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A Continuously Regenerable Chiral Ammonia Borane for

Asymmetric Transfer Hydrogenations

Qiwen Zhou,®" Wei Meng,® Jing Yang,*" and Haifeng Du*®

Abstract: A novel chiral ammonia borane was designed and
developed via the dehydrogenation of ammonia borane with chiral
phosphoric acid, which was highly effective for the asymmetric
transfer hydrogenation of imines and 3-enamino esters to afford high
levels of reactivities and enantioselectivies. Significantly, this chiral
ammonia borane can be continuously regenerated during the
transfer hydrogenation with the assistance of water and ammonia
borane, which allowed as low as 0.1 mol % of chiral phosphoric acid
to give satisfactory results. Notably, the role of chiral phosphoric acid
is to produce the chiral ammonia borane.

Ammonia borane (NH;-BH3) has received substantial attention
due to its unique features including low molecular weight, high
hydrogen capacity, nice stability, and ready availability. Great
progress has been achieved for its application as a solid
hydrogen storage material."! In contrast, its use as the direct
hydrogen source for reductions has been relatively less
investigated.” Various metal-catalyzed or metal-free transfer
hydrogenations have been reported.”! Interestingly, Berke and
co-workers discovered a catalyst-free transfer hydrogenation of
aldimines with ammonia borane via concerted double hydrog n
transfers (Figure 1). ™ However, asymmetric
hydrogenations with ammonia boranes have lagged behi
1984, Williams and co-workers utilized a chiral complex of
ammonia borane and 18-crown-6 as a stoichiometric re
asymmetric reductions of ketones to give up to 67%
1).! Very recently, our group developed a frustrate
(FLPY®'  of (R)-tert-butylsulfinamide and

asymmetric transfer hydrogenations of imines'”
borane as a hydrogen source for regeneration
catalyst (Figure 1).®! The development of highly effi
enantioselective transfer hydrogenations is still in great dem

Inspired by the work of Williams and Berke, it is
probable and desirable to develop a re
borane for asymmetric transfer hyd
formidable challenge lies in how to
borane and how to make this chiral

regenerable during the reaction grocess.
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Scheme 1. Strategy for Developing Regenerable Chiral Ammonia Boranes.

CPA 1a (10 mol %) was initially subjected to the transfer
hydrogenation of imine 3a with ammonia borane in toluene
(Scheme 2). It was pleased to find that the addition of water (1.0
equiv) could improve both reactivity and enantioselectivity.
Imines 3b-e with different N-protecting groups were further
examined, and 3,5-di(trifluoromethyl)phenyl group (3e) proved to
be the optimal one to give 79% ee (Scheme 3). CPAs 1b-f were
next evaluated for the transfer hydrogenation of imine 3e.
Substituents at the 3,3’-positions of binaphthyl frameworks had a
large impact on the ee values. To our delight, 93% ee with 94%
conversion was obtained with the use of CPA 1f (Scheme 3).

NPh 1a (10 mol %) H NHPh
Ph NHg-BH3 (1 00 equiv) Ph
3a toluene, 30 °C, 12 h 4a
without H,O

87% conv.
(33% ee)

e P\

O OH with Hy,O (1.0 equiv)

>99% conv.
(39% ee)

SiPh,
OO o_.0

Scheme 2. Initial Studies on Transfer Hydrogenation.
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' 1 (10 mol %) Ar
N’ NH3-BH3 (1.0 equiv) HN’

|
Ph)*\

Ph H,0 (1.0 equiv)
3 toluene, 30 °C, 12 h a
3b: Ar = 4-MeOCgH, 4b: 97% conv. (21% ee)
3c: Ar = 4-CNCgH, with CPA1a  4c: 94% conv. (69% ee)
3d: Ar = 3-NO,CgH, 4d: 97% conv. (67% ee)

3e: Ar = 3,5-(CF3),CeHs 4e: 89% conv. (79% ee)

R for CPA 1 with imine 3e as substrate

E’h
§i—Bu
Ph
1b 1c 1d 1e 1f
93% conv. 60% conv. 93% conv. 94% conv. 94% conv.
(45% ee) (57% ee) (47% ee) (65% ee) (93% ee)

Scheme 3. Screen of Imines and Chiral Phosphoric Acids.

Table 1. Optimization of Reaction Conditions.”!

Entry 1f Solvent H,O Temp. Conv. Ee
[mol %] lequv]  [C] (%" %]

1 10 Toluene 1.0 30 94 93
2 10 n-Hexane 1.0 30 52 88
3 10 CH,Cl, 1.0 30 98

4 10 PhClI 1.0 30 96

5 10 Benzene 1.0 30 >99

6 10 THF 1.0 30

7 10 Toluene 0 30

8 10 Toluene 0.5 30

9 10 Toluene 1.5 30

10 10 Toluene 2.0 30

11 10 Toluene

12 5 Toluene

13 25 Toluene

14 25 Benzene

15 1.0 Benzene

16 0.5 Be k 97

17 0.1 Benza W 89

18 0.1 Benzene 80 ' 95

- G

out with imine .10 mmol) in solvent (0.5 mL)
for 12 h. [b] Determined by e "H NMR. [c] The ee was determined by chiral

HPLC. [d ﬁg‘BHg} (0.5 equi s used.

T transfer hydrogenations of imine
3e with CPA 1f were tly optimized. Various solvents

gave moderate to high conversions with 81-93% ee’s (Table 1,

[a] All reactions were ca

10.1002/anie.201806877

WILEY-VCH

entries 1-6). Toluene and benzene were more suitable solvents.
Significantly, the amount of water had a large influence on both
reactivity and enantioselectivity e 1, entries 1, 7-11).
Without water, only 67% conversion % ee was obtained
(Table 1, entry 7). In contrast, with 1.5 nt of water, a
(Table 1,
of water gave similar
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can be lowered to 0.1
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ntries 16 vs 19).
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(36 h)tel (20 h)idl 0.95 g, 71% (86% ee)(24 h)lcl
(0.56 g, 97% ee, recrystallization)

Scheme 4. Asymmetric Transfer Hydrogenation of Imines, CPA 1f Loading:
[a] 0.1 mol %. [b] 0.5 mol %. [c] 1.0 mol %. [d] 3.0 mol %. [e] 5.0 mol %.

A variety of imines 3e-u were subjected to asymmetric
transfer hydrogenations under the optimal reaction conditions
(Scheme 4). All these reactions proceeded smoothly to give the
corresponding products 4e-u in 76-96% yields with 87-94% ee’s.
The absolute configuration was tentatively assigned as S
according to X-ray structure of compound 4h (see Supporting
Information)."” 1-Cyclohexylethanone-derived imine 40 gave a
promising 87% ee. Imines 3p-r bearing O- or S-heterocycles
were suitable substrates to give amine products 4p-r in 78-89%
yields with 87-94% ee’s. Notably, the transfer hydrogenation of
imines 3s and 3t containing pyridinyl groups with 3 mol % of
CPA 1f gave amines 4s and 4t in high yields with 92% and 87%
ee, respectively. The reaction of imine 3t can be carried out in
gram-scale with 1 mol % of CPA 1f to afford the desired product
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4t in 71% vyield with 86% ee. After a recrystallization in the
mixture of water and methanol, the ee was further improved to
97%. Moreover, imine 3u with 3,5-dimethylphenyl N-protecting
group was an effective substrate to give amine 4u in 84% yield
with 87% ee. Remarkably, a reductive amination of aceto-
phenone (6) and 3,5-dimethylaniline (7) using 5 mol % of CPA 1f
with 4A molecular sieves and isopropanol instead of water, can
be successfully realized in a sequent one pot manner to give the
desired product 4u in 62% yield with 84% ee (Scheme 5).

NH 1f (5.0 mol %), 4A MS  NHg-BH3 (1.0 equiv)
2

benzene, 60 °C, 12 h PrOH (1.5 equiv) H}{\l Me
benzene, 60 °C, 12h  Ph
4u
Me Me

7 62% (84% ee)

Scheme 5. A Reductive Amination in Sequent One Pot Manner.

To extend the usage of this regenerable chiral ammonia
borane, a variety of B-enamino esters 8a-o were examined for
the asymmetric transfer hydrogenation under a slightly modified
reaction conditions (Scheme 6)." To our pleasure, all these
reactions went smoothly to afford B-amino esters 9a-o in 55-
96% yields with 66-94% ee’s. N-protecting groups had li
impact on the enantioselectivity (9a-c).
withdrawing and donating substituents on the phenyl grou
well tolerated for this reaction (9d-k). B-enamino estefs 8n-o
bearing benzyl and cyclohexyl group were also
substrates to give high yields but relatively lower ee’s
B-enamino cyanide 10 was a highly reactive sub
reaction to afford B-amino cyanide 11 in 98% yiel

NHAr 11, mol %) ArHN
H,0 (1.5 equiv) r
—_——— CO,Et
R)\/COZEt NH3-BH3 (1.1 equiv) >\/ 2
8a-0 toluene, 60 °C, 24 h 9a-0

ArHN |
Ph }\/COZEt

9a: Ar = Ph, 78% (92% ee)
9b: Ar = p-tolyl, 83% (92% ee)
9c: Ar = PMP, 87% (92% ee)

PMPHN_ H

PMPHN_ H

N CO,Et
R
=

55% (92% ee)
e, 57% (81% e
62% (91% ee)
eO, 93% (93% ee)
F, 87% (93% ee)

Cl, 84% (91% ee)
MeO, 96% (89% ee)
3,4-(Me0)g, 96% (91% ee)
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Scheme 6. Asymme
Cyanide.
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onducted for a better insight into
this reaction. H, w. pidly when CPA 1f was treated
with ammonia borane (1.0 equiv), to give chiral ammonia borane

10.1002/anie.201806877

WILEY-VCH

2f cleanly (Figure 2b). A stoichiometric reaction of 2f and imine
3e resulted in the appearance of several P-signals which was
attributed to the production of diff -B] species (Figure 2c).
Treating this mixture with water, m hese signals were
converted to that of CPA 1f, but som ignals still left
(Figure 2d). Subsequent addltlon of ane led a
simple signal of chiral am
results indicate that chiral am
and both water and amm
complete regeneratio

a) CPA 1f fL

b) Chiral ammonia borane 2f L

S

4
o CPA 1f
d) Addtion of water (10 eq) A

o 2f
e) Addtion of NH3-BH3 (1.0 eq)

c) 2f + imine Sei

31P NMR (ppm)

NMR Studies on the Transfer Hydrogenation (in benzene at

The hydrogen transfer between chiral ammonia borane 2f
and imine 3e was investigated by DFT calculations. Concerted
mbered ring transition states TS-(R) and TS-(S) were
at the MO06-2X/6-31G(d,p) level (Figure 2). A 1.7
mol activation enthalpy difference in the gas phase predicts
3% ee favored for (S)-isomer. It is highly consistent with the
xperimental result. For imine 3u, the corresponding transition
states were also located, which predicts a similar ee to the
obtained one (see Supporting Information). Moreover, DFT
calculation suggests that both water and ammonia borane can
cleavage the O-B bond to regenerate CPA 1f (see Supporting
Information). But water seems to be a major contributor
according to the obtained experimental results.

TS-(R)
AAH_ = 28.3 Kcal/mol

TS-(S)
AAHZ; = 26.6 Kcal/mol

Figure 3. DFT Calculation for the Hydrogen Transfer Process.
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Based on the experimental and theoretical mechanistic
results, a plausible reaction cycle is outlined in Figure 4. CPA 1
quickly reacts with ammonia borane to release H, and form
chiral ammonia borane 2. Double hydrogen transfers occur via a
concerted 6-membered ring transition state TS-(S) to produce
amine 4 and species 5 (several [N-B] species). A followed 2]
hydrolysis of species 5 through a 4-membered ring transition
state TS1 regenerates CPA 1, which further reacts with

ammonia borane to reform the reactive chiral ammonia borane.
[3]

EO\P//O
NHa-BHya( o NoBHyNH,
H 2 imine 3
2
CO\P//O
0" “oH
1 1
o_ O
HO-[B-N] ( :F’:/ ]
° o\"—"H‘\ F\{\Ar
i 5 f
H,N
EO\P//O,H' -OH z ‘H"N>Ar.
7
0" "0- -[B-N] 1549
™ \ /<
H.O (O\P//O amine 4
2 0" “o[B-N]
5

Figure 4. Plausible Reaction Cycle.

In summary, a novel and regenerable chiral amfhonia
borane was developed via a H; releasing reaction of agimonia
borane and chiral phosphoric acid, which was a highl
reductive reagent for asymmetric transfer hydrog
wide range of amines and B-amino esters were o
96% yields with 66-94% ee’s. Significantly, this
borane can be efficiently and continuously re
the transfer hydrogenation with the assistance o
ammonia borane, which allowed as low as 0.1 mol % 0O
phosphoric acid to give satisfactory reactivities
enantioselectivities. Notably, herein, chiral phosphoric
played a role as a simple Bronsted acig to generate the rea
chiral ammonia borane. Mechanisti
hydrogen transfer between chiral
occurs via a concerted 6-membered ring
unique features of this chiral, ammonia bor
potentially useful chiral reage, r other asymme
hydrogenations.
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