

Communication

Regio- and Stereoselective Cyanotriflation of Alkynes Using Aryl(cyano)iodonium Triflates

Xi Wang, and Armido Studer

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.6b00869 • Publication Date (Web): 18 Feb 2016

Downloaded from http://pubs.acs.org on February 19, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

7 8

9 10

11 12

13 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Regio- and Stereoselective Cyanotriflation of Alkynes Using Aryl(cyano)iodonium Triflates

Xi Wang and Armido Studer*

Institute of Organic Chemistry, University of Münster, Corrensstrasse 40, 48149 Münster, Germany Supporting Information Placeholder

ABSTRACT: A novel, mild, and versatile approach for regioselective *syn*-addition of both the CN group and the OTf group of aryl(cyano)iodonium triflates to alkynes is described. The reaction uses Fe-catalysis and can be conducted in gram-scale. Products of the vicinal cyanotriflation can be stereospecifically readily further functionalized, rendering the method highly valuable.

The acrylonitrile structural motif is highly versatile in organic synthesis. Acrylonitriles occur as building blocks in natural product synthesis, in pharmaceutical industry, and in materials science. Therefore, the development of practical methods for their synthesis is of importance.¹ A direct approach towards acrylonitriles is the transition metal catalyzed alkyne hydrocyanation.² Even more valuable are stereoselective alkyne cyanations with concomitant C-C and C-X-bond formation. Along these lines, Pd-, Ni-, and Lewis acid catalyzed carbocyanations³ and heterocyanations⁴ of alkynes have been reported. The latter reactions use X-CN-type reagents where X is Me₃Si, R₂B, Bu₃Sn, Me₃Ge, RS, ArO, or Br.⁴ The Br, R₂B and Bu₃Sn-products are particularly interesting since they can be further chemically transformed by cross coupling reactions.

Vinyl triflates have been recognized as reliable precursors for vinyl-organometallic intermediates in cross coupling reactions.⁵ They are generally prepared by trapping of in situ generated enolates with triflating reagents.⁶ Alternatively, Lepore described the Zn(OTf)₂ catalyzed alkyne triflation to vinyl triflates with trimethylsilyl trifluoromethanesulfonate and little water.^{7a} Cu-catalyzed *cis* aryl- and vinyl-triflation of alkynes has been successfully established by the Gaunt group.^{7b} Akita and Koike recently disclosed the preparation of trifluoromethylated vinyl triflates via *trans* addition of both the CF₃ and the OTf group to alkynes via photoredox catalysis.^{7c}

Aryl(cyano)iodonium triflates of type 1, first introduced by Zhdankin and Stang, were shown to react with silyl enol ethers to afford α -trifluoromethylsulfonyl ketones (Scheme 1).^{8a} ArI(CN)OTf (1) has been also applied as an iodonium transfer reagent in the reaction with aryl or alkynyl tributyltin compounds to give the corresponding iodonium salts.^{8b} Reagents of type 1 also act as efficient electrophilic cyanation reagents. Along these lines, Wang and coworkers developed the direct electrophilic cyanation⁹ of various aromatic compounds^{8c} and the preparation of thiocyanates through electrophilic cyanation of thioethers was published by the Shi group.^{8d} Hence, existing reports on the use of reagents 1 reveal that they react either as electrophilic iodonium, triflate or cyano transfer reagents. However, reactions with 1 where both the cyano and the triflate moiety are transferred are currently unknown. Since both functionalities are valuable, such transformations would be highly useful. Herein, we disclose a practical method for highly stereo- and regioselective *syn* alkyne cyanotriflation with an aryl(cyano)iodonium triflate under Fe-catalysis.

Scheme 1. Iodonium, triflate, and cyano transfers with aryl(cyano)iodonium triflates

Based on previous reports on single electron transfer (SET) reduction of I(III)-reagents,¹⁰ we assumed that an aryl(cyano)iodonium triflate 1 can react via SET reduction to the corresponding aryl(cyano)iodanyl radical and the triflate anion.^{8c} α -Fragmentation of the cyano radical in such an iodanyl radical is not likely due to the high energy of the CN-radical. For the same reason, aryl radical fragmentation should be a high energy pathway.¹¹ Therefore, the iodanyl radical might be long enough lived to undergo radical addition to an alkyne which might eventually lead to cyanotriflation products of type **2**.

To proof our hypothesis we tested the cyanotriflation of alkyne **3c** with various I(III)-reagents **1a-c** under different conditions (Table 1, Figure 1). Careful optimization revealed that cyanotriflation works and that reaction of model compound **3c** is best conducted at 45 °C with 3,5-di(trifluoromethyl)-phenyl(cyano)iodonium triflate (**1a**) (2.2 equiv) as the triflate and cyanide source, Fe(OAc)₂ in combination with phenanthroline (**L1**) as the catalyst,¹² and 1,2-

dichloroethane as the solvent (Table 1, entry 1). Product 2c was isolated in 81% yield with excellent *cis*-selectivity and complete regioselectivity. Without Fe(OAc)₂ and 1,10-phenanthroline only a trace amount of 2c was formed (entry 2). Yield dropped to 36% without phenanthroline indicating the importance of the ligand (entry 3). Therefore, other ligands L2-L5 were tested. However, in all cases a significant loss in yield was noted (entries 4-7).

Table 1. Reaction optimization

R	CN CI		promote L (10 solvent, r	r (10 mol%) 0 mol%) 45 °C, 15 h Cl	OTF CN n-Pr
1a-	-C	3c		-	2 c
entry ^a	promoter	ligand	1	solvent	yield (%) ^b
1	Fe(OAc) ₂	Lı	1a	DCE	78, 81 [°] (72:1)
2	none	none	1a	DCE	trace (NA)
3	Fe(OAc) ₂	none	1a	DCE	36 (26:1)
4	Fe(OAc) ₂	L2	1a	DCE	51 (61:1)
5	Fe(OAc) ₂	L3	1a	DCE	20 (24:1)
6	Fe(OAc) ₂	L4	1a	DCE	24 (18:1)
7	Fe(OAc) ₂	L5	1a	DCE	31 (23:1)
8	$Fe(OAc)_{2}$	Lı	ıb	DCE	22 (22:1)
9	Fe(OAc) ₂	Lı	1C	DCE	40 (54:1)
10	Fe(OAc) ₂	Lı	1a	DCM	63 (42:1)
11	Fe(OAc) ₂	Lı	1a	MeCN	trace (NA)
12	Fe(OAc) ₂	Lı	1a	DCE	64 ^d (91:1)
13	Fe(OTf) ₂	Lı	1a	DCE	23 (4:1)
14	FeCl ₂	Lı	1a	DCE	49 (15:1)
15	FeCl ₃	Lı	1a	DCE	55 (21:1)
16	CuCl	none	1a	DCE	trace (NA)
17	BF ₃ ·Et ₂ O	none	1a	DCE	trace (NA)
18	HOTf	none	1a	DCE	trace (NA)
19	AlCl ₃	none	1a	DCE	12 (2:1)
20	TBAI	none	1a	DCE	32 (9:1)
an a		. ,			

^aReaction condition: **3c** (0.20 mmol, 1.0 equiv), reagent **1** (0.44 mmol, 2.2 equiv), promoter (0.02 mmol, 10 mol%), ligand (0.02 mmol, 10 mol%), solvent (1 mL), 45 °C, 15 h. ^bYield determined by ¹⁹F NMR analysis using PhCF₃ as an internal standard; isomer ratio in parentheses determined by GC-MS analysis on the crude product; NA, not applicable; ^cIsolated yield; ^dConducted at room temperature.

Figure 1. Reagents and ligands tested

1h

L1

2c were formed by replacing $Fe(OAc)_2$ with CuCl (entry 16). Cyanotriflation with BF_3 ·Et₂O or HOTf failed and AlCl₃ showed a very low yield (entries 17-19). **3c** was smoothly converted into **2c** in the presence of tetrabutylammonium iodide (TBAI), albeit in a moderate yield (entry 20).

Table 2. Substrate scope of the regio- and stereoselective cyanotriflation reaction^{a,b}

^{*a*}Reaction condition: **3** (0.20 mmol, 1.0 equiv), **1a** (0.44 mmol, 2.2 equiv), $Fe(OAc)_2$ (0.02 mmol, 10 mol%), ligand **L1** (0.02 mmol, 10 mol%), solvent (1 mL), 45 °C, 15 h. ^{*b*}Isolated yield. ^{*c*}After 15 h, renewed $Fe(OAc)_2$ (0.02 mmol, 10 mol%), ligand **L1** (0.02 mmol, 10 mol%), and **1a** (0.44 mmol, 2.2 equiv) addition and continued stirring for another 15 h.

Having identified optimized conditions, we next tested the scope and limitations of the novel transformation (Table 2). 1-Aryl-1-pentynes bearing either electron-withdrawing or donating substituents at the para position of the aryl group were smoothly converted in moderate to high yield with excellent regio- and stereoselectivity¹³ to the acrylonitriles 2a-i. Gram scale synthesis of 2e was achieved in 88% yield demonstrating the practicability of the transformation. The trifluoromethyloxy (2j) and the trifluoromethylthiyl substituent (2k), which are popular in pharmaceuticals and in agrochemicals, are compatible with the cyanotriflation. Lower yields were obtained by cyanotriflation of alkynes bearing meta- and ortho-substituents (2l-n). We were delighted to find that the 1,3-divne 30 could be selectively cyanotriflated (20). A significantly lower yield was obtained for the transformation of a 1,3-envne (2p). Primary alkylchlorides, alkylto1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 sylates and alkylphthalimides were tolerated (2q-s). Not surprisingly, reaction worked well on a methyl substituted alkyne (2t). Remarkably, also with bulky *i*-Pr (2u) and *t*-Bu (2v) substituted arylalkynes, moderate to good yields were achieved. Aryl alkynes bearing a cyclopropyl, a cyclopentyl, and a cyclohexyl group could also be converted to the targeted tetrasubstituted alkenes 2w-y. Whereas for 2x and 2y good yields were obtained, the cylopropyl alkyne reacted in moderate yield to 2w. Unfortunately, bisarylalkynes and bisalkylalkynes did not react under optimized conditions to the corresponding cyanotriflated products and phenylacetylene provided the cyanotriflation product in very low yield (<5%, not isolated) as checked by GC-MS-analysis.

Scheme 2. Cyanotriflation of diyne 3z

Scheme 3. Follow-up chemistry

We also investigated the transformation of the 1,5 diyne 3z under standard conditions as a potential substrate for a cascade comprising a cyanotriflation with concomitant cyclization. Pleasingly, reaction of 3z with 1a provided cyclopentene 2z through a cyanation-cyclization-triflation sequence in moderate yield and complete selectivity (Scheme 2). To demonstrate the synthetic value of the method, we investigated follow-up chemistry using cyanotriflated product 2a as

a substrate (Scheme 3). The vinyl triflate **2a** efficiently engaged in a series of stereospecific palladium catalyzed cross coupling reactions, including Suzuki couplings (**4**, **5**), a Sonogashira reaction (**6**), and a Buchwald-Hartwig amidation (**7**). Notably, during amidation complete isomerization of the double bond to give the thermodynamically more stable isomer **7** occurred. Moreover, Pd-catalyzed methoxycarbonylation of **2a** gave **8** as a single isomer. Hydrolysis of **2a** provided the α -cyano ketone **9** (basic conditions) and the β keto amide **10** (acidic conditions) in high yields. Moreover, the synthetic utility of **2a** was demonstrated by preparation of bioactive tetrasubstituted thiophene **11** upon treatment with ethyl thioglycolate under basic conditions.

A possible mechanism for the cyanotriflation is depicted in Scheme 4. Iodanyl radical **A**, generated through SET reduction of **1a** by the Fe(II)-complex, adds to alkyne **3** to give α styryl-type iodonium radical **B**. Oxidation of radical **B** by the intermediately generated Fe(III)-complex leads to π stabilized vinylic cation **C**, thereby regenerating the Fe(II)complex. Reductive elimination at the I(III) center affords cation **D** which gets trapped by the triflate anion to provide the observed *cis*-product **2**. Trapping occurs from the less hindered site of the vinyl cation *syn* to the small CN group. Since the nature of the ligand influences *cis/trans*-selectivity, the triflate is likely transferred from an LFe(III)OTf-complex.

Scheme 4. Suggested Mechanism for the alkyne cyanotriflation

Trapping of the cation **C** prior to reductive elimination via **E** is not likely, since it should give the *trans*-product **2**'. The successful cascade (see **2x**, Scheme **2**) supports a radical mechanism.¹⁴ A pathway involving electrophilic iodonium activation of the triple bond (see **F**) with the Fe-complex acting as a Lewis acid is not very likely, since we did not obtain *trans*-product **2**' as the major product that would form in the cationic route via **E**. This is in agreement with the failed experiments using typical Lewis acids as catalysts. In summary, we have described the first method for direct vicinal alkyne cyanotriflation. Reactions occur under mild

vicinal alkyne cyanotriflation. Reactions occur under mild conditions with complete regioselectivity, excellent stereoselectivity and a wide range of functional groups are tolerated. The tetrasubstituted alkenes obtained are valuable building blocks as shown by a series of follow-up reactions.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and characterization data for all compounds are provided in the SI. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

studer@uni-muenster.de

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

This work was supported by the Alexander von Humboldt Foundation (postdoctoral fellowship to X. Wang).

REFERENCES

- (a) Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. *Nature* 1993, 365, 628-630. (b) Fleming, F. F. *Nat. Prod. Rep.* 1999, *16*, 597-606.
- (2) For transition metal catalyzed hydrocyanation, see: (a) Funabiki, T.; Yamazaki, Y.; Tarama, K. J. Chem. Soc. Chem. Commun. 1978, 63-65; (b) Jackson, W. R.; Lovel, C. G. J. Chem. Soc. Chem. Commun. 1982, 1231-1232; (c) Alonso, P.; Pardo, P.; Galván, A.; Fañanás, F. J.; Rodríguez, F. Angew. Chem. Int. Ed. 2015, 54, 15506–15510.
- (3) TM-catalyzed carbocyanations, see: (a) Nakao, Y.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2004, 126, 13904-13905. (b) Nakao, Y.; Yukawa, T.; Hirata, Y.; Oda, S.; Satoh, J.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 7116-7117. (c) Arai, S.; Sato, T.; Koike, Y.; Hayashi, M.; Nishida, A. Angew. Chem. Int. Ed. 2009, 48, 4528-4531. (d) Hirata, Y.; Yada, A.; Morita, E.; Nakao, Y.; Hiyama, T.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2010, 132, 10070-10077. (e) Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007, 129, 2428-2429. (f) Rondla, N. R.; Levi, S. M.; Ryss, J. M.; Berg, R. A. V.; Douglas, C. J. Org. Lett. 2011, 13, 1940-1943. (g) Arai, S.; Amako, Y.; Yang, X.; Nishida, A. Angew. Chem. Int. Ed. 2013, 52, 8147-8150.
- (4) TM-catalyzed heterocyanations, see: (a) Chatani, N.; Hanafusa, T. J. Chem. Soc. Chem. Commun. 1985, 838–839. (b) Chatani, N.; Horiuchi, N.; Hanafusa, T. J. Org. Chem. 1990, 55, 3393-3395. (c) Suginome, M.; Kinugasa, H.; Ito, Y. Tetrahedron Lett. 1994, 35, 8635-8638. (d) Obora, Y.; Baleta, A. S.; Tokunaga, M.; Tsuji, Y. J. Organomet. Chem. 2002, 660, 173-177. (e) Suginome, M.; Yamamoto, A.; Murakami, M. J. Am. Chem. Soc. 2003, 125, 6358-6359. (f) Suginome, M.; Yamamoto, A.; Murakami, M. J. Am. Chem. Soc. 2003, 125, 6358-6359. (f) Suginome, M.; Yamamoto, A.; Murakami, M. J. Am. Chem. Soc. 2003, 125, 6358-6359. (f) Suginome, M.; Yamamoto, A.; Murakami, M. Angew. Chem. Int. Ed. 2005, 44, 2380-2382. (g) Kamiya, J.; Kawakami, S.; Yano, A.; Nomoto, A.; Ogawa, A. Organometallics 2006, 25, 3562-3564. (h) Murai, M.; Hatano, R.; Kitabata, S.; Ohe, K. Chem. Commun. 2011, 47, 2375-2377. (i) Koester, D. C.; Kobayashi, M.; Werz, D. B.; Nakao, Y. J. Am. Chem. Soc. 2012, 134, 6544-6547.
- (5) (a) Ritter, K. Synthesis 1993, 735-762. (b) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945-2964. (c) Nicolaou, K. C.; Frederick, M. O.; Burtoloso, A. C. B.; Denton, R. M.; Rivas, F.; Cole, K. P.; Aversa, R. J.; Gibe, R.; Umezawa, T.; Susuki, T. J. Am. Chem. Soc. 2008, 130, 7466-7476.
- (6) (a) Wright, M. E.; Pulley, S. R. J. Org. Chem. 1989, 54, 2886-2889; (b) Comins, D. L.; Dehghani, A. Tetrahedron Lett. 1992, 33, 6299-6302; (c) Specklin, S.; Bertus, P.; Weibel, J.-M.; Pale, P. J. Org. Chem. 2008, 73, 7845-7848. (d) Foti, C. J.; Comins, D. L. J. Org. Chem. 1995, 60, 2656-2657.
- (7) (a) Al-huniti M. H.; Lepore, S. D. Org. Lett. 2014, 16, 4154-4157. (b) Suero, M. G.; Bayle, E. D.; Collins, B. S. L.; Gaunt, M. J. J. Am. Chem. Soc. 2013, 135, 5332-5335. (c) Tomita, R.; Koike, T.; Akita, M. Angew. Chem. Int. Ed. 2015, 54, 12923-12927.

- (8) (a) Zhdankin, V. V.; Crittell, C. M.; Stang, P. J.; Zefirov, N. S. *Tetrahedron Lett.* **1990**, *31*, 4821-4824; (b) Zhdankin, V. V.; Scheuller, M. C.; Stang, P. J. *Tetrahedron Lett.* **1993**, *34*, 6853-6856. (c) Shu, Z.; Ji, W.; Wang, X.; Zhou, Y.; Zhang, Y.; Wang, J. B. Angew. Chem. Int. Ed. **2014**, *53*, 2186-2189. (d) Zhu, D.; Chang, D.; Shi, L. Chem. Commun. **2015**, *51*, 7180-7183. Review on I(III)-reagents, see: Zhdankin V. V.; Stang P. J. Chem. Rev. **2008**, *108*, 5299-5358.
- (9) For electrophilic cyanation, see: (a) Vita, M. V.; Caramenti, P.; Waser, Org. Lett. 2015, 17, 5832-5835. (b) Reeves, J. T.; Malapit, C. A.; Buono, F. G.; Sidhu, K. P.; Marsini, M. A.; Sader, C. A.; Fandrick, K. R.; Busacca, C. A.; Senanayake, C. H. J. Am. Chem. Soc. 2015, 137, 9481-9488. (c) Talavera, G.; Peña, J.; Alcarazo, M. J. Am. Chem. Soc. 2015, 137, 8704-8707. (d) Frei, R.; Courant, T.; Wodrich, M. D.; Waser, J. Chem. Eur. J. 2015, 21, 2662-2668. (e) Pawar, A. B.; Chang, S. Org. Lett. 2015, 17, 660-663. (f) Wang, Y. F.; Qiu, J.; Kong, D.; Gao, Y.; Lu, F.; Karmaker, P. G.; Chen, F. X. Org. Biomol. Chem. 2015, 13, 365-368. (g) Yang Y.; Buchwald, S. L. Angew. Chem. Int. Ed. 2014, 53, 8677-8681. (h) Yu, D. G.; Gensch, T.; Azambuja, F.; Céspedes, S. V.; Glorius, F. J. Am. Chem. Soc. 2014, 136, 17722-17725. (i) Zhu, C.; Xia, J. B.; Chen, C. Org. Lett. 2014, 16, 247-249. (j) Gong, T.-J.; Xiao, B.; Cheng, W. M.; Su, W.; Xu, J.; Liu, Z. J.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 10630-10633; (k) Hoshikawa, T.; Yoshioka, S.; Kamijo, S.; Inoue, M. Synthesis 2013, 45, 874-887. (l) Brand, J. P.; González, D. F.; Nicolai, S.; Waser, J. Chem. Commun. 2011, 47, 102-115. (m) Kamijo, S.; Hoshikawa, T.; Inoue, M. Org. Lett. 2011, 13, 5928-5931. (n) Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2011, 50, 519-522; (0) Yang, Y.; Zhang, Y.; Wang, J. Org. Lett. 2011, 13, 5608-5611. (p) Dohi, T.; Morimoto, K.; Takenaga, N.; Goto, A.; Maruyama, A.; Kiyono, Y.; Tohma, H.; Kita, Y. J. Org. Chem. 2007, 72, 109-116. (q) Anbarasan, P.; Neumann, H.; Beller, M. Chem. Eur. J. 2010, 16, 4725-4728. (r) Wu, Y. Q.; Limburg, D. C.; Wilkinson, D. E.; Hamilton, G. S. Org. Lett. 2000, 2, 795-797.
- (10) For 1e reduction of hypervalent iodine (III) reagent, see: (a) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410–16413. (b) Parsons, A. T.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 9120–9123. (c) Mejía, E.; Togni, A. ACS Catal. 2012, 2, 521–527. (d) Li Y.; Studer, A. Angew. Chem. Int. Ed. 2012, 51, 8221–8224. (e) Zhang, B.; Mück-Lichtenfeld, C.; Daniliuc C. G.; Studer, A. Angew. Chem. Int. Ed. 2013, 52, 10792–10795. (f) Wang, Y.; Zhang, L.; Yang, Y.; Zhang, P.; Du, Z.; C. Wang, J. Am. Chem. Soc. 2013, 135, 18048–18051. (g) Moteki, S. A.; Usui, A.; Selvakumar, S.; Zhang, T.; Maruoka, K. Angew. Chem. Int. Ed. 2014, 53, 11060–11064. (h) Jia, K.; Zhang, F.; Huang, H.; Chen, Y. J. Am. Chem. Soc. 2016, 138, 1514–1517. (i) Wang, C-Y.; Song, R.-J.; Xie, Y.-X.; Li, J.-H. Synthesis 2016, 48, 223–230.
- (11) Generation of aryl radicals from diaryl iodonium salts, see:
 (a) Neufeldt, S. R.; Sanford, M. S. Adv. Synth. Catal. 2012, 354, 3517-3522.
 (b) Liu, Y.-X.; Xue, D.; Wang, J.-D.; Zhao, C.-J.; Zou, Q.-Z.; Wang, C.; Xiao, J. Synlett 2013, 507-513.
 (c) Baralle, A.; Fensterbank, L.; Goddard, J.-P.; Ollivier, C. Chem. Eur. J. 2013, 19, 10809-10813.
 (d) Wang, R.; Jiang, H.; Cheng, Y.; Kadi, A. A.; Fun, H.-K.; Zhang, Y.; Yu, S. Synthesis 2014, 46, 2711-2726.
 (e) Wen, J.; Zhang, R.-Y.; Chen, S.-Y.; Zhang, J.; Yu, X.-Q. J. Org. Chem. 2012, 77, 766-771.
- (12) (a) Parsons, A. T.; Senecal, T. D.; Buchwald, S. L. Angew. Chem. Int. Ed. 2012, 51, 2947–2950. (b) Sharmai, A.; Hartwig, J. F. Nature 2015, 517, 600-604.
- (13) Since *trans*-isomers are not in hand, we cannot unambiguously determine the selectivity by GC analysis on the crude product. After chromatography on silica gel, we always obtained only the *cis*-isomer and the *trans*-congener could not be identified. Therefore, selectivity in all cases must be very high. Yields given correspond to the isolated *cis*-compound.
- (14) In the presence of TEMPO cyanotriflation did not occur. Unfortunately, we could not isolate any TEMPO-trapped intermediate (see SI).

Journal of the American Chemical Society

TOC graphic						
	F ₃ C CN	+ R + R' + BCE, 45	(10 mol%) 0 mol%) • C, 15 h R'			
	(2.2 equiv)	R = Aryl, Alkynyl, Alkenyl R' = 1º, 2º, 3º Alkyl	26 examples 13-93% yield complete regioselectivity excellent diastereoselectivity			