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Abstract: We report here a concise synthesis of a-amino cyclic boronates via multicomponent coupling of
readily available salicylaldehydes, amines, and B,(OH),. The process can be carried out at room
temperature in ethanol, does not require catalysts or additives, and is easy to scale up. Aminals and

ligated boroxines are intermediates in this reaction.

Organoboron compounds have numerous applications in organic synthesis, pharmaceuticals and
functional materials." In particular, a-aminoboronic acids and their derivatives are important due to their
roles as bio-active agents, functional materials, and synthetic building blocks.? For example, a-amino
cyclic boronate A, and its macrocyclic derivative B, are HCV NS3 serine protease inhibitors (ICs 23 nM
and 43 nM, respectively) (Scheme 1).3 Vaborbactam, approved by the FDA in 2017, is a B-lactamase
inhibitor based on a cyclic boronic acid pharmacophore. It has been used in trials investigating the
treatment of bacterial infections in subjects with varying degrees of renal insufficiency (Scheme 1, C).4
Taniborbactam is a new-generation cyclic boronate B-lactamase inhibitor, which has a unique

broad-spectrum activity, covering both serine-B-lactamases and metallo-B-lactamases (Scheme 1, D).5
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Scheme 1 Examples of enzyme inhibitors possessing an a-amino cyclic boronate motif.

The therapeutic potential of a-amino cyclic boronates provides a driving force to develop and refine
efficient and green methods for their synthesis. However, compared with their non-cyclic derivatives,®
relatively few methods are available for the preparation of a-amino cyclic boronates. Traditional synthetic
methods are based on multi-step reactions, including Ir-catalysed borylation, Matteson’s boronic ester
homologation, nucleophilic amination, cyclization, etc. (Scheme 2a).#¢7 In 2017, Parra, Tortosa and
coworkers synthesized a series of chiral a-aminoboronic esters by a Cu-catalysed asymmetric
hydroboration of 8-amidoacrylates. With these borylated products in hand, hemiboronates were prepared
by hydrolysis of the pinacol boronic ester, and an N-Boc protected derivative was transformed into a
primary a-aminoboronate (Scheme 2b).2 These useful methods require harsh conditions, multi-step
procedures, and/or metal catalysts. Additionally, the starting materials usually require several steps to
prepare. Thus, development of efficient and versatile chemical transformations for synthesizing a-amino

cyclic boronates from readily available starting materials is highly desirable.

Aldehydes and amines have been widely utilised in multicomponent Mannich, Strecker, and Petasis
reactions, efc., and are ideal starting materials as they are abundant, inexpensive and readily available
from commercial suppliers. Bypassing the isolation of imine or iminium intermediates increases the

product scope, reduces the number of steps, and is thus more economical and sustainable.
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b) Parra and Tortosa’s protocol to synthesize a-amino cyclic boronates.?
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c) Catalyst- and additive-free synthesis of a-amino cyclic boronates via multicomponent coupling (this

work).
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Scheme 2 Previously reported methods for the synthesis a-amino cyclic boronates, and our method.
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We report here the synthesis of diverse a-amino cyclic boronates via the multicomponent coupling of
commercially available salicylaldehydes, amines, and tetrahydroxydiboron [B,(OH),]. The process is

simple, can be run in a green solvent, and does not require catalysts or additives (Scheme 2c).

Our initial studies showed that a novel ligated boroxine 4a was formed in 24 h, when salicylaldehyde 1a,
morpholine 2a and B,(OH), were mixed in toluene at room temperature (Table 1, Entry 1). Optimisation of
the reaction showed that polar solvents were better than non-polar ones, giving the product in 94%
isolated yield, when CH;CN was used (Entries 2-7). Compound 4a was formed in 93% yield in only 12 h

(Entry 8) and, due to its low solubility in CH;CN, the product can be easily separated via filtration.
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Table 1 The development of optimized conditions for ligated boroxine formation!

@ECHO . [oj . ByOH) conditions
OH o
1a 2a 3
Entry Solvent Time (h) Yield (%)

1 toluene 24 49
2 Et,O 24 38
3 CH,Cl, 24 65
4 THF 24 68
5 EtOAc 24 72
6 acetone 24 89
7 MeCN 24 94
8 MeCN 12 93
9 MeCN 6 72

[a] Reaction conditions: 1a (0.5 mmol), 2a (0.5 mmol, 1.0

equiv), 3 (0.75 mmol, 1.5 equiv), solvent (2 mL), in air at

ambient temperature, with isolated yields of product.

()

OH
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With optimised conditions in hand, the substrate scope was then systematically studied, and the results

are compiled in Scheme 3. Secondary aliphatic amines, including piperidine, pyrrolidine, Bn,NH,

BnMeNH, Me,NH, Et,NH, and "ProNH were suitable substrates for this reaction. Both electron-donating

methyl, methoxy, and t-butyl, and electron-withdrawing bromide and fluoride substituents on the

salicylaldehyde were tolerated (Scheme 3). A convenient gram-scale reaction (10 mmol) of 1a gives 4a in

91% vyield (2.791 g). The structures of the products were exemplified by single-crystal X-ray diffraction

studies of 4a, 4d, and 4p (Figure 1).
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Reaction conditions: 1 (0.5 mmol, 1.0 equiv), 2 (0.5 mmol, 1.0 equiv) and 3 (0.75 mmol, 1.5 equiv) in
MeCN (2 mL) in air at ambient temperature unless otherwise specified, with isolated yields of target

product.

Scheme 3 Substrate scope of synthesis of boroxines.

ZWOOo

Figure 1. Molecular structures of 4a, 4d, and 4p.

Given its low price, low boiling point and low toxicity, ethanol is widely used as a green solvent in organic

synthesis.® With ethanol as the solvent for our reaction, one or both hydroxyls were substituted by EtO-,
5
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as confirmed by NMR spectroscopy and HRMS (Scheme 4 and Figures S7 to S11). However, the
products were formed faster and in higher yields and, after work up with 1IN HCl,, a
View Article Online

benzoxaborole-derived a-amino cyclic boronate was isolated in 79% yield.'%1" As depitted iF*Schemé’s!

a series of a-amino cyclic boronates were prepared via this multicomponent reaction.

O (@)
o o (J CJ
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N r,1h B O
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N Et. . Pr\ .
H-N H-N- —Et
g /
5f, 55% 59, 75% 5h, 69% 5i, 74% 5j, 81%

Reaction conditions: 1 (0.5 mmol), 2 (0.5 mmol, 1.0 equiv) and 3 (0.75 mmol, 1.5 equiv), ethanol (2 mL), in air under
ambient temperature for 1h, then 2 mL 1N HCl,4 was added, with isolated yields of target product.

Scheme 5 Substrate scope of the one-pot synthesis of a-amino cyclic boronates.

To gain insight into the mechanism, the reaction was conducted stepwise, and aminal intermediate 4a’
was formed in 26% vyield immediately upon mixing salicylaldehyde 1a and morpholine 1b in CH3;CN,
confirmed by 'H NMR spectroscopy (Figure S1). Prolonging the reaction time to 12 h did not lead to an
improvement in the yield of 4a’, indicating that the formation of aminals is reversible (Figures S2—S6).
B,(OH), was then added to the reaction mixture, and boroxine 4a was isolated in 92% yield after stirring
for 12 h. Then, 4a was hydrolysed with 1N HCl,, to give a-amino cyclic boronate 5a in 94% yield
(Scheme 6).
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Scheme 6 Stepwise reaction process; the yield of intermediate 4a’ was monitored by 'H NMR
spectroscopy (300 MHz, CDCIj, rt) using 1,3,5-trimethoxybenzene as an internal standard.

The Petasis three-component reaction between an amine, an aldehyde and an organoboron compound,
has evolved into a versatile process for the synthesis of amino acids, amino alcohols, and various
heterocycles.’? Matteson first reported ligand-facilitated trimerisation of arylboronic acids as early as
1962, when they prepared the 1 : 1 pyridine complex of vinylboronic acid anhydride, the boroxine being

generated spontaneously in a high yield.'3
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Scheme 7 Proposed mechanism.

Based on the above, and our observations, we propose the mechanism for this multicomponent coupling
reaction shown in Scheme 7. Salicylaldehyde 1a reacts with morpholine 1b to form aminal intermediate
4a’. The key intermediate B is assembled by formation of iminium ion A, and coordination of its phenolate
oxygen to B,(OH),.'%'# Intramolecular boryl group transfer provides C, the immediate precursor to ligated
a-aminoboronic acid D, which can react with boric acid to give boroxine 4a. Finally, hydrolysis with 1N

HCl,, affords a-amino cyclic boronate 5a.

In conclusion, we have developed a green and economical process for the synthesis of a-amino cyclic
boronates. The desired products can be obtained via a one-step multicomponent reaction from the readily
available starting materials, salicylaldehydes, amines, and B,(OH),. Our protocol has several advantages
over previous routes including mild reaction conditions (room temperature, in air), no catalysts or

additives, easy product isolation, and green solvents (ethanol and water). Further explorations of the

7


https://doi.org/10.1039/d0gc00346h

Published on 05 March 2020. Downloaded on 3/6/2020 12:30:28 AM.

Green Chemistry Page 8 of 10

scope of this multicomponent reaction and applications of the benzoxaborole-derived a-amino cyclic

boronates are currently underway, and will be reported in due course.
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