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Abstract: An efficient C¢H acylation of azo- and azoxy-

benzenes with a-keto acids has been developed by a com-
bination of palladium catalysis and visible-light photore-

dox catalysis at room temperature under 1.5 W blue LED
irradiation. This method tolerates a variety of disubstituted

azo- and azoxybenzenes, as well as a-keto acids regardless

of the nature of the substituents. A number of aryl ke-
tones were obtained in good yields under mild reaction

conditions.

Azo-substituted aryl ketones are very important in the chemi-
cal and pharmaceutical industries, and they have been widely
used in the fields of photochemical dyes, drug intermediates,

biosensors, and food additives. In addition, these compounds
can be easily converted into the corresponding amino or hy-
drazine products in organic synthesis.[1] As a result, a variety of

strategies has been established to realize them. Classic meth-
ods are the coupling of diazonium salts with arenes and the

oxidation of the corresponding azo-containing secondary alco-
hols.[2] However, these methodologies suffer from the harsh re-

action conditions and relatively limited substrate scope. In re-

cently years, much attention has been focused on the transi-
tion-metal-catalyzed oxidative sp2 C¢H acylation of azo- and

azoxybenzenes with aldehydes, aryl methanes, alcohols, and a-
oxocarboxylic acids.[3] Despite these important advances, most

of the current methods have some limitations. Drawbacks of
the C¢H acylation, in most cases, are stoichiometric amounts

of an external oxidant and higher reaction temperature.[3a–h]

Therefore, development of a mild, atom-efficient, and eco-
friendly method for the synthesis of azo-substituted aryl ke-

tones is highly desirable.

Most recently, visible-light-induced photoredox catalysis has

emerged as an important platform for the development of
unique single electron-transfer pathway under remarkably mild
reaction conditions.[4] Particularly, dual catalysis realized by

merging photocatalysis with transition-metal catalysis can ac-
complish the novel organic transformations, which are unfeasi-
ble or not accessible by a single catalytic system.[5] In 2011,
Sanford and co-workers achieved a Pd-catalyzed C¢H arylation

by merging palladium catalysis with visible-light photoredox
catalysis.[5a] Subsequently, many efforts have been devoted to-

wards the construction of C¢C and C¢heteroatom bonds by
combining visible-light-induced photoredox and transition-
metal catalysis.[5b–j] However, recent studies in the dual catalytic

system have focused on the use of Ru and Ir complexes as
photoredox catalysts, whereas combining organic dyes as pho-

toredox catalysts with transition-metal catalysts in synthetic
chemistry has not yet been explored.

In recent years, a-keto acids, as acylating reagents, have
shown high reactivity in the synthesis of ketones by a decar-
boxylative process to acyl-free radicals along with the extru-
sion of CO2.[3b,g, 6] Meanwhile, a few examples of acridinium
salts, used as photoredox catalysts, have been reported in

a single catalyst system.[7] Herein, we have developed a combi-
nation of palladium and acridinium salt as a photoredox cata-
lyst under visible-light irradiation for the C¢H acylation of azo-
and azoxybenzenes with a-keto acids that provides a mild and
green methodology for the synthesis of azo-substituted aryl
ketones in good yields (Scheme 1).

Our initial studies focused on a Pd-catalyzed model reaction
of C¢H acylation of azobenzene (1 a) with 2-oxo-2-phenylacetic

acid (2 a). Inspired by the reported literature,[4, 5, 8] Ru complex
was employed as a photocatalyst firstly, and blue LED was uti-
lized as the source of visible light. To our delight, the model re-

action underwent smoothly to generate the desired C¢H acyla-
tion product 3 aa in 72 % yield at room temperature in the
presence of Pd(TFA)2 (5.0 mol %) and [Ru(bpy)3]Cl2·6H2O
(2.0 mol %) in toluene under an oxygen atmosphere and 1.5 W

blue LED irradiation for 16 h at room temperature (Table 1,
entry 1). Subsequently, various Ru and Ir complexes, such

as [Ru(bpy)3][PF6]2·6H2O, [Ru(phen)3]Cl2·6H2O, [Ru(phen)3]
[PF6]2·6H2O, and fac-[Ir(ppy)3] , were screened (entries 2–5), and
a slightly improved yield of 3 aa was observed in the presence

of [Ru(bpy)3][PF6]2·6H2O (entry 2). In an attempt to improve the
yield of the desired product, a series of organic dyes, such as

Na2-eosinY, eosin Y, rose bengal, and 9-mesityl-10-methylacridi-
nium perchlorate (PC-A) were examined as photoredox cata-

lysts[4i, 7, 9] instead of Ru-complex.

Gratifyingly, the use of PC-A enhanced the acylation of 1 a
with 2 a, leading to the formation of 3 aa in 78 % yield under

either oxygen or air atmosphere (Table 1, entries 6–10). It is evi-
dent that organic dyes, such as eosin Y and PC-A, are cheaper

and easier to be modified, and can be degraded compared
with transition-metal photoredox catalysts (Ru and Ir com-

Scheme 1. Synthetic strategies for azo-substituted aryl ketones from azo-
and azoxybenzenes with a-oxocarboxylic acids.
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plexes). Further experiments indicated that the photoredox

catalyst, palladium catalyst, visible-light irradiation, and molec-
ular oxygen were all essential for the reaction, and no reaction

occurred in their absence (entries 11–14). Further optimization
of acridinium salts showed that 9-mesityl-10-methylacridinium

perchlorate (PC-A) was the best of choice among the ex-
amined acridinium salts, including 9-phenyl-10-methylacri-

dinium perchlorate (PC-B), 9-phenyl-10-methylacridinium
tetrafluoroborate (PC-C), 9-(tert-butylphenyl)-10-methylacri-
dinium perchlorate (PC-D), 9-(tert-butylphenyl)-10-methyla-
cridinium tetrafluoroborate (PC-E), 9-(2,4,6-trifluorophenyl)-
10-methylacridinium perchlorate (PC-F), and 9-(2,4,6-tri-
fluorophenyl)-10-methylacridinium tetrafluoroborate (PC-G ;

entries 15–20). In addition, solvent screening indicated that
toluene was the best reaction medium for the model reac-
tion (entries 21–31). Further investigations on the light
source, palladium catalyst, molar ratio of substrates, and
catalyst loading are also presented in Tables S1, S2, and S3
in the Supporting Information.

With the optimized reaction conditions (1 (0.20 mmol), 2
(0.24 mmol), Pd(TFA)2 (5.0 mol %), and PC-A (2.0 mol %) in

toluene (2.0 mL) under air atmosphere and 1.5 W blue LED
irradiation at room temperature for 16 h) in hand, we next

explored the functional group compatibility of this transfor-
mation using a series of typical disubstituted azobenzenes.

As shown in Table 2, the reaction of various azobenzenes
with 2-oxo-2-phenylacetic acid (2 a) proceeded well and

generated the desired acylated products in good yields.

Substituents on the aromatic moiety of the azo com-
pounds showed an electronic effect of the coupling reac-

tion. In general, aromatic azo compounds with electron-do-
nating groups were more reactive than that with electron-

withdrawing groups, providing higher yields of the desired
products. These results were also supported by the inter-

molecular competing experiments shown in Scheme 2. For

example, azobenzenes substituted with electron-donating
groups, such as Me, OMe, and iPr, at the para positions

generated the desired products (3 ab–ad) in 68-70 % yields.
Meanwhile, azobenzenes with electron-withdrawing

groups, including Cl and COOEt, at the para positions deliv-
ered the corresponding products 3 ae and 3 af in 67 and

58 % yields, respectively. It should be noted that meta-sub-

stituted azobenzenes also worked well in the reaction to
afford the anticipated products 3 ag–ai in 57–73 % yields.

Notably, ortho-substituted azobenzenes gave relatively
lower product yields (3 aj and 3 ak) than para- or meta-sub-
stituted azobenzenes due to their steric hindrance. To our
delight, when tetra-substituted azobenzene 1 l reacted
with 2 a, the desired product 3 al was obtained in 66 %

yield. The reaction of unsymmetrical azobenzene 1 m also
proceeded well and the acylation occurred on the electron-
rich aromatic ring selectively, providing the product 3 am
in 63 % yield.

Next, the representative a-oxocarboxylic acids were syn-
thesized and their performance was examined for the C¢H

acylation of azobenzenes under the optimized reaction
conditions. As can be seen in Table 2, 2-oxo-2-arylacetic

acids with electron-rich and -poor substituents, such as Me,
MeO, tBu, F, Cl, and Br on para positions of aromatic rings
gave the desired products (3 ba–bf) in good yields. Generally,

2-oxo-2-arylacetic acids with electron-withdrawing groups on
the benzene rings were more suitable substrates and gave

Table 1. Optimization of photoredox catalyst and solvent[a]

Entry Photoredox Catalyst Solvent Yield [%][b]

1 [Ru(bpy)3]Cl2·6H2O toluene 72
2 [Ru(bpy)3][PF6]2·6H2O toluene 76
3 [Ru(phen)3]Cl2·6H2O toluene 73
4 [Ru(phen)3][PF6]2·6H2O toluene trace
5 fac-[Ir(ppy)3] toluene trace
6 Na2-eosinY toluene trace
7 eosin Y toluene trace
8 rose bengal toluene trace
9 PC-A toluene 78
10[c] PC-A toluene 78
11 – toluene N.R.
12[d] PC-A toluene N.R.
13[e] PC-A toluene N.R.
14[f] PC-A toluene N.R.
15 PC-B toluene 73
16 PC-C toluene 76
17 PC-D toluene 76
18 PC-E toluene 75
19 PC-F toluene 48
20 PC-G toluene 63
21 PC-A CH3CN trace
22 PC-A MeOH trace
23 PC-A DCM 58
24 PC-A DCE 60
25 PC-A DME 65
26 PC-A THF 37
27 PC-A acetone 71
28 PC-A CHCl3 67
29 PC-A PhCl 57
30 PC-A PhCF3 trace
31 PC-A DMSO N. R.

[a] Reaction conditions: 1 a (0.20 mmol), 2 a (0.24 mmol), Pd(TFA)2 (5.0 mol %),
photoredox catalyst (2.0 mol %), 1.5 W blue LED, and solvent (2.0 mL) at room
temperature under oxygen for 16 h. [b] Isolated yield. [c] Under air. [d] In the
absence of Pd(TFA)2. [e] In the absence of light. [f] Under nitrogen. DME = 1,2-
dimethoxyethane; DMSO = dimethyl sulfoxide; N.R. = no reaction.
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higher yields than 2-oxo-2-arylacetic acids with electron-donat-
ing groups on the benzene rings (3 ba–bc versus 3 bd–bf). 2-
Oxo-2-(meta-methylphenyl)acetic acid (2 g) worked well in the

reaction, and the desired product 3 bg was obtained in 73 %
yield. Evidently, the steric hindrance effect was observed in the

reaction of 2-oxo-2-arylacetic acids with azobenzenes, generat-
ing the products (3 bh–bj) in 57–69 % yields under the present

reaction conditions. Furthermore, 2-oxo-2-(2,4-dimethylphenyl)-

acetic acid (2 k) showed good reactivity in the reaction and
provided product 3 bk in 72 % yield. It should be noted that re-

actions of 2-(naphthalen-1-yl)-2-oxoacetic acid (2 l) and 2-
(naphthalen-2-yl)-2-oxoacetic acid (2 m) with 1 a afforded the

corresponding products 3 bl and 3 bm in 77 and 84 % yields,
respectively. Encouraged by these results, the heterocyclic-sub-

stituted a-oxocarboxylic acid 2 n was evaluated, and a moder-

ate yield of the product 3 bn was obtained under the opti-
mized reaction conditions. However, an aliphatic a-oxocarbox-

ylic acid, such as 2-oxopropanoic acid (2 o), did not react with

1 a, and the desired product 3 bo was not obtained.
Next, the optimization of the reaction conditions for the C¢

H acylation of azoxybenzene 4 a with 2-oxo-2-phenylacetic
acid (2 a) showed that the reaction did indeed occur with 76 %

yield of the desired product (5 a) in the presence of Pd(TFA)2

(5.0 mol %), PC-A (2.0 mol %), 1.5 W blue LED, and DCE (2.0 mL)

at room temperature in air for 20 h (for details of the optimiza-

tion, see Table S4–7 in the Supporting Information). To explore
the applicability of this protocol, some typical disubstituted

azoxybenzenes were examined and the results are listed in
Table 3. The reaction of azoxybenzenes with 2-oxo-2-phenyl-

acetic acid (2 a) provided the corresponding products 5 a–e in
66–77 % yields, and tolerated a variety of functional groups, in-

cluding Me, MeO, and iPr groups, in the substrates of azoxy-

benzenes. However, ortho-substituted azoxybenzene 4 f gener-
ated 5 f in lower yield due to the steric hindrance.

To gain insight into the mechanism of this transformation,
some control experiments and an intermolecular competing ki-
netic isotope effect (KIE) were carried out. The addition of
1.5 equivalent of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)

to the mixture of azobenzene 1 a and 2-oxo-2-phenylacetic
acid (2 a) suppressed the reaction completely (Scheme 3 a).
Moreover, TEMPO trapped the benzoyl radical to generate 6
(Scheme 3 b). The intermolecular kinetic isotopic effect was ob-
served with kH/kD = 3.7 (Scheme 3c), indicating the sp2 C¢H

bond cleavage involved in the rate-determining step of the re-
action.

On the basis of our preliminary mechanistic study and previ-

ous related literature,[4, 5, 7, 10] a possible mechanism of this trans-
formation is proposed in Scheme 4. The reaction begins with

the photoexcitation of mesityl acridinium catalyst (PC-A) by
visible light to generate its excited state (PC-A*), which is sub-

sequently oxidized by the molecular oxygen (single-electron
process) to afford PC-A·, along with the generation of superox-

Table 2. The scope of acylation of azobenzenes with a-oxocarboxylic
acids.[a,b]

[a] Reaction conditions: 1 (0.20 mmol), 2 (0.24 mmol), Pd(TFA)2

(5.0 mol %), PC-A (2.0 mol %), 1.5 W blue LED, and toluene (2.0 mL) at
room temperature in air for 16 h. [b] Isolated yield.

Scheme 2. Intermolecular competing experiments.
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ide anion C. Meanwhile, a single-electron oxidation of 2 a by
the formed PC-A· regenerates ground-state photocatalyst PC-A
for the next run, and generates the corresponding carboxyl
radical species, which undergoes the decomposition to from

the critical benzoyl radical species B, along with extrusion of

CO2 (for FTIR analysis of the resulting CO2 gas, see the Support-
ing Information). On the other hand, Pd catalytic cycle can be

initiated by a C¢H activation of the azobenzene to form the
palladacyclic intermediate E. Palladacycle E then reacts with

acyl radical B, generated from the decomposition of 2 a in situ,

to afford PdIV or PdIII species F.[3a, 11] The reductive elimination of
F leads to the desired acylated product 3 a and generates the

PdI intermediate G, which is reoxidized by superoxide anion C
to regenerate PdII catalyst to complete the catalytic cycle

along with the formation of O2
2¢ (D) and H2O2.

To support the generation of superoxide radical anion C
(O2

¢·) in proposed mechanism, 5,5-dimethyl-1-pyrroline-N-

oxide (DMPO) was used as a probe to capture the active spe-
cies.[12a,c] As shown in Figure 1, when a toluene solution of

Table 3. The scope of acylation of azoxybenzenes with 2-oxo-2-phenyl-
acetic acid.[a,b]

[a] Reaction conditions: 4 (0.20 mmol), 2 a (0.24 mmol), Pd(TFA)2

(5.0 mol %), PC-A (2.0 mol %), 1.5 W blue LED, and DCE (2.0 mL) at room
temperature in air for 20 h. [b] Isolated yield.

Scheme 3. Preliminary mechanistic study.

Scheme 4. Plausible reaction mechanism.
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DMPO, 2 a, and PC-A was without the blue LED irradiation, no

signal was detected (Figure 1 a). In contrast, when the same so-
lution was under the blue LED irradiation, a signal of trapped

radical O2
¢· was clearly observed (Figure 1 b). It revealed that

the superoxide radical anion (O2
¢·) is generated from the mo-

lecular oxygen by single-electron transfer (SET)[5d,e,h, 12] under
the present reaction conditions.

In summary, this communication describes a mild and gener-

al approach combined with palladium catalysis and visible-
light photocatalysis for the C¢H acylation of azo- and azoxy-

benzenes with a-keto acids. The use of a catalytic amount of
the photoredox catalyst under the irridation of 1.5 W blue LED

avoids a typical high loading of external oxidant. This transfor-
mation, performed at room temperature, made the acylation

of azo- and azoxybenzenes with a wide spectrum of substrates

and reagents. Further investigations on the combination of or-
ganic dyes as photocatalyst with transition-metal catalysts in

organic transformations are currently underway in our labora-
tory.

Experimental Section

Typical procedure for the acylation of azoxybenzenes

A mixture of azobenzene (1 a, 36.4 mg, 0.20 mmol), 2-oxo-2-phe-
nylacetic acid (2 a, 36 mg, 0.24 mmol), Pd(TFA)2 (3.3 mg,
0.01 mmol), and 9-mesityl-10-methylacridinium perchlorate (PC-A ;
1.6 mg, 0.004 mmol) was dissolved in toluene (2.0 mL) in a 10 mL
oven-dried reaction vessel equipped with a magnetic stirring bar.
The reaction vessel was irradiated using 1.5 W blue LED for 16 h at
room temperature under air. After the reaction was completed, the
resulting mixture was extracted with EtOAc (2 Õ 5.0 mL). The organ-
ic layers were combined, dried over Na2SO4, and concentrated to
yield the crude product, which was further purified by flash chro-
matography (silica gel, ethyl acetate/petroleum ether 1:50, v/v) af-
fording the desired product 3 aa as a yellow liquid (44.6 mg, 78 %
yield).
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