
N l, N3-Me). ZgF NMR spectrum (6, ppm, acetone): 3.0 s, 9.5 s (1:2). Z3C NMR spectrum 
(6, ppm, J, Hz, MeOH): 160.0 (C~), 157.5 [C(O)CF3, JC-F = 38], 150.i (C2), 145o0 (C6), 
123.3 (CF3, JC-F = 291.0), 116.0 [C(O)CF 3, JC-F3 = 291.0], i00.0 (C5), 66.2 [C(CF3)2, JC-F = 
31], 37.2 (NZ--Me), 28.1 (N3--Me). 

5-(~-Meth~x~carb~ny~-~trif~u~r~acetamid~-2,2,2-trif~u~r~ethy~)-~,3-dimethy~uraci~(X~) 
was obtained under the same synthetic conditions as (X) from 1.4 g 1,3-dimethyluracil in i0 
cm 3 CHCI 3 and 2.6 g (III); yield 3.76 g (XI). ZH NMR spectrum (6, ppm, acetone-ds): 11.2 
bs (IH, NH), 7.7 s (IH, C6-H), 3.8 s (3H, OMe), 3.5 s, 3.25 (6H, NZ-Me, N3-Me). 19F NMR 
spectrum (6, ppm, acetone): 1.9 s, 2.8 s (i:i). 

CONCLUSIONS 

I. 4-Aminopyrimidines react with hexafluoroacetone to give pyrimidooxazines and pyri- 
midooxadiazines. 

2. An account is given of the C S aminoalkylation of 1,3-dimethyluracil by the trifluo- 
roacetylimines of hexafluor0acetone and of the methyl ester of trifluoropyruvic acid. 
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CATALYTIC PHOSPHORYLATION OF POLYFLUOROALKANOLS. 

ii.* =-POLYFLUOROALKYLBENZYLDICHLOROPHOSPHATES AS PHOSPHORYLATING 
AGENTS IN THE CATALYTIC PHOSPHORYLATION OF PRIMARY POLYFLUOROALKANOLS 

M. I. Kabachnik, L. S. Zakharov, E. I. Goryunov, 
and I. Yu. Kudryavtsev 

UDC 542.97:547.26'118 

We have shown previously that on heating, =-polyfluoroalkylbenzyldichlorophosphates 
alkylate polyfluorinated alcohols of different structures, including primary, polyfluoroalka- 
nols, with the formation of the corresponding unsymmetrical polyfluorinated ethers [2] 

' T~ R ' RC~H4CHRFOPOCI~ + RFCH20H-->RCsH4CHRFOCH~ F 

Alkylation proceeds at temperatures of I00-160~ depending on the structure of the ini- 
tial benzyldichlorophosphate, it being impossible to detect the formation of phosphorylation 
products under these conditions [2]. 

However, when one Considers that phosphorylation of polyfluorinated primary alcohols by 
the acid chloride of pentavalent phosphorus is catalyzed by certain metal salts [3], it might 

*For previous communication, see [i]. 

A. N. Nesmeyanov Institute of Organometallic Compounds, Academy of Sciences of the 
USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, 
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TABLE I. 
anols by ~-Polyfluoroalkylbenzy!dichlorophosphates 

1R 

H 
H 
H 
H 
H 
H 
m-CHa 
ra-4~Fa 
m-CF~ 
ra-NO~ 
H 
H 

Catalytic Phosphorylation of Primary Polyfluoroalk- 

RF 1R F ' 

CF~ 
C~F~ 
C~F~ 
CF~OCF~CF~ 
CF~CH~ 
CF~CH2 
C~F~ 
C~F~ 
C~F~ 
CF~ 
C~F~ 
CF~CH~CH~ 

Reaction IReactior 
Catalyst* tempera- . Itime, h 

ture, ~ 

CaCI~ 
CaC12 
CaC12 
CaC12 
CaC12 
Mg 
CaC12 
CaCI~ 
Mg 
CaCI~ 
Mg 
Mg 

i20 
i20 
120 
i20 
i20 
90 

i20 
i20 
120 
120 
i20 
i20 

i,0 
i,5 
2~0 
1,25 
0,5 
1,0 
i,0 
3,0 
t,0 
3,0 
4,0 
0,5 

CF3 
CF3 
CF3 
CF~ 
CF3 
CF3 
CF3 
CF~ 
CF3 
CF3 
C3F~ 
C~F~ 

80 
78 
80 
85 
9i 
84 
7t 
72 
76 
75 
76 
82 

*0.025 mole catalyst to i mole RCsH4CHRFOPOCI2. 

be expected that ~-polyfluoroalkylbenzyldichlorophosphates too would be able, in the pres- 
ence of a catalyst, to act as phosphorylating agents toward these alcohols under defined 
temperature conditions. 

In fact, ~-polyfluoroalkylbenzyldichlorophosphates (1)-(V) react, at temperatures not 
above 120~ with primary polyfluoroalkanols (VI)-(XI) in porportions of 1:2.2 in the pres- 
ence of anhydrous CaCI 2 or magnesium metal forming phosphorylation products exclusively - 
bis ( polyf luoroalkyl ) ( ~-po lyf luoroalkylbenzy! ) phosphates (XII) - (XXI). 

RCsH4CHHFOPOC12 ~ 2BF'CH2OH Cat, T~ RCsH4CHRFOP(O)(OCH~RF')2 
-HC1 

(I)--(V) (VI)--(XI)  (XI I)--(XXI)l  

R = H ,  R ~ = C F a ( I ) ;  R=rn -CH3 ,  R F = C F a ( I I ) ;  R = m - C F 3 ,  R F = C F s ( I I I ) ;  R =  

= m-NO2, R F = CFa (IV); R -- H, R F = C3F= (V); R F ' =  CF3 (VI); CaF: (VII);  C4F9 (VII I ) ;  

CF3OCF2C~�89 CF~CH2(X); CF3CH2CH2(XI); R = H, R F = R F' = CF3(XII);  R = H, 

R F = CFa, R F' = CaF~ (XII I ) ;  R = H, R F = CFa, RF ~ = C4F 9 (XIV); R = H, 1~ F = CF~, 

RF ~ = CFaOCF2CF2 (XV); R ---- H, R F = CFa, R F' = CFaCH2 (XVI); R = ra-CH3, RF=CF~,  

R F' = CaF9 (XVII);  R = m-CF3, R F = CFa, R F' = CaF9 (XVIII) ;  R = rrt-NO2, R F = R F ' =  

---- CF3(XIX); R = H, R F = C3F:, H F' = C4F~ (XX); R = H, R F = C3F7, R F' = 
= CF3CH2CH: (XXI). 

The conditions for the catalytic phosphorylation of the primary polyfluoroalkanols by 
~-polyfluoroalkylbenzyldichlorophosphate and the yields of phosphorylation products are set 
out in Table i. 

Here, it proved that in the series of l,l-dihydroperfluoroalkanols CF3(CF2)nCH20H [al- 
cohols (VI)-(VIIi), where n = 0, 2, 3, respectively] the rate of the catalyzed phosphoryla- 
tion fell somewhat with increased chain length of the perfluoroalkyl radical, and in the 
series of ~-trifluoromethylalkanols CF3(CH2)nCH20H [alcohols (VI), (X), and (XI), where n = 
0, i, 2, respectively], on the other hand, the rate of the catalytic phosphorylation in- 
creased considerably with increase in chain length. 

The dependence of the rate of the catalytic phosphorylation on the structure of the 
polyfluoroalkyl radical R F, in these two types of alcohol RF,CH20H runs parallel to the 
change in electron-acceptor properties of the radical, in particular: CF3(CF2) n (n > 0) > 
CF 3 [4] >> CF3(CH2) n (n > 0) [5]. 

Replacement of the terminal trifluoromethyl group in l,i-dihydroperfluorobutan-l-ol 
(VII) by a trifluoromethoxy group [alcohol (IX)] also leads to some increase in the catalytic 
phosphorylation rate and this too can be attributed to the slight reduction in the electron- 
acceptor properties of CF~O in comparison with CF 3 [6]. 

The results obtained provide evidence that for the case of primary polyfluoroalkanols 
of normal structure one of the basic factors which determine their reactivity in catalytic 
phosphorylation is the electron-acceptor property of the phosphorus-containing radical. 
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It has been established that although both magnesium metal and anhydrous CaCI 2 are 
quite active catalysts for the phosphorylation of primary polyfluoroalkanols by ~-polyfluo- 
roalkylbenzyldichlorophosphates, magnesium proves ! to be considerably more effective and as 
a result the reaction can be completed in a shorter time, or at a lower temperature, when 
using magnesium. 

Thus, depending on the reaction conditions - temperature and the presence or absence of 
catalyst - ~-polyfluoroalkylbenzyldichlor0phosphates can act selectively on the same sub- 
strate, in particular on p01yfluoroalkylated primary alcohols, as alkylating and as phos- 
phorylating agents: In the latter case the appropriate phosphorylation reactions provide 
a simple and effective method for the synthesis of a series of bis(polyfluoroalkyl)(~-poly- 
fluoroalkylbenzyl)phosphates. 

The phosphates (XII)-(XXI) are colorless, mobile liquids, freely soluble in organic 
solvents and insoluble in water. The constants for the bis(polyfluoroalkyl)(e-polyfluoro- 
alkylbenzyl)phosphates which we prepared, together with the results of elemental analysis 
and 31p NMR data are given in Table 2. 

The initial e-poiyfluoroalkylbenzyldichiorophosphates (i), (III), and (V) were prepared 
by known methods [7], and ~-trifluoromethyl-m-methylbenzyldichlorophosphate (II) and ~-tri- 
fluoromethyl-m-nitrobenzyldichlorophosphate (IV) were prepared from the corresponding sub- 
stituted 2,2,2-trifluoroacetophenones by the following route: 

NaBH, cat, POCl3.1~0 ~ 
m-RC,H4COCFs > m-RCsH4CH(OH)CFs ~ m-RCsH4CH(CF3)OPOCIz 
(xx~I), (xx~ID (xxrv), (x• (u), (iv) 

R = CH3(II), (XXII), (XXIV); N0 2 (IV), (XXIII), (XXV). 

EXPERIMENTAL 

A Bruker WP-200SY instrument was used to obtain PMR and 19F NMR spectra using TMS and 
CF3COOH respectively as internal and external standards. 31PNMR spectra were run On a Bruker HX-90 
instrument in impulse mode with noise suppression of the spin--spin interactions of the phos- 
phorus nuclei with protons; the internal standard was 85% H3PO 4. IR spectra were recorded 
on a UR-20 instrument. 

3'-Methyl-2~2~2-trifluoroaeetophenone (XXII). A solution of 108 g (0.9 mole) CF3COOLi 
in 300 ml dry THF was added to a solution of Grignard reagent, prepared from 171 g (i mole) 
m-bromotoluene and 26.4 g (i.i mole) Mg in 0.5 liter dry ether cooled to -10~ slowly over 
a period of 2 h, and the mixture then heated at bp for 2 h. After standing overnight it 
was treated in the usual manner and the product distilled in vacuum collecting the fraction 
with bp 50-80~ mm. The distillate was dissolved in an equal volume of dry pentane and 
passed through a column of AI203 (2 g A1203 per g distillate) using pentane as eluent, ~ 
the solvent distilled off and the residue fractionated in vacuum using a Widmar col- 

umn to yield 130.0 g (77%) (XXII), bp 73.5-74.5~ mm, nD2~ 1.4634, d~ 2~ 1.2341. Found, %: 
C 57.1; H 3.7; F 30.2. CgH7F30. Calculated, %: C 57.4; H 3.8; F 30.3. IR spectrum (v, 
cm'l): 1719 (C=O). 

3'Nitro-2~2,2-trifluoroacetophenone (xxIII). To 67.3 g (0.386 mole) 2,2,2-trifluoroaee- 
tophenone, cooled to -5~ was added 120 ml concentrated H2SO 4 dropwise over 0.5 h followed 
by a mixture of 32 ml concentrated HNO 3 and 48 ml concentrated H2SO 4 dropwise over ].5 h. 
The mixture was stirred for lhat 0~ poured onto 0.8 kg ice, extracted with 4 • 150 ml ether 
and the extract washed with 20 ml water and 2 • 20 ml saturated NaHCO3 and dried over anhydrous 
MgSO~. The solvent was removed and the residue distilled in vacuum collecting the fraction 
with bp 88-90~ mm. The distillate was kept for 2 days at ~0~ and recrystallized three 
times from a mixture of ether and hexane. Yield 44.7 g (53%) (XXIII), mp 58-59~ Found, 
%: C 43.7; H 1.9; F 26.0; N 6.2. CsH4F3NO 3. Calculated, %. C 43.8; H 1.8; F 26.0; N 6.4. 
IR spectrum (v, cm-1): 1365, 1565 (NO2) , 1750 (C=O). The mothec liquor after separating 
(XXIII) was evaporated and the 2.3 g residue chromatographed on 50 g AI203 and eluted with 

2O hexane; 0.2 g 2'-nitro-2,2,2-trifluoroacetophenone, n D 1.4840 .(see [8]). 

m-Methyl-~-trifluoromethylbenzyl Alcohol (XXIV). To a solution of 120.7 g (0.64 mole) 
(XXII) in 360 ml methanol cooled in ice was added dropwise a solution of 12.2 g (0.32 mole) 
NaBH4 in 120 mi water and the solution stirred 5 h at ~20~ and left overnight. The excess 
NaBH~ was decomposed with 30% H=S04 and the mixture diluted with an equal volume of water 
and extracted with 4 x 300 ml ether. The usual treatment yielded 114.1 g (94%) (XXIV), bp 
III-I12~ mm, nD 2~ 1.4644, d~ 2~ 1.2507. Found, %: C 57.0; H 5.1; F 30.0. CgHgF30. 
Calculated, %: C 56.8; H 4.8; F 30.0. 
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m-Nitro-~-trifiuoromethylbenzyl Alcohol (XXV). A similar preparation to the foregoing, 
using i0 g (45.7 mmoles) (XXIII) and 0~ g (22.9 mmoles) NaBH 4 yielded 9.0 g (89%) (XXV). 
mp 53-54~ (ether-petroleum ether). Found, %: C 43.0; H 2.8; N 6.6. CsH6F3NO 3. Calcu- 
lated, %: C 43.4; H 2.7; N 6.3. IR spectrum (v, cm-l): 1373, 1555 (NO2). 

m-Methyl-~-trifluoromethylbenzyldichlorophosphate (II). A mixture of 9.5 g (0.05 mole) 
(XXIV), 15.3 g (0.i mole) POCI 3, and 0.14 g (1.26 mmoles) anhydrous CaCI 2 was heated 4 h at 
120~ the excess POCI 3 distilled out in vacuum and the residue fractionated in vacuum. 
Yield 11.4 g (74%) (II), bp 90-91~ mm, nD 2~ 1.4746, d42~ 1.4338. Found, %: C 35.3; H 2.5; 
CI 23.1; F 19.0; P i0.I. CgHsCI2F302Po Calculated, %: C 35.2; H 2.6; CI 23.1, F 18.6; 
P i0.i. PMR spectrum (CCI~, 6, ppm, J, Hz): 2.326 s (3H, CH3), 5.882 dq (IH, CH, JH-F = 
6.0, JH-P = 14.0), 7.04-7.33 m (4H, C6H~). 19F NMR spectrum (CCIi, 6, ppm, J, Hz): 1.181 d 
(CF3, JH-F = 6.1). 31P--{IH} NMR spectrum (6, ppm): 7.04 s. 

m-Nitro-=-trifluoromethylbenzyldichlorophosphate (IV). A mixture of 14.5 g (65.6 
mmoles) (XXV), 30.2 g (197 mmoles) POCI3, and 0.182 g (1.64 mmoles) anhydrous CaCI 2 was heat- 
ed 17 h at 120~ the excess POCI 3 distilled out in vacuum and the residue fractionated in 
vacuum. Yield 12.4 g (56%) (IV), bp 132.5-133~ mm, nD =~ 1.5005, d42~ 1.5974. Found, %: 
C 28.4; H 1.5; CI 20.7; N 4.2; P 8.8. CsHsCI2F~NO~P. Calculated, %: C 28.4; H 1.5; 
C1 21.0; N 4.1; P 9.2. PMR spectrum (CCIi, 6, ppm, J, Hz): 6.280 dq (IH, CH, JH-F = 5.8, 
JH-P = 14.2), 7.68-8.44 m (iH, C6H~). 19F NMR spectrum (CCIi, 6, ppm, J, Hz): 1.002 d 
(CF~, JH-F = 5.8). siP-{iH} NMR spectrum (6, ppm): 8.04 s. 

Bis(polyfluoroalkyl)(e-polyfluoroalkylbenzyl)phosphates. A mixture of 0.003-0.03 mole 
~-polyfluoroalkylbenzyldichlorophosphate, 2.2-multiple quantity of polyfluorinated primary 
alcohol, and 0.075-0.75 mmole of appropriate catalyst was heated for several hours at the re- 
quired temperature and the bis(polyfluoroalkyl)(=-polyfluoroalkylbenzyl)phosphates (X!I)-(XXI) 
isolated by distillation in vacuum; constants are set out in Table 2. 

CONCLUSIONS 

=-Polyfluoroalkylbenzyldichlorophosphates react, in the presence of catalytic quanti- 
ties of certain metals or their salts, with polyfluorinated primary alcohols with the forma- 
tion of phosphorylation products [bis(polyfluoroalkyl)(~-polyfluoroalkylbenzyl)phosphates] 
exclusively. 
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