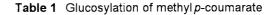
1627

Highly Efficient β-Glucosylation of the Acidic Hydroxyl Groups, Phenol and Carboxylic Acid, with an Peracetylated Glucosyl Fluoride Using a Combination of BF₃·Et₂O and DTBMP as a Promoter

Kin-ichi Oyama, Tadao Kondo

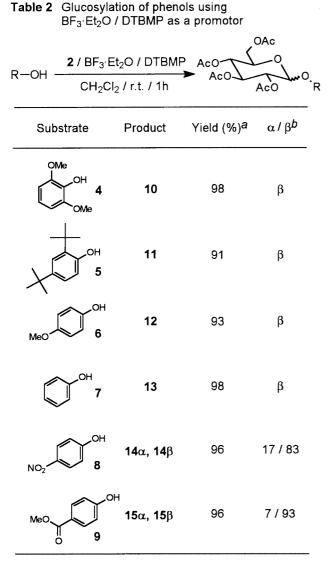

Chemical Instrument Center, Nagoya University, Chikusa, Nagoya 464-8602, Japan Fax +81-52-789-3062; E-mail: tkmail@cic.nagoya-u.ac.jp *Received 22 July 1999*

Abstract: A combination of $BF_3 \cdot Et_2O$ and DTBMP was established to be an efficient promoter of β -glucosylation of both phenols and carboxylic acids with a peracetylated glucosyl fluoride (**2**). This new method achieved remarkably high yields and β -selectivity.

Key word: phenyl glucoside, 1-acylglucose, BF_3 ·Et₂O, 2,6-di-*tert*butyl-4-methylpyridine, peracetylated glucosyl fluoride

Aryl β -glucosides and acyl β -glucosides are widely found in natural products such as anthocyanin, flavonoids, polyphenols and antibiotics and play key roles in the expression of important biological functions.^{1,2,3} However, in spite of a number of methods reported in the literature,⁴ glucosylation methods for hindered or low-nucleophilic phenols, substituted with electron-withdrawing groups, are not always satisfactory in terms of yield, stereoselectivity or convenience.^{3,4a} For example, in the case of lownucleophilic phenols, the Koenigs-Knorr reaction using a glucosyl bromide or chloride predominantly gives an orthoester or its transformed 1-hydroxy sugar, but only a small amount of glucosides.^{4e} Though peracetylglucosyl fluoride (2) is very stable and effective for 1,2-trans- β glucosides,^{4b,c} it is not suitable as a sugar donor because of its low reactivity.⁵ Yamaguchi have approached the problem of glucosylation of phenols using BF₃·Et₂O / 1,1,3,3tetramethylguanidine (TMG) as a promoter.⁶ A Lewis acid-and-base promotion system has been the subject of our attention.

We have thereby developed a very efficient β -glucosylation methodology for phenols and carboxylic acids by peracetylated glucosyl fluoride (2), using a combination of a Lewis acid and highly hindered base, BF₃·Et₂O and 2,6di-tert-butyl-4-methylpyridine (DTBMP). Initially, methyl p-coumarate (1), a low-nucleophilic phenol, was selected as a glucosyl acceptor for the screening of the Oglucosylation promoters (Table 1).⁷ BF₃·Et₂O specifically enhanced its reaction to give the glycoside (in 37% yield, 3α predominated over 3β)⁶ in spite of being base-free, whereas other Lewis acids, such as TiCl₄, TMSOTf, and SnCl₄, afforded no glucosyl-products. Using CH₃CN as the solvent and BF₃·Et₂O as the Lewis acid in the presence of DTBMP, the reaction gave 3 in 80% yield. However, the glucosylation with TMG and 2,6-lutidine gave 3 in 68% and 32%, respectively. With the addition of the base, β -glucosides predominated. The changing of the solvent from CH₃CN to CH₂Cl₂ improved the yield of the glucoside from 80% to 92% (Table 1). However, this reaction is not applicable to the glucosylation of simple alcohols.⁸

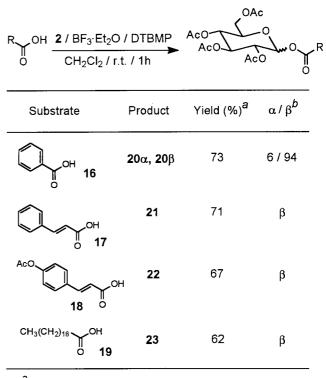

$\sim \sim \gamma$	AcO AcO $BF_3 \cdot Et_2O$ r.t. / 1h		ΟΛκ 3α, 3β
Base	Solvent	Yield (%) ^a	α / β ^b
TMG	CH3CN	68	5 / 95
none	CH₃CN	37	79 / 21
2,6-lutidine	CH3CN	32	7 / 93
DTBMP	CH3CN	80	4 / 96
DTBMP	CH ₂ Cl ₂	92	6 / 94

^a Isolated yield.

 $^{b}\alpha/\beta$ Ratio was determined by ¹H NMR spectra or isolation.

It was reported that phenols with electron-donating groups showed high β -selectivity⁶ and electron-withdrawing group retard the reaction.^{4a} Thus, the high yield and high β -selectivity might be realized by the increasing the nucleophilicity of the phenols by formation of the naked phenolic hydroxyl anion with the hindered base (DT-BMP). Also, high β -selectivity might be realized by the SN2-type process or the neighboring group participation of the carbonyl oxygen at the C2. Less hindered pyridines such as 2,6-lutidine may directly coordinate Lewis acid, so that the reactivity is reduced.

The phenols substituted with electron-donating groups selectively gave β -glycosides (Table 2). Furthermore, in spite of hindered phenols, both **4** and **5** gave high yields and complete β -selectivity. The phenols substituted with electron-withdrawing groups, **8** and **9**, also predominantly gave β -glucosides (Table 2).


a Isolated yield.

 $b_{\alpha/\beta}$ Ratio was determined by ¹H NMR spectra.

This new method also proved applicable for β -selective acylation of the anomeric position of glucose (Table 3). Some 1- β -acylglucopyranoses are well-known to be very important in the biosynthetic pathway.² For instance, it is well-known that ellagitannin^{2a} is a secondary plant metabolite and all the hydroxyl groups of the sugar moiety are acylated. The peracetylated glucosyl fluoride (**2**) reacted with aromatic or aliphatic carboxylic acids in the presence of the combination of BF₃·Et₂O and DTBMP to afford 1-acylglucopyranose, with the β isomer predominating.

Finally, our attention was directed to estimation of the difference of the reactivity of phenolic hydroxyl group and carboxylic acid. In order to examine the rates of *O*-glucosylation and 1-acylation, a 1 : 1 mixture of **1** and **18** was

Table 3Glucosylation of carboxylic acid using $BF_3 \cdot Et_2O$ / DTBMP as a promotor

^a Isolated yield.

 ${}^{b}\alpha\beta$ Ratio was determined by 1 H NMR spectra.

treated with 2, $BF_3 \cdot Et_2O$ and DTBMP. This reaction gave 3 and 22, 73% and 10%, respectively.⁹ Therefore, phenyl glucoside was formed in preference to the glucosyl ester with this new method.

In conclusion, a combination of $BF_3 \cdot Et_2O$ and DTBMP have proved to be a highly effective promoter for the β glucosylation of phenols and carboxylic acids.

Acknowledgement

This work was supported by the Grants-in-Aid for Scientific Research (COE) No. 07CE2004 and Scientific Research on Priority Area No. 10169224 from the Ministry of Education, Science, Sports, and Culture of Japan, as well as a Grant-in-Aid from the Ministry of Agriculture, Forestry, and Fisheries of Japan.

References and Notes

- (a) Harborne, J. B. (Ed.); *The Flavonoids*, Advances in Research since 1986, Chapman and Hall, London **1994** (b) Goto, T.; Kondo, T. *Angew. Chem. Int. Ed. Engl.* **1991**, *30*, 17.
- (2) (a) Feldman, K. S.; Sahasrabudhe, K. J. Org. Chem. 1999, 64, 209. (b) Smith III, A. B.; Hale, K. J.; Rivero, R. A. *Tetrahedron Lett.*, 1986, 27, 5813.
- (3) (a) Thompson, C.; Ge, M.; Kahne, D. J. Am. Chem. Soc. 1999, 121, 1237. (b) Nicolaou, K. C.; Mitchell, H. J.; Jain, N. F.; Winssinger, N.; Hughes, R.; Bando, T. Angew. Chem. Int. Ed. Engl. 1999, 38, 240. (c) Dushin, R. G.; Danishefsky, S. J. J. Am. Chem Soc. 1992, 114, 3471.

- (4) (a) Matsumoto, T.; Katsuki, M.; Suzuki, K. *Chem. Lett.* 1989, 437. (b) Toshima, K.; Tatsuta, K. *Chem. Rev.* 1993, 93, 1503. (c) Shimizu, M.; Togo, H.; Yokoyama, M. *Synthesis* 1998, 799 (d) Yamanoi, T.; Fujioka, A.; Inazu, T. *Bull. Chem. Soc. Jpn.* 1994. 67, 1488. (e) Müller, H.; Tschierske, C. *J. Chem. Soc., Chem. Commun.* 1995, 645. (f) Lewis, P.; Kaltia, S.; Wähälä, K. *J. Chem. Soc. Perkin Trans. 1* 1998, 2481. (g) Kasai, K.; Okada, K.; Yamaji, N. *Chem. Pharm. Bull.* 1995, 43, 266.
- (5) (a) Mootoo, D. R.; Konradsson, P.; Udodong, U.; Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 5583. (b) Fraser-Reid, B.; W, Zufan.; Udodong, U. E.; Ottosson, H. J. Org. Chem. 1990, 55, 6068.
- (6) Yamaguchi, M.; Horiguchi, A.; Fukuda, A.; Minami, T. J. Chem. Soc. Perkin Trans. 1 **1990**, 1079.
- (7) All reactions were carried out by use of the following equivalency: 1/2 / BF₃·Et₂O / base = 1 / 1.5 / 4 / 4.
- (8) Using cyclohexanol, a β-phenethyl alcohol, as a glucosyl acceptor, the corresponding glucosyl products were not afforded.

- (9) This reaction was carried out with the following equivalency: $1 / 18 / 2 / BF_3 \cdot Et_2O / DTBMP = 1 / 1 / 1 / 4 / 4.$
- (10) Typical experimental procedure: To a mixture of phenol (0.1 mmol, 9 mg), 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl fluoride (0.15 mmol, 52 mg) and 2,6-di-*tert*-butyl-4methylpyridine (0.4 mmol, 82 mg) in CH₂Cl₂ (2 ml) was added BF₃·Et₂O (0.4 mmol, 0.05 ml) at room temperature. After the reaction mixture had been stirred for 1 h at room temperature, saturated aqueous NaHCO₃ was added. The aqueous layer was extracted with CH₂Cl₂ and the organic extracts were dried over anhydrous MgSO₄, filtered and concentrated. The residue was purified by silica gel column chromatography (Hexane-AcOEt 1 : 1) to afford phenyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside (41 mg, 98 %).

Article Identifier:

1437-2096,E;1999,0,10,1627,1629,ftx,en;Y15199ST.pdf