHg) for 15 min at 0 °C, and for 30 min at rt. The reaction mixture was cooled to 0 °C and Et₂Zn (2 mL, 20 mmol) was added. The reaction mixture was stirred for 10 min at 0 °C and for 20 min at rt. It was again cooled to 0 °C and the solvents were removed as described above. The resulting zinc reagent (1e) was diluted in THF (3 mL) and was ready to use.

A 50 mL three-necked flask was charged with THF (2 mL) and NMP (3 mL) and was cooled to -30 °C. 2-Cyclopenten-1-one (410 mg, 5 mmol) and TMSCl (500 mg, 5 mmol) were added followed by *bis*(myrtanyl)zinc (1e) (3 mL of the above prepared solution, 5 mmol). The resulting reaction mixture was stirred for 3 h at -30 °C and was poured into an aqueous 10 % HCl solution (20 mL) in THF (20 mL), stirred for 15 min and was worked up as usually. After evaporation of the solvents, the crude residue was purified by flash chromatography (hexane:ether = 95:5) providing 3-myrtanylcyclopentanone (**3h**; 869 mg, 79 %) as a colorless oil.

(Received in Germany 30 April 1996; accepted 9 May 1996)