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Copper-Catalyzed Asymmetric Arylation of N-Heteroaryl 
Aldimines via an Elementary Step of 1,4-Insertion  
Chunlin Wu,†a Xurong Qin,†a Adhitya Mangala Putra Moeljadi,b Hajime Hiraob and Jianrong Steve 
Zhoua* 

Abstract: Copper complexes of monodentate phosphoramidites 
efficiently promote asymmetric arylation of N-azaaryl aldimines with 
arylboroxines. DFT calculations and kinetic isotopic experiments 
support an elementary step of 1,4-insertion in the reaction pathway, 
in which an aryl-copper species adds directly across four atoms 
C=N-C=N in N-azaaryl aldimines.  

Chiral alkylamines are important motifs in modern medicines 
and they are present in about 15% of blockbuster drugs. 
Therefore, efficient stereoselective synthesis of these 
compounds has received much attention amongst synthetic 
chemists.[1] Of particular interest to us, chiral N-azaaryl 
alkylamines are present in quite a number of medicines and 
drug candidates (Figure 1). For example, ontazolast is a drug 
currently used for the treatment of inflammation.[2] Chiral amine-
substituted thiazole, pyrazole and imidazopyridazine are also 
found in many therapeutic agents that target depression, 
Alzheimer’s disease and malaria.[3] Moreover, aminopyrimidines 
are present in an isocitrate dehydrogenase (IDH) inhibitor[4] and 
difulmetorim. The latter is a new-generation fungicide to protect 
wheat and barley.[5]  

 
 

Figure 1. Examples of chiral medicines and agrochemicals containing N-
azaaryl amines. 

Catalytic asymmetric arylation of imines using benchtop-
stable arylboron reagents is a simple, convergent method to 
prepare chiral benzylic and benzhydryl amines from readily 
available reagents.[6] For this reaction, noble metal catalysts, 
mostly based on rare and expensive rhodium[7] and palladium,[8] 
proved to be particularly effective, owing to efforts of Hayashi,[9] 
Lin and Xu,[10] Zhang,[11] Manolikakes,[12] and others.[13] From a 

mechanistic standpoint, both rhodium and palladium catalysts 
use 1,2-insertion of arylmetal species to imines.[14] In most cases, 
imines activated with N-sulfonyl and N-sulfamoyl groups were 
used. Recently, chiral 1,1'-biphenols and thioureas were also 
used in asymmetric addition of arylborons to reactive α-
iminoesters.[15]  

 
Scheme 1. Screening of chiral phosphoramidites for model arylation.  

Initially, we attempted copper-catalyzed arylation of 
aldimines with arylboroxines and searched for chiral ancillary 
ligands (Scheme 1).[16] Among a dozen of aldimines carrying 
different groups on the nitrogen atom that we have tested (see 
Schemes 5 and 6c), aldimine 1a bearing an N-3-picolyl ring 
afforded the desired product in both good yield and excellent 
stereoselectivity. Thus, 10 mol% copper catalyst ligated by 
spiro-1,1'-diindanyl phosphoramidite L[17] promoted arylation of 
p-tolylboroxine 2a to deliver benzhydryl amine 3a in 90% ee and 
90% yield. Modification of the amine fragment of L failed to 
improve the stereoselectivity further unfortunately (S1-4). Later, 
we prepared ligand L' with inverted spiro chirality, which led to 
the opposite enantiomer of 3a as the major isomer (-84% ee). 
Therefore, the spiro-backbone is the dominant stereo-
determining element in the catalyst.  Furthermore, two Feringa 
ligands N1-2 only provided 3a in moderate ee values. 0.5 equiv 
of p-tolylboroxines also gave 3a in 85% yield after 2 days. Other 
arylboron regents were also tested such as PhB(OH)2, PhBF3K, 
PhBpin and PhB(cat), which provided no desired product. As a 
note of caution, the reaction was sensitive to trace amounts of 
added water, so dry solvents must be used. 
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Scheme 2. Organoboroxines in asymmetric addition to 1a. 

 

 
Scheme 3. (a) Examples of arylation of aldimines. (b) A gram-scale 
arylation of an aldimine. 

The optimized copper catalyst of ligand L was applicable to 
asymmetric arylation of aldimine 1a using both electron-rich and 
poor aryl boroxines (3a-i) (Scheme 2). In particular, aryl fluorides, 
chlorides and bromides were well tolerated (3c-e and 3g), but 
aryl iodides inhibited the desired transformation. In the reaction 
of o-tolyl boroxine, the corresponding product was obtained in 
good yield, albeit in moderate 66% ee. 4-Pyridyl boroxine did not 
react at all whiles 3-pyridyl analogues led to about 10% yield. 
Methyl boroxine did not react at all. Unfortunately, the addition of 
trans-styryl boroxine (3j) resulted in only moderate 50% ee. 

Many aromatic aldimines of different electronic and steric 
properties on aryl rings also reacted smoothly with phenyl 

boroxine (Scheme 3). Moreover, heterocycles such as thiophene, 
furan and benzofuran (3n'-q') were tolerated. We found that sec- 
and tert-alkyl aldimines (3r'-s') also reacted well, but linear 
aliphatic aldehydes led to a complex mixture during aldimine 
formation. A brominated product 3e' was suitable for single-
crystal X-ray diffraction and its configuration was determined to 
be 1S.[18] In a scale-up reaction, 2 mol% of the copper catalyst 
was sufficient to produce one gram of 3a when the reaction 
temperature was raised from 80 to 100 °C (Scheme 3b). A 
simple crystallization readily improved optical purity of 3a’ to 
99%. N-picolylamine 3a’ can be easily converted to the N-Boc 
amine via a reported procedure.[19] 

To streamline the synthesis of benzhydryl amines, we 
condensed 3-picolyl-2-amine and aryl aldehydes in the presence 
of a catalytic amount of tosylic acid together with molecular 
sieve (Scheme 4). The resulting aldimines were used directly, 
without purification, in the next step of catalytic arylation.[20] At 
110 °C, we found that 1 mol% copper catalyst was sufficient to 
achieve full conversion in all cases, which was accompanied by 
a slight drop of ee values.  
 

 
Scheme 4. Streamlined arylation of aromatic aldimines.  
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Scheme 5. Streamlined arylation of other N-azaaryl aldimines. 

Furthermore, a streamlined procedure was established for 
asymmetric synthesis of biarylmethylamines from other 
heteroaryl amines derived from pyrazine (4a-i), pyrimidine (4j), 
quinoline (4k), pyrazole (4l-m), 2-indazole (4n) and 2-
benzoisoxazole (Scheme 5). Herein, magnesium sulfate was 
used instead of molecular sieve, to improve the reproducibility of 
aldimine condensation. We found that the reactions in Scheme 5 
were generally slower than those of N-2-picolyl aldimines; 
therefore, 5 mol% copper catalyst was needed to achieve good 
conversion at 110 °C, owing to relatively weak binding of these 
azacycles to the copper catalyst. Unfortunately, derivatives of 
azolyl amines of 1,3-oxazole, imidazole and 1,3-benzothiazole 
led to desired amines in good yields, but in 0-10% ee, probably 
because of competitive binding of these azoles to generate 
achiral copper catalysts.  

We studied the insertion of phenylcopper(I) complex[21] with 
a single phosphoramidite  L into bound aldimine 1b, using DFT 
calculations (B3LYP-D3(BJ)(SCRF)//B3LYP-D3(BJ)/B1 level) 
(Scheme 6a). In ground state GS, the coordination geometry 
around the copper center was trigonal planar. The three-
coordinate organocopper(I) centers have been reported by 
others previously as key intermediates or as key fragments in 
copper-catalyzed reactions.[22] Instead of classical 1,2-
insertion,12 we identified that 1,4-insertion of the copper-carbon 
bond into the core fragment of C=N2-C=N1 of 1b was the more 
energetically favored pathway (Scheme 6a).[23] The activation 
barrier leading to the major (S)-isomer was 7 kcalmol-1. 
Moreover, the energy gap between two transition states TS-S 
and TS-R was 1.7 kcalmol-1, in good agreement with the 
observed 93% ee. We also calculated 1,2-insertion pathways, 
which had much higher insertion barriers (21 and 23 kcalmol-1 
leading to (R)- and (S)-isomer), but it predicted the (R)-

enantiomer as the major, in contradiction with experimental 
results.  

The 1,4-insertion step led to immediate product Prod with a 
partially dearomatized pyridine, which helped to disperse the 
negative charge on the iminyl nitrogen. Wiberg bond index 
analysis revealed that from GS to Prod, the bond order of N1-C2 
decreased from 1.29 to 1.15, while that of N2-C2 increased 
significantly from 1.16 to 1.52.  

The new 1,4-insertion mechanism also received some 
experimental support (Scheme 6). (a) The 3-methyl group on N-
picolyl aldimines reinforced the s-cisoid reactive conformation of 
aldimines by exerting A1,3-type strain and thus accelerated the 
insertion process. Its omission or replacement at other positions 
on the N-pyridine resulted in much slower conversions (3a2-4). 
(b) The N-3-picolyl ketimine of acetophenone failed to react, 
because the iminyl methyl group disfavors the s-cisoid 
conformation. (c) All of other aldimines carrying N-anisyl (3a5), 
N-1-naphthyl, N-benzyl, N-Boc and N-Cbz groups lacked the 
ability to bind to the copper center, so did not react. (d) In a 
competition experiment leading to the formation of 3a6 and 3a7 
carrying 4-CF3 and 4-OMe groups on the N-pyridine ring, the 
former was formed much faster than the latter (42% yield versus 
6% yield after 6 h), consistent with the important role played by 
the N-pyridine in stabilizating the developing negative charge 
during insertion. (e) All aldimines carrying other types of N-
azacycles in Scheme 5 can easily undergo partial 
dearomatization to accommodate the negative charge. (f) A 
stoichiometric reaction between mesitylcopper(I), aldimine 1a 
and ligand L (1 equiv) was performed in toluene (20 h at 110 oC). 
It resulted in 74% conversion and an adduct in <2% ee. In a 
background reaction, only 22% conversion was detected 
indicating ligand acceleration effect.  (g) A Hammett plot was 
constructed for phenylation of several analogues of aromatic 
aldimine 1b with different para-substituents on the aryl rings 
(OMe, Me, F, Cl and CF3). A relatively large ρ value of +1.04 
revealed a strong correlation between electron-deficient nature 
of aldimines and insertion rates. 
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Scheme 6. (a) 1,4-addition transition state TS-S leading to the major (S)-
isomer. (b) Effect of different N-directing groups in aldimines on arylation 
and (c) substituents on N-pyridine group.  

 

The DFT-optimized transition states indicated that the 
copper catalyst ligated with a single bulky phosphoramidite L[24] 
was sufficient for excellent enantiofacial induction during 
arylation. Ligand L adopted a specific baseball glove-like 
conformation, by minimizing steric interaction between its two 
large 1-phenylethyl groups (Figure 2). Consequently, one of 
them shielded the bottom-right quadrant (front view), whereas 
an aromatic ring of the spiro-diindanyl backbone pointed into the 
top-left space. Thus, the bottom-left quadrant was left widely 
open to house the reacting partners.  

 
Figure 2. Transition state TS-S (left) and disfavored TS-R (right) for 
phenylation of (L)(phenyl)Cu(I) complex and bound aldimine 1b. L is 
shown in space-filling representation and copper and other reacting 
ligands in ball-and-stick. Copper in magenta, carbon of Cu-bound phenyl 
ligand in green, nitrogen and carbon of aldimine 1b in blue and pink. 

In summary, we report the first example of catalytic 
enantioselective arylation of N-azaaryl aldimines using 
benchtop-stable arylboroxines, which affords pharmaceutically 
relevant chiral benzylic and benzhydryl amines in excellent ee 
values.  
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