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ABSTRACT: Reduction of the three-coordinate iron(III) imido [Ph2B(
tBuIm)2FeNDipp] (1) affords [Ph2B(

tBuIm)2Fe
NDipp][K(18-C-6)THF2] (2), a rare example of a high-spin (S = 2) iron(II) imido complex. Unusually for a late metal imido
complex, the imido ligand in 2 has nucleophilic character, as demonstrated by the reaction with DippNH2, which establishes an
equilibrium with the bis(anilido) complex [Ph2B(

tBuIm)2Fe(NHDipp)2][K(18-C-6)THF2] (3). In an unusual transformation,
formal insertion of iPrNCNiPr into the FeN(imido) bond yields the guanidinate [Ph2B(

tBuIm)2Fe(
iPrN)2CNDipp][K(18-

C-6)THF2] (4). Reaction of 4 with excess DippNH2 provides 3, along with the guanidine (iPrNH)2CNDipp. As suggested by
these stoichiometric reactions, 2 is an efficient catalyst for the guanylation of carbodiimides, converting a wide range of aniline
substrates under mild conditions.

As dictated by relative d-orbital energies, nucleophilic
imido ligands are typically associated with early transition

metals.1−3 As a result, the reactivity of early transition metal
imido complexes is often distinct from that of their late metal
congeners, which are usually more electrophilic. For example,
the [2 + 2] cycloaddition between an MNR bond and an
unsaturated substrate hinges on the nucleophilicity of the
imido ligand, making it a characteristic reaction of early metal
imidos,3 but rarely observed for late metals.
The [2 + 2] cycloaddition reaction forms the basis of a range

of useful catalytic transformations for early metal imido
complexes, including alkyne carboamination,4,5 alkyne hydro-
amination,6,7 and the assembly of pyrroles from alkynes and
amines.7,8 Despite this utility, these catalysts often have limited
substrate scope, which may be partly related to the Lewis
acidity of the early transition metal. For example, catalytic
pyrrole formation by Ti-catalyzed [2 + 2 + 1] reactions fail for
alkynyl esters and tethered alkyl ethers, likely due to the
oxygen donors blocking access to the oxophilic metal.9

Building on our insights from iron catalyzed alkene
isomerization,10 we hypothesize that this limitation can be
addressed by high spin late metal imido catalysts that weakly
bind Lewis basic functional groups. While there are now
multiple examples of isolable high spin late transition metal
imido complexes,11−23 [2 + 2] cycloadditions involving these
complexes are rare. Indeed, only a limited number of
stoichiometric [2 + 2] reactions have been observed, including
for the low spin complexes [(IMes)Fe(NDipp)2],

24

[(PMe3)3CoNDipp],25 and [(tBu2PCH2CH2P
tBu2)Ni

NR]26 (Scheme 1). In addition, the noble metal imido
complexes [Cp*IrNtBu]27 and [(tBu2PCHCHNCH
CHPtBu2)IrNtBu]28 have been reported to undergo [2 + 2]
reactions with heterocumulenes. To the best of our knowledge,
there are no examples of [2 + 2] catalysis involving late metal
imido complexes.

This paper reports a rare example of a high-spin iron(II)
imido complex [Ph2B(

tBuIm)2FeNDipp][K(18-C-6)THF2]
(2). This complex has nucleophilic character at the imido
ligand and reacts with a carbodiimide to yield a guanidinate
complex, likely via a formal [2 + 2] cycloaddition reaction. The
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Scheme 1. Selected Examples of [2 + 2] Cycloaddition
Reactions Involving Late Transition Metal Imido
Complexes
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stoichiometric reactivity establishes 2 as a catalyst for
carbodiimide guanylation, which occurs for a range of
substrates and under mild conditions.
The dark green iron(III) imido complex Ph2B(

tBuIm)2Fe
NDipp (1) is formed in 66% yield from the reaction of iron(I)
complex Ph2B(

tBuIm)2Fe(η
6-toluene)29 with 1 equiv of

DippN3 (Scheme 2). The molecular structure of 1, as
determined by single crystal X-ray diffraction (Figure S1),
reveals a trigonal planar iron center (sum of angles = 359°)
with the Fe−N (1.708(2) Å) bond distance and Fe−N−C
angle (172.3(2)°) that are comparable to three-coordinate S =
3/2 iron(III) imido complexes.30−35 The solution magnetic
moment, as determined by Evans’ method (μeff = 4.2(2) μB),
combined with the zero-field 57Fe Mössbauer spectrum (δ =
0.25 mm/s and ΔEQ = 1.32 mm/s at 200 K), supports the S =
3/2 iron(III) formulation.
Complex 1 is readily reduced by KC8 in the presence of 18-

crown-6 to provide red [Ph2B(
tBuIm)2FeNDipp][K(18-C-

6)THF2] (2) in 80% yield (Scheme 2). Complex 2 crystallizes
with two independent molecules in the asymmetric unit, both
of which have similar bond metrics.36 The solid-state
molecular structure of 2 reveals an anionic iron imido complex
in which the trigonal planar iron center is retained (sum of

angles = 355°, Figure 1). Reduction leads to elongation of the
Fe−N bond (1.779(2) Å), which is over 0.1 Å longer than in
those of four-coordinate (S = 0) iron(II) imido com-
plexes,21,37−39 despite 2 having a lower coordination number.
The Fe−N distance is also longer than that in the two
coordinate (S = 2) iron(II) imido complex [(IPr)Fe(NArTrip)]
(ArTrip = 2,6-bis(2′,4′,6′-triisopropylphenyl)-phenyl)
(1.7151(16) Å).21 These structural data suggest a high spin
(S = 2) iron(II) formulation for 2. Indeed, the Fe−C(carbene)
bond distances in 2 (2.077(3)−2.087(2) Å) are similar to
other S = 2 iron(II) bis(carbene)borate complexes.10,29,40−42

The zero-field 57Fe Mössbauer spectrum supports the
oxidation and spin state assignment, with spectral parameters
(δ = 0.46 mm/s and ΔEQ = 1.45 mm/s at 80 K) that compares
well with the three-coordinate S = 2 iron(II) complexes
[LFeCH3]

43 (L = β-diketiminate, δ = 0.48 mm/s and ΔEQ =
1.74 mm/s at 4.2 K), [Ph2B(

tBuIm)2FeCH2
tBu]10 (δ = 0.34

mm/s and ΔEQ = 1.41 mm/s at 80 K) and [(IPr2Me2)Fe(σ-
CPhCPh2)2]

44 (δ = 0.33 mm/s and ΔEQ = 2.20 mm/s at
200 K).45 As expected for this spin state, the solution 1H NMR
spectrum is paramagnetically shifted, and the Evans’ solution
magnetic moment (μeff = 5.0(1) μB) is consistent with S = 2
iron(II). In contrast to 1, complex 2 is insoluble in nonpolar

Scheme 2. Synthesis and Reactivity of Iron(II) Imido Complex 2

Figure 1. Molecular structures of complexes 2−4, as determined by single crystal X-ray diffraction. Ellipsoids are shown at 50% probability level.
Counterions, solvent molecules and most hydrogen atoms are omitted for clarity. Pink, dark gray, orange, and blue ellipsoids represent boron,
carbon, iron, and nitrogen atoms, respectively.
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solvents such as pentane and toluene, consistent with its ionic
formulation.
The electronic structure of the anionic iron complex in 2 has

been probed by DFT calculations (B3LYP/def2-TZVP/SVP).
Structural optimization of the full complex provides bond
metrics that reproduce those found in the solid-state structure
(Table S2). Natural orbital analysis of the electronic structure
reveals doubly occupied orbitals with significant σ- and π-
bonding character between iron and the imido ligand (Figure
2, Figure S48). The highest, singly occupied orbitals have

iron−nitrogen π* character, which serves to decrease the
multiple bond character of the iron−nitrogen bond. The
remaining singly occupied orbitals are predominantly iron
based (Figure S48). As a consequence of this electronic
structure, the computed spin density is mainly located on the
iron center (Mulliken spin density +3.58), with non-negligible
spin density (+0.22) on the imido nitrogen atom (Figure S47).
In light of the negative charge on the complex, we

anticipated that the imido ligand in 2 to have nucleophilic
character. In accord with this expectation, 2 reacts with 1 equiv
of DippNH2 to provide yellow [Ph2B(

tBuIm)2Fe(NHDipp)2]-
[K(18-C-6)THF2] (3) in 88% yield (Scheme 2). The
molecular structure of 3, as determined by single crystal X-
ray diffraction (Figure 1), reveals a four-coordinate iron center
(τ = 0.9)46 bound by the bis(carbene)borate ligand and two
anilido ligands.47 The Fe−C (2.133(2) and 2.125(2) Å) and

Fe−N bond distances (2.050(2) and 2.024(2) Å) are similar to
those in related S = 2 iron(II) complexes.48 The 57Fe
Mössbauer spectral parameters (δ = 0.76 mm/s and ΔEQ =
3.13 mm/s at 80 K) also support the S = 2 iron(II)
formulation. The complex has also been characterized in
solution by 1H NMR spectroscopy and Evans’ magnetic
moment (μeff = 5.4(2) μB). Complex 3 can be independently
synthesized by reaction of the iron(II) chloride complex
[Ph2B(

tBuIm)2FeCl(THF)]
29 with 2 equiv of DippNHK in

the presence of 18-crown-6.
Interestingly, DippNH2 can be clearly observed in the 1H

NMR spectrum of crystalline samples of 3, suggesting the
equilibrium:

⇆ +3 2 H NDipp2

Using mesitylene as the internal standard, the equilibrium
constant was determined by 1H NMR spectroscopy to be Keq
≈ 8 × 10−3 mol/L at room temperature. While common for
early metal complexes,49−51 the formation of an imido ligand
by amine loss from the corresponding diamido complex is
unusual for iron.39,52

The evidence for a nucleophilic imido ligand in 2 prompted
us to investigate its activity toward substrates known to be
active in [2 + 2] cycloaddition reactions. In an initial
demonstration, we find that 2 reacts with equimolar iPrN
CNiPr to provide the yellow complex [Ph2B(

tBuIm)2Fe-
(iPrN)2CNDipp][K(18-C-6)THF2] (4) in 92% yield (Scheme
2). The molecular structure of 4 reveals a four-coordinate iron
center (τ = 0.8)46 that is coordinated by the bis(carbene)-
borate and a newly formed guanidinate ligand (Figure 1). The
Fe−N (2.031(2) and 1.998(2) Å) and Fe−C (2.126(2) and
2.119(2) Å) bond distances are similar to those for S = 2
iron(II) complexes.48 The S = 2 assignment is further
supported by the zero-field 57Fe Mössbauer spectrum (δ =
0.62 mm/s and ΔEQ = 4.20 mm/s at 80 K). The complex has
also been characterized in solution by 1H NMR spectroscopy
and Evans’ magnetic moment (μeff = 5.0(1) μB).
The molecular structure of 4 can be described as the result

of iPrNCNiPr insertion into the iron imido bond. This
contrasts with early transition metal imido complexes, which
react with carbodiimides to provide the corresponding [2 + 2]
azametallocyclobutanes.3,53 Nonetheless, the formation of 4
can be rationalized according to a reaction sequence in which
an initial formal [2 + 2] cycloaddition reaction between 2 and
iPrNCNiPr is followed by [1,3]-Fe migration.54 It is
worth noting that, with the exception of [(IMes)Fe-
(NDipp)2],

24 iron imido complexes are typically unreactive
toward carbodiimides. Indeed, carbodiimides are often formed
as the products of nitrene transfer from iron imido complexes
to isonitriles.31

As expected from the equilibrium between 3 and 2, complex
4 can also be formed from the reaction of 3 with excess iPrN
CNiPr. Moreover, 3 is formed from the reaction of excess
DippNH2 with 4, which also provides equimolar N-2,6-
diisopropylphenyl-N′,N″-diisopropylguanidine, as character-
ized by 1H NMR spectroscopy and GC-MS.
Together, the stoichiometric reactions suggest 2 as a catalyst

for carbodiimide guanylation. Guanidines find widespread
application, e.g. building blocks toward complex organic
compounds, superbase catalysts and versatile supporting
ligands.55,56 We observe smooth conversion of equimolar
iPrNCNiPr and DippNH2 to N-2,6-diisopropylphenyl-
N′,N″-diisopropylguanidine in the presence of 5 mol % 2, with

Figure 2. Selected orbitals showing the FeN σ and π interactions
that are in the C−Fe−C plane; (a) π* HOMO; (b) π-bonding
HOMO−6; (c) σ-bonding HOMO−7. Natural orbitals shown with
isodensity = 0.05.
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complete conversion occurring over hours at room temper-
ature. More generally, 2 catalyzes the room temperature
formation of a variety of guanidines from both iPrNCNiPr
and CyNC=NCy (Table 1). We observe that anilines
bearing both electron-withdrawing and electron-donating
substituents are active in the reaction. Even anilines with
potentially coordinating groups are successful substrates for the
reaction. In all cases, high isolated yields of the guanidine
products are obtained. It worth noting that 1 does not catalyze
these guanylation reactions under the same conditions.
In addition to the remarkable substrate scope, the mild

conditions of the catalytic guanylation reaction are notable.
While a number of early transition metal imido complexes have
been reported to catalyze the guanylation of carbodiimides,
heating is required to drive most of these reactions.6,53,57,58 It is
also worth noting that while the simple iron salts have been
reported to catalyze certain guanylation reactions, this is only
above 120 °C, with no activity at lower temperatures.59 The
nature of the catalytically active species in these reactions is
unknown. By contrast, 2 catalyzes the guanylation reaction at
room temperature, even for very bulky substrates (e.g.,
DippNH2).
In accord with the stoichiometric transformations described

above, both 3 and 4 catalyze the guanylation of iPrNC
NiPr by DippNH2. However, the rate of reaction is notably
slower when 3 is used as the catalyst, with full conversion only
occurring after 48 h at room temperature. This suggests that
catalysis is initiated by the formation of 2 from 3. In addition,
no catalysis by 2 is observed for a 20:1 mol ratio of DippNH2
to iPrNCNiPr, suggesting that the carbodiimide does not
insert into the Fe−N bonds of 3.
Based on our observations, we propose a catalytic cycle for

carbodiimide guanylation (Scheme 3). Starting from imido A,
the carbodiimide inserts into the FeN bond to provide B.
Subsequent reaction with 1 equiv of ArNH2 provides

intermediate C. From here, there are two possible routes to
the guanidine product. In path a, internal proton transfer in C
releases the guanidine while regenerating A. In path b, C is
protonated by another equivalent of ArNH2 to form
bis(anilido) D concomitant with guanidine release. The
imido complex A is then regenerated by the proton transfer
equilibrium involving ArNH2. Since the rate of catalysis is
slower when 3 is used as the catalyst instead of 2 or 4, this
suggests that path a is more likely. We have so far been unable
to prepare C, as the reaction of 4 with 1 equiv of DippNH2
results in 50% conversion to 3.
In summary, we have isolated a rare example of a high-spin

(S = 2) iron(II) imido complex. The imido ligand has
properties that are more akin to early metal imido complexes,
including nucleophilic character, as demonstrated by the
proton transfer reaction with DippNH2 and a carbodiimide
insertion reaction, which likely involves a formal [2 + 2]
cycloaddition reaction. The imido complex is an efficient
catalyst for the guanylation of carbodiimides, providing high
yields of product under mild conditions. The broad substrate
scope demonstrates the advantageous properties of a high spin,
late metal imido complex for this catalytic reaction.
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