Unusual room temperature activation of 1,2-dialkoxyalkanes by niobium and tantalum pentachlorides†

Fabio Marchetti,‡^a Guido Pampaloni*^a and Stefano Zacchini^b

Received 17th June 2008, Accepted 8th September 2008 First published as an Advance Article on the web 30th October 2008 DOI: 10.1039/b810210d

The outcome of the reactions of MCl_5 (M = Nb, 1a; M = Ta, 1b) with 1,2-dialkoxyalkanes [i.e. MeO(CH₂)₂OMe (dme), EtO(CH₂)₂OEt, MeOCH₂CH(Me)OMe, MeO(CH₂)₂OCH₂Cl, MeO(CH₂)₂O(CH₂)₂OMe (diglyme)] depends strictly on the stoichiometry. In the 1 : 1 molar ratio reactions, single C-O bond cleavage occurs, resulting in formation of alkyl chloride and of the complexes $MCl_4[O(R)CH(R')CH_2O]$ [M = Nb, R = Me, R' = H, 3a; M = Ta, R = Me, R' = H, 3b; $M = Nb, R = Et, R' = H, 5; M = Nb, R = R' = Me, 6; M = Nb, R = CH_2Cl, R' = H, 7; M = Nb, R = CH_2CL, R' = H, 7; M = Nb, R$ $R = (CH_2)_2O(Me)NbCl_5, R' = H, 8$], which have been characterized spectroscopically. Moreover, minor amounts of the oxo-bridged adducts $MOCl_3$ (M = Nb, 4a; M = Ta, 4b) have been isolated in the reactions involving dme. On the other hand, compounds 1 react with two (or more) equivalents of dme mainly via a multiple C–O bond cleavage process, affording $MOCl_3(dme)$ (M = Nb, 2a; M = Ta, **2b**), 1,4-dioxane and methyl chloride. The oxychloride compounds $MOCl_3$ (M = Nb, **11a**; M = Ta, **11b**) have been efficiently obtained by addition of $TiCl_4$ to 2. Compound 2a is reduced in high yield to the Nb(III) species NbCl₃(dme), **12**, upon treatment with SnBu₃H. The oxychloride NbOCl₃(diglyme), **9**, 1,4-dioxane, CH₃Cl and the hexachloroniobate salt [MeOCH₂CH₂OCH₂CH₂O(H)Me][NbCl₆], 10, have been identified as products of the reaction of **1a** with two equivalents of diglyme. The 1:2 molar ratio reaction of 1a with MeOCH₂CH(Me)OMe gives 2,5-dimethyl-1,4-dioxane. Compound 1a reacts with two equivalents of EtO(CH₂)₂OEt or MeO(CH₂)₂OCH₂Cl yielding Cl(CH₂)₂OCH₂CH₃ or O(CH₂Cl)₂ and diglyme, respectively, but not dioxane, suggesting that fragmentation pathways different from that found for dme are operating. The X-ray molecular structures of 4a, 4b and 10 have been determined.

Introduction

The activation of C–O bonds by low valent and electron-rich transition metal complexes has represented a key-step for a huge variety of organic syntheses.¹ Alternatively, the use of electron-poor metal derivatives is a less employed approach:² a significant example is given by the synthesis of esters by acylative cleavage of ethers, promoted by low valent early transition metal complexes.³

Otherwise, it has been reported that the stoichiometric reactions of ethers with compounds of strongly oxophilic metals (lanthanides, early transition elements in high oxidation states) usually afford stable metal alkoxides.⁴ In such cases, the ether undergoes breaking into smaller fragments, rather than affording functionalized species. For instance, 1,2-dimethoxyethane, dme, a diether widely used as solvent in synthetic chemistry, reacts with various oxophilic metal complexes with cleavage of one or two O–CH₂ bonds, affording methoxy-derivatives.^{4e-g,5} Ethylene production has been observed in some cases.^{4e-g,5-e}

We recently showed⁶ that when niobium and tantalum pentahalides are allowed to react with ketones or aldehydes or aliphatic cyclic ethers different reactions can take place, beyond the formation of the expected acid–base adducts $MX_5(L)$, depending on the nature of the halide and the *O*-donor to metal molar ratios.

In the light of these considerations, we became interested in the reactivity of MCl₅ (M = Nb, **1a**; Ta, **1b**)⁷ with open-chain ethers and we recently reported a short communication on the room temperature reaction of NbCl₅ with 1,2-dimethoxyethane, dme, which cleanly affords NbOCl₃(dme), **2a**, CH₃Cl and 1,4-dioxane (eqn (1), C₄H₁₀O₂ = dme).⁸

$$NbCl_{5} + 2C_{4}H_{10}O_{2} \rightarrow NbOCl_{3}(C_{4}H_{10}O_{2}) + 2CH_{3}Cl + \frac{1}{2}C_{4}H_{8}O_{2}$$
⁽¹⁾

The result schematized in eqn (1) is notable for several reasons: (i) niobium pentachloride is a simple system effective in promoting the unusual transformation of dme into 1,4-dioxane and methyl chloride under mild conditions; (ii) the reaction proceeds through the unprecedented cleavage of three dme C–O bonds; (iii) preliminary studies indicate that the same reaction is extensible to 1,2-dialkoxyalkanes different from dme; (iv) other preparations previously reported for niobium oxytrihalide adducts mostly require high temperatures;⁹ (v) some reductive complexations of group 5 metal pentahalides¹⁰ and some organic syntheses mediated by MCl₅ (M = Nb, Ta)^{2e,11} have been performed in dme solution, thus these processes might take place *via* the intermediate formation of oxo-complexes.

^aUniversità di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Risorgimento 35, I-56126, Pisa, Italy. E-mail: pampa@dcci.unipi.it; Fax: +39 50 2219246; Tel: +39 50 2219219

^bUniversità di Bologna, Dipartimento di Chimica Fisica e Inorganica, Viale Risorgimento 4, I-40136, Bologna, Italy

CCDC reference numbers 691886–691888. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b810210d
 Born in Bologna (Italy) in 1974.

With respect to these points of interest, we decided to carry out a detailed study of the reactions of **1** with dme, and to extend this study to a variety of 1,2-dialkoxyalkanes. In the present paper, both the metal containing compounds and the organic products obtained by the different reactions will be presented, with particular reference to the stoichiometry employed in each case. Moreover, a novel room temperature synthesis of the oxychloride compounds MOCl₃ (M = Nb, Ta) will be described, and the role possibly played by oxo-compounds during the course of reductive reactions (see point v above) will be discussed.

Results and discussion

Reactivity of niobium and tantalum pentachlorides with 1,2-dialkoxyalkanes in 1 : 1 molar ratios

The reaction of TaCl₅, **1b**, with one equivalent of dme affords the alkoxyether adduct $TaCl_4[O(Me)CH_2CH_2O]$, **3b**, and methyl chloride in *ca.* 1:1 ratio, according to NMR evidence (see Experimental). The formation of **3b** is the result of single dme C–O bond cleavage, resembling what we reported in a recent communication about the 1:1 molar ratio reaction of **1a** with dme, see Scheme 1.⁸

It is noteworthy that the complex NbOCl₃(dme), 2a (see eqn (1)), formally derives from compound 3a by addition of one dme and removal of one MeCl molecule and half dioxane unit. Actually we found that the treatment of 3a with an excess of dme did cause partial transformation of 3a into 2a, CH₃Cl and 1,4-dioxane (see Experimental). This fact suggests that complexes 3 might act as intermediates during the reaction of 1 with large quantities of dme.

Compounds **3a–b** were obtained in optimal yields (*ca.* 80%) by reacting MCl₅, **1**, with one equivalent of HOCH₂CH₂OMe,¹² and were fully characterized by IR, NMR and elemental analyses. On the other hand, the reaction of **1** with one equivalent of dme afforded lower yields of **3** (55–60%). This is due to the fact that **3** is not the only metal-containing product obtainable by reacting **1** with dme in 1 : 1 molar ratio: another complex containing dme was isolated in 15–20% yield. This complex was characterized as the dinuclear species MOCl₃(dme)MCl₅ (M–O–M) (M = Nb, **4a**; M = Ta, **4b**), and more satisfactory yields for this were gained by reacting dme with a *ca.* 30% molar excess of **1**. The X-ray molecular structures of **4a–b** are represented in Fig. 1, and selected bond lengths and angles are reported in Table 1.

The molecules can be viewed as adducts of MCl₅ (M = Nb, Ta) with **2**, resembling in this the oxo bridged tetramers $[M_4O_2Cl_{18}]^2$, M = Nb, Ta.¹³ The geometry and bonding parameters of the MOCl₃(dme) units in **4a–b** are closely related to the ones discussed for **2a**,⁸ apart from a detectable elongation of the M(1)–O(1) interaction [1.7579(14) Å in **4a** *vs.* 1.6939(18) Å in **2a**], which is a consequence of the further coordination of the oxo ligand to M(2).

Table 1 Selected bond lengths (Å) and angles (°) for $MOCl_3(dme)MCl_5$ (M = Nb, 4a, M = Ta, 4b)

	4a	4b
M(1)–O(1)	1.7579(14)	1.800(3)
M(1) - O(2)	2.1661(15)	2.158(3)
M(1)–O(3)	2.2898(14)	2.232(3)
M(1) - l(8)	2.2913(6)	2.2671(10)
M(1) - Cl(7)	2.3417(6)	2.3351(10)
M(1)-Cl(6)	2.3536(6)	2.3424(10)
M(2)–O(1)	2.1353(14)	2.030(3)
M(2)-Cl(2)	2.2778(6)	2.3272(10)
M(2)-Cl(5)	2.3120(6)	2.3201(10)
M(2)-Cl(1)	2.3284(6)	2.3407(10)
M(2)-Cl(4)	2.3311(6)	2.3348(10)
M(2)-Cl(3)	2.3423(6)	2.3521(10)
O(1)–M(1)–O(2)	96.67(6)	94.21(11)
O(1)–M(1)–O(3)	168.53(6)	167.03(11)
O(2)–M(1)–O(3)	72.37(5)	72.84(10)
M(1)-O(1)-M(2)	167.07(9)	164.15(16)
O(2)–C(2)–C(3)	107.09(17)	105.8(3)
C(3)–O(3)–M(1)	112.86(11)	114.1(2)
O(1)-M(2)-Cl(2)	178.76(4)	178.71(8)
O(1)-M(2)-Cl(5)	83.48(4)	87.47(8)
O(1)-M(2)-Cl(1)	86.67(4)	88.77(8)
O(1)–M(2)–Cl(4)	85.32(4)	86.91(8)
O(1)-M(2)-Cl(3)	85.23(4)	87.38(8)

Fig. 1 View of the molecular structure of $MOCl_3(dme)MCl_5$ (M = Nb, 4a, M = Ta, 4b). Displacement ellipsoids are at the 30% probability level.

At variance to what is generally observed for μ -oxo derivatives of transition metals [see for example (MCp₂X)₂O,¹⁴ (Ta₂OCl₁₀)^{2-,13d,15} [TaCl₂(NMe₂)₂(HNMe₂)]₂O¹⁶], the M(1)–O(1)–M(2) angle deviates significantly from linearity [167.07(9)° in **4a** and 164.15(16)° in **4b**]; moreover the two M–O lengths differ considerably from each other [Nb(1)–O(1): 1.7579(14) Å *vs.* Nb(2)–O(1): 2.1353(14) Å; Ta(1)–O(1): 1.800(3) Å *vs.* Ta(2)–O(1): 2.030(3) Å]. The bond distances and angles regarding the bridging oxygen in **4** are better comparable to those reported for NbOCl₃,¹⁷ the structure of which consists of dimeric units linked by asymmetric [Nb–O: 2.203(3) and 1.758(3) Å] and bent (Nb–O···Nb: 170.56°) bridges. The asymmetry of the bridge further corroborates the fact that **4a–b** can be viewed as the result of coordination of MOCl₃(dme) to the Lewis acid MCl₅.

We believe that the oxo-unit within compounds 4 originates *via* a O-abstraction reaction from dme (see eqn (1)). Accordingly, the formation of 4, in the course of the 1:1 reaction between 1 and dme, should be accompanied by the formation of 1,4-dioxane. Although no dioxane was observed by monitoring these reactions *via* ¹H NMR, small amounts of that cyclic ether were detected (GC/MS) on the reaction mixtures after hydrolysis

(see Experimental). Presumably, under anhydrous conditions (*i.e.* the conditions of the NMR experiment), the sparingly soluble $MCl_5(dioxane)^{18}$ is formed, the lower solubility of this complex with respect to **3** preventing the detection of the former in solution.

In summary, the reactions of **1** with limited amounts of dme proceed *mainly via* single C–O bond cleavage affording **3**: nevertheless, further dme fragmentation takes place to a limited extent producing minor amounts of $MOCl_3(dme)$, which gives **4** in the presence of excess MCl_5 .

With the aim to extend the chemistry of **1** with dme to similar organic substrates, we decided to study the reactivity of NbCl₅, **1a**, with a series of 1,2-dialkoxyalkanes. The 1 : 1 molar ratio reactions proceed with cleavage of one external C–O bond, similar to the behaviour of dme (Scheme 1). In particular, compound **1a** reacts with EtO(CH₂)₂OEt or MeOCH₂CH(Me)OMe to give in good yield compounds of general formula NbCl₄[O(R)CHR¹CH₂O] (**5**, R = Et, R¹ = H; **6**, R = R¹ = Me), and alkyl chloride (in about 1 : 1 ratio with respect to the inorganic product, according to ¹H NMR evidence), see eqn (2).

$$\frac{\text{NbCl}_{5} + \text{ROCHR}^{1}\text{CH}_{2}\text{OR}}{\rightarrow \text{NbCl}_{4}[O(R)\text{CHR}^{1}\text{CH}_{2}\text{O}] + \text{RCl}}$$
(2)

 $R = Et, R^1 = H, 5$ $R = R^1 = Me, 6$

Compounds **5** and **6** have been characterized by NMR spectroscopy and elemental analyses. On the basis of the NMR features, the reaction of NbCl₅ with 1,2-dimethoxypropane affording **6** is highly chemoselective, since the alternative complex NbCl₄[O(Me)CH₂CH(Me)O], deriving from the cleavage of the O–Me bond at the most hindered side of the diether, has not been detected in solution. Complex **6** has been obtained as a mixture of two inseparable isomers, in 2 : 1 ratio, differing in the relative orientations of the substituents at the chiral centre (*i.e.*, H and Me). The ¹H NMR spectrum of the major isomer exhibits resonances at 5.24 and 5.08, 4.68, 3.98, 1.60 ppm, which have been assigned to the NbOCH₂, CH, OMe and CHMe protons, respectively. The ¹H NMR spectrum of the less abundant isomer displays a similar pattern.

Furthermore, the reactivity of NbCl₅, **1a**, with 1,2dialkoxyethanes of generic formula MeO(CH₂)₂OR [R = CH₂Cl, (CH₂)₂OMe (diglyme)] has been explored in order to establish a possible influence of different R substituents on the reactivity.

According to ¹H NMR data, the addition of one equivalent of $MeO(CH_2)_2OCH_2Cl$ to **1a** gives a mixture of $NbCl_4[O(Me)CH_2CH_2O]$, **3a**, and $NbCl_4[O(CH_2Cl)CH_2CH_2O]$, **7**, in *ca*. 5:2 ratio, which we have not been able to separate. The formation of these compounds is the consequence of the alternative cleavage of one of the two different external C–O bonds within 1-chloromethoxy-2-methoxyethane, Me–O(CH₂)₂O–CH₂Cl. In other words, two distinct potential fragmentation routes, consisting of breaking of one external C–O bond, are possible for this diether, and both are operating. Methyl chloride and methylene chloride should be expected as organic products, see Scheme 2, and these two substances have been actually found in the mixture at the end of reaction.

Otherwise, the reaction of **1a** with diglyme has yielded a complicated mixture containing prevalently the dinuclear complex **8**, Scheme 3. This compound, which has been isolated by fractional crystallization and identified by ¹H NMR spectroscopy and

elemental analyses, is the result of the coordination of one diglyme to two NbCl₅ moieties, accompanied by cleavage of one O–Me bond and one Nb–Cl bond. In agreement, methyl chloride has been detected as a product of this reaction, *via* both NMR and GC/MS. In other words, the initial coordination of diglyme to **1a**, occurring presumably *via* two oxygen atoms in a "dmefashion" (see Scheme 1), is then followed by MeCl elimination and consequent formation of a fragment which is still able to coordinate further NbCl₅.

Scheme 3

Complexes containing a bidentate, intact, diglyme ligand have been reported in the literature, and examples are: [Pb(hexafluoroacetyl-acetonato)₂(μ - η ³- η ¹-diglyme)]₂,¹⁹ TiCl₂(OBut)₂-(*O*,*O*'-diglyme),²⁰ and TiCp₂(*O*,*O*'-diglyme).²¹

Reactivity of niobium and tantalum pentachlorides with 1,2-dialkoxyalkanes in 1:2 molar ratios

It is worthy of mention that when a CH_2Cl_2 suspension of **4a** was reacted with dme, compound **2a** was isolated in very good yield. This indicates that the [MCl₃] moiety in **4** can be easily displaced from MOCl₃(dme) by addition of further dme, giving 2 equivalents of MOCl₃(dme), methyl chloride and 1,4-dioxane (eqn (3)).

$$4\mathbf{a} + 2\mathbf{C}_{4}\mathbf{H}_{10}\mathbf{O}_{2} \rightarrow 2\mathbf{NbOCl}_{3}\left(\mathbf{C}_{4}\mathbf{H}_{10}\mathbf{O}_{2}\right) + 2\mathbf{CH}_{3}\mathbf{Cl} + \frac{1}{2}\mathbf{C}_{4}\mathbf{H}_{8}\mathbf{O}_{2} \quad (3)$$

The oxytrichloride species $MOCl_3(dme)$ (M = Nb, 2a;⁸ M = Ta, 2b) were isolated in good yields by direct combination of MCl_5 , 1, with two equivalents of dme, eqn (4).

$$MCl_5 + 2C_4H_{10}O_2 \rightarrow 2 + 2CH_3Cl + \frac{1}{2}1, 4 - C_4H_8O_2$$
 (4)

The spectroscopic features of **2b** resemble those already reported for **2a**.⁸ The IR spectrum (recorded in the solid state) displays an intense absorption related to the Ta=O bond, at 910 cm⁻¹ (954 cm⁻¹ for Nb=O in **2a**).^{8,22} The shift towards higher wavenumbers of the metal–oxygen stretching vibration in **2** with respect to **4** (876 cm⁻¹ in **4a** and 872 cm⁻¹ in **4b**) is a consequence of the enhancement of the metal–oxygen bond order, due to loss of the M–O–M interaction, which exists in **4**.

Moreover, the ¹H NMR resonances (CDCl₃ solution) accounting for the dme unit appear as singlets at 4.14 (CH₂) and 3.95 (CH₃) ppm. In agreement with the X-ray solid state structure determined for **2a**, the dme frame within complexes **2** is asymmetrically

coordinated to the metal centre; therefore, two pairs of resonances for non-equivalent CH_2 and CH_3 groups would be expected in the NMR spectra. The equivalence of the two CH_2 and of the two CH_3 groups suggests that a fast exchange phenomenon is operating in solution at room temperature. Analogous fluxionality was observed in similar mononuclear niobium adducts.²³ Unfortunately, low temperature NMR experiments could not be performed on complexes **2**, due to the low solubility in suitable deuterated solvents below 0 °C.

In order to focus on the formation of organic products deriving from the fragmentation of dme, the reactions of MCl₅ with two equivalents of dme were carried out in NMR tubes (CDCl₃ as solvent) and monitored by ¹H and ¹³C NMR spectroscopies, in the presence of a known quantity of CH₂Cl₂ used as reference. Compounds 2, CH₃Cl, MCl₅(1,4-dioxane)¹⁸ and 1,4-dioxane, together with minor amounts of [MCl₃(OCH₃)₂]₂²⁴⁻²⁶ and 1,2dichloroethane, were seen in the final solutions (see Experimental). Coherently with the NMR features, the main reaction occurring when 1 is mixed with two equivalents of dme may be outlined according to eqn (4). This reaction implies the breaking of three of the four C-O bonds of dme. Beside that reaction, a secondary pathway of dme fragmentation seems to be operative concurrently: this pathway requires the cleavage of the two O-CH₂ bonds and would explain the formation of 1,2-dichlorethane and of $MCl_3(OCH_3)_2$ species, which have been reported to exist as dimers^{26,25} (eqn (5)).

$$\mathrm{MCl}_{5} + \mathrm{C}_{4}\mathrm{H}_{10}\mathrm{O}_{2} \rightarrow \frac{1}{2}[\mathrm{MCl}_{3}(\mathrm{OCH}_{3})_{2}]_{2} + \mathrm{ClCH}_{2}\mathrm{CH}_{2}\mathrm{Cl} \qquad (5)$$

The formation of CH₃Cl, 1.4-dioxane and 1,2-dichloroethane has been confirmed by GC/MS analyses. On the other hand, the presence in solution of MCl₅(1,4-dioxane), detected by NMR, is reasonable, since the dioxane produced by the main reaction (eqn (4)) should compete with dme in the coordination to the MOCl₃ moiety or to the still unreacted MCl₅. Interestingly, GC/MS and NMR analyses on the mixture obtained by reacting MCl₅ with a large excess of dme (10 equivalents or more) have allowed the identification of **2**, CH₃Cl and free dioxane, thus indicating that the main route (eqn (4)) is still effective even in correspondence of high dme/MCl₅ molar ratios. As expected, under these conditions, MCl₅(1,4-dioxane) is not generated, in view of the fact that dme is now largely predominant with respect to dioxane, and thus significantly favoured in coordinating the metal centre.

As stated in the Introduction, a number of examples have been reported of the activation of 1,2-dimethoxyethane by oxophilic metal complexes, which gives methoxy derivatives, as a consequence of the cleavage of two O–CH₂ bonds.^{4,5}

Also, in connection with the chemistry described herein, some aluminium species promote the cleavage of the dme O–CH₃ bonds: for instance, $[(Me_3Si)_2CH]_2AI-AI[CH(SiMe_3)_2]_2$ reacts with potassium/dme affording the glycolato derivative $[(Me_3Si)_2CH]_2AI(OCH_2CH_2O)K(dme);^{27}$ a similar aluminium compound, $[(Me_3SiCH_2)_2AI(OCH_2CH_2O)]_2$, has been isolated in attempting to prepare aluminium amides in dme solution.²⁸ Moreover, the species [AIIMe(OCH_2CH_2OMe)]_2 forms by reaction of dme with the "high-temperature molecule AII", *via* single O–CH₃ bond breaking.²⁹

Notwithstanding this, the dme fragmentation process summarized in eqn (4) is unprecedented in the sense it takes place *via* cleavage of three ethereal C–O bonds. In contrast to that described about the reaction of **1a** with two equivalents of dme, which leads to the formation of **2a**, the reactions of **1a** with two (or more) equivalents of 1,2-diethoxyethane, 1,2-dimethoxypropane, 1-chloromethoxy-2-methoxyethane and diglyme appear to be less selective, and the inorganic products could not be identified, the only exception being NbOCl₃(O,O'-diglyme), **9**, which is characterized by a strong Nb=O stretching vibration at 934 cm⁻¹.

Concerning the organic products, 2,5-dimethyl-1,4-dioxane has been discovered by GC/MS in the reaction of **1a** with a two-fold excess of 1,2-dimethoxypropane: although a precise quantification of the yield has not been possible hitherto, a new potential way for the facile preparation of methyl-substituted dioxanes is given.

The nature of the alkoxy groups is crucial in determining the fragmentation pathway followed by the 1,2-dialkoxyalkane ROCH₂CH₂OR, when this is reacted with NbCl₅ in 2:1 molar ratio. Interestingly, MeO(CH₂)₂OCH₂Cl gives O(CH₂Cl)₂ and diglyme, while Cl(CH₂)₂OCH₂CH₃ has been recognised in the final mixture of the reaction of **1a** with two equivalents of EtO(CH₂)₂OEt (see Experimental). As a matter of fact, neither 1,4-dioxane nor 1,2-dichloroethane have been found as products in these two cases.

On the other hand, 1,4-dioxane is produced in good yield when 1a is reacted with diglyme in ca. 1:2 molar ratio. Nevertheless, when monitoring the 1:2 reaction of **1a** with diglyme by NMR, a complicated ¹H NMR spectral pattern was seen, indicating that, under these conditions, diglyme probably reacts with 1a following several fragmentation pathways. In particular, we observed a downfield resonance ($\delta = 8.72$ ppm, see Experimental), which suggested to us the possible formation of some stabilized O-protonated organic species. Indeed, the study of the chemistry of the halides MX_5 (M = Nb, Ta) with ketones and acetylacetones has demonstrated that $[MX_6]^-$ salts of the protonated organic substrates can form as secondary products, for which the O-Hprotons can give rise to ¹H NMR downfield resonances.⁶ In order to verify the possibility, we made several attempts to grow X-ray quality crystals from the reaction liquor. A successful attempt gave crystals suitable for X-ray analysis which were identified as the hexachloroniobate salt of protonated diglyme, *i.e.* [MeOCH₂CH₂OCH₂CH₂O(H)Me][NbCl₆], 10, which OH hydrogen atom might come from some diglyme C-H bond activation. Water cannot be excluded in principle as the source of the OH hydrogen, although this possibility appears unlikely since the reaction has been carried out in strictly anhydrous conditions. The molecular structure of 10 is represented in Fig. 2, and selected bond lengths and angles are reported in Table 2. Further characterization of 10 was supported by IR spectroscopy (in solid), showing the O–H stretching vibration at 3175 cm⁻¹.

The molecular structure of **10** consists of an octahedral $[NbCl_6]^-$ anion and a protonated diglyme cation $[MeOCH_2CH_2O-CH_2CH_2O(H)Me]^+$. The unit cell contains twelve anions and twelve cations, one and a half of which being independent (the complete second anion and cation are generated by an inversion centre). The *O*-bonded hydrogen atoms in the protonated diglyme have been located in the Fourier map and their positions are in agreement with the formation of an extended network of hydrogen bonds, which generates an infinite chain of H-bonded cations. In order to obtain this polymeric structure, protonation occurs on the terminal –OMe groups of each diglyme molecule [O(1),

Bond distances				
Nb(1)–Cl(2)	2.3297(8)	Nb(1)-Cl(6)	2.3356(8)	
Nb(1)-Cl(1)	2.3422(8)	Nb(1)-Cl(4)	2.3471(8)	
Nb(1)-Cl(5)	2.3562(8)	Nb(1)-Cl(3)	2.3768(8)	
Nb(2)-Cl(7)	2.3483(8)	Nb(2)-Cl(9)	2.3462(8)	
Nb(2)–Cl(8)	2.3542(7)			
Angles				
Cl(2)–Nb(1)–Cl(6)	90.19(3)	Cl(2)–Nb(1)–Cl(1)	90.71(3)	
Cl(6)-Nb(1)-Cl(1)	91.17(3)	Cl(2)-Nb(1)-Cl(4)	90.25(3)	
Cl(6)-Nb(1)-Cl(4)	91.36(3)	Cl(1)-Nb(1)-Cl(4)	177.29(3)	
Cl(2)-Nb(1)-Cl(5)	179.23(3)	Cl(6)-Nb(1)-Cl(5)	89.16(3)	
Cl(1)-Nb(1)-Cl(5)	89.72(3)	Cl(4)-Nb(1)-Cl(5)	89.35(3)	
Cl(2)-Nb(1)-Cl(3)	91.04(3)	Cl(6)-Nb(1)-Cl(3)	178.73(3)	
Cl(1)-Nb(1)-Cl(3)	89.11(3)	Cl(4)-Nb(1)-Cl(3)	88.34(3)	
Cl(5)-Nb(1)-Cl(3)	89.60(3)			
C(1) - O(1) - C(2)	116.2(2)	O(1)-C(2)-C(3)	111.4(2)	
O(2) - C(3) - C(2)	109.2(2)	C(4) - O(2) - C(3)	111.9(2)	
O(2) - C(4) - C(5)	108.7(2)	O(3) - C(5) - C(4)	110.6(2)	
C(5) - O(3) - C(6)	115.3(2)	O(4) - C(7) - C(8)	107.6(2)	
O(5)-C(8)-C(7)	110.4(2)	C(9)–O(5)–C(8)	116.4(2)	
Hydrogen bonds para	meters			
D–H···A	d(D–H)	$d(H\cdots A)$	$d(D\cdots A)$	∠(DHA)
$O(3)-H(3)\cdots O(3)\#3$	0.845(10)	1.550(16)	2.388(4)	171(8)

Symmetry	transformations	used	to	generate	equivalent	atoms:	#3	_	х,
$v_{z} + 1/2$									

2.413(2)

2.413(2)

170(3)

170(7)

0.844(10) 1.578(15)

0.848(10) 1.574(15)

Fig. 2 View of the molecular structure of $[MeOCH_2CH_2OCH_2-CH_2O(H)Me][NbCl_6]$, 10: (a) the octahedral $[NbCl_6]^-$ anion (only one of the two independent anions has been drawn). (b) the $[MeOCH_2CH_2OCH_2CH_2O(H)Me]^+$ cation for which part of the infinite H-bonded chain is represented. Displacement ellipsoids are at the 30% probability level. Only independent atoms are labelled.

O(3) and O(5)], and not on the central oxygens [O(2) and O(4)]. In order to have one H⁺ per diglyme molecule and to avoid the simultaneous presence of two OH groups on the same H-bond, an occupancy factor of 0.5 has been assigned to H(1), H(3) and H(5). Therefore, hydrogen bonds exist between all O(3)...O(3) and O(1)...O(5) contacts, but because of disorder protons are alternatively present on one or the other oxygen atom. As a consequence of protonation, all C–O bonds involving protonated oxygens [C(1)–O(1) 1.446(3) Å, C(2)–O(1) 1.455(3) Å, C(5)–O(3) 1.444(3) Å, C(6)–O(3) 1.446(3) Å, C(8)–O(5) 1.461(3) and C(9)–O(5) 1.454(3) Å] are markedly elongated compared to the non protonated ones [C(3)–O(2) 1.423(3) Å, C(4)–O(2) 1.422(3) Å, C(7)–O(4) 1.423(3) Å]. All other C–C and C–O contacts are in keeping with normal single bonds present in unsaturated organic molecules.³⁰

Room temperature synthesis of niobium and tantalum oxytrichlorides

The oxygen-abstraction reaction leading to $MOCl_3(dme)$, **2**, occurs smoothly at room temperature, whereas the syntheses of the oxyhalides MOX_3 (M = Nb, Ta; X = Cl, Br) generally require temperatures between 60 and 130 °C, ^{9,31} as described for analogous compounds of the sp-block, such as AIOX.³²

Therefore, we became interested in finding the way to prepare the known MOCl₃ from **2**. Interestingly, we saw that the addition of an excess of TiCl₄ to dichloromethane solutions of crystalline **2** resulted in the almost instantaneous precipitation of the colourless oxychloride compounds MOCl₃, **11**, from yellow solutions containing TiCl₄(dme) (eqn (6)).

$$\operatorname{MOCl}_{2}(\operatorname{dme}) + \operatorname{TiCl}_{4} \to \operatorname{MOCl}_{3} + \operatorname{TiCl}_{4}(\operatorname{dme})$$
(6)

This observation indicates a room temperature pathway for the preparation of MOCl₃ (M = Nb, 11a; Ta, 11b), starting from MCl₅. Unfortunately, attempts to obtain 11 by a onepot synthesis, *i.e.* treating MCl₅ with excess dme and then with TiCl₄, led to clean solutions of TiCl₄(dme), but the solids 11a–b resulted contaminated by organic impurities, according to IR and elemental analyses data.

Niobium and tantalum oxytrichlorides as precursors of M(III) species

The fact that **2** may possibly play a role in synthetic procedures which make use of niobium and tantalum pentahalides and dme¹⁰ has been already mentioned (see Introduction, point v). According to the literature, the tantalum(III)–alkyne complexes TaCl₃(alkyne) are obtained by zinc reduction of TaCl₅ in the presence of dme, and successive treatment with alkyne. These compounds, which represent important precursors for a variety of interesting organic preparations,^{2e,11} might derive from initial formation of the oxychloride species TaOCl₃dme, **2b**, in agreement with eqn (4). Furthermore, with reference to the reduction of NbCl₅ to NbCl₃(dme) by SnBu₃H in dme,^{10a} we observed that the treatment of a suspension of crystalline **2a** with SnBu₃H resulted in the fast formation of a brick-red solid, identified as NbCl₃(dme), **12** (eqn (7)).

$$NbOCl_{3}(dme) + SnBu_{3}H \rightarrow NbCl_{3}(dme) + "SnBu_{3}OH"$$
(7)

This evidence supports the idea that the formation of $NbOCl_3(dme)$ may be really the first step in the course of the tin hydride reduction of Nb(v) to Nb(III) by $SnBu_3H$ in dme.

 $O(5) - H(5) \cdots O(1)$

 $O(1) - H(1) \cdots O(5)$

Although the chemistry of niobium and tantalum pentahalides with oxygen-containing organics was scarcely developed in the past,⁶ the results presented herein show that such halides are efficiently capable of promoting clean reactions on 1,2-dialkoxyalkanes at room temperature, proceeding through the cleavage and the establishment of C–O bonds. The fact that 1,2-dimethoxyethane, dme, is not stable in the presence of MCl₅ is particularly meaningful when considering that dme has been widely employed as solvent in preparative inorganic chemistry and in metal-directed organic synthesis involving group 5 pentahalides. Our observations suggest that M(v) oxo-complexes (M = Nb, Ta) might behave as intermediates in reactions involving the reduction of MCl₅, carried out in dme solution.

We have shown that the outcomes of the reactions of MCl_5 (M = Nb, Ta) with 1,2-dialkoxyalkanes depend strictly on the stoichiometry used. In more detail, when MCl_5 and the diether react in *ca.* 1:1 molar ratio, single C–O bond activation occurs, with consequent formation of alkoxyether complexes and alkyl chlorides. Minor amounts of the dinuclear μ -oxo bridged species $MOCl_3(dme)MCl_5$ have been isolated in the reactions involving dme.

On the other hand, the 1:2 ratio reactions between MCl₅ and 1,2-dialkoxyalkanes are strongly influenced by the nature of the latter. In the cases of dme and diglyme, unprecedented activation of three ethereal C–O bonds takes place, resulting in formation of the oxychloride species $MOCl_3(O,O'-ligand)$ and 1,4-dioxane. Analogously, the 2:1 ratio reaction of 1,2-dimethoxypropane with NbCl₅ indicates a potential strategy for the expeditious synthesis of a methyl-substituted dioxane. Alternative fragmentation pathways, which do not lead to dioxanes, are followed by different 1,2-dialkoxyalkanes.

Finally, the oxytrichlorides $MOCl_3(dme)$ are revealed as convenient precursors for $MOCl_3$, thus indicating a novel room temperature route for the preparation of $MOCl_3$ starting from MCl_5 .

Experimental

General

All manipulations of air and/or moisture sensitive compounds were performed under an atmosphere of pre-purified argon using standard Schlenk techniques. The reaction vessels were oven dried at 150 °C prior to use, evacuated (10⁻² mmHg) and then filled with argon. MCl_5 (M = Nb, 1a; M = Ta, 1b) were commercial products (Aldrich), sublimed at 100-110 °C and 10⁻² Torr before use. TiCl₄, SnBu₃H, 2-methoxyethanol and 1-chloromethoxy-2-methoxyethane were commercial products (Aldrich), stored under argon atmosphere as received. CH₂Cl₂, CD₂Cl₂, CDCl₃, 1,2-dimethoxyethane (dme), 1,2-dimethoxypropane, 1,2diethoxyethane and MeO(CH₂)₂O(CH₂)₂OMe (diglyme) were distilled before use under argon atmosphere from P₄O₁₀, while pentane was distilled from LiAlH₄. Infrared spectra were recorded at 298 K on a FT IR-Perkin Elmer Spectrometer, equipped with a UATR sampling accessory. NMR measurements were recorded on Mercury Plus 400 instrument at 298 K, unless otherwise specified. The chemical shifts for ¹H and ¹³C were

referenced to the non-deuterated aliquot of the solvent. GC/MS analyses were performed on a HP6890 instrument, interfaced with MSD-HP5973 detector and equipped with a Phenonex Zebron column. Carbon and hydrogen analyses were performed at the Dipartimento di Chimica Farmaceutica of the University of Pisa on a Carlo Erba mod. 1106 instrument, paying particular attention to the more sensitive compounds which were weighed and directly introduced into the analyzer. The chlorine content was determined by the Volhard method³³ after exhaustive hydrolysis of the sample. The metal was analyzed as M_2O_5 obtained by hydrolysis of the sample followed by calcination in a platinum crucible. The halogen and the metal analyses were repeated twice in order to get reproducible results.

Preparation of MOCl₃(dme), M = Nb, Ta. The preparation of **2b** is described in detail; compound **2a** was obtained by analogous procedure.⁸ A suspension of **1b** (0.180 g, 0.502 mmol) in CH₂Cl₂ (20 mL), was treated with dme (0.12 mL, 1.15 mmol), and the resulting mixture was stirred at room temperature for 5 h, during which progressive dissolution of the solid and darkening of the solution were noticed. Hence, the volatile materials were removed under vacuum. Crystallization of the residue from CH₂Cl₂/pentane at room temperature gave a pale yellow microcrystalline solid corresponding to **2b**. Yield: 0.136 g (69%). Anal. Calcd for C₄H₁₀Cl₃O₃Ta: C, 12.21; H, 2.56; Ta, 45.99; Cl, 27.03. Found: C, 12.10; H, 2.69; Ta, 45.61; Cl, 26.45%. IR (solid state): 910 s [*v*_{Ta=0}] cm⁻¹. ¹H NMR (400 MHz, CDCl₃): *δ* = 4.14 (s, 2H, *CH*₂), 3.95 ppm (s, 3H, *CH*₃).

In a different experiment, CH_2Cl_2 (0.0321 mL, 0.500 mmol) and dme (0.055 mL, 0.53 mmol) were introduced into a NMR tube containing a suspension of compound **1b** (0.090 g, 0.251 mmol) in CDCl₃ (0.80 mL). The tube was sealed, and a light brown solution formed in 3 h time. Subsequent ¹H and ¹³C NMR analyses (recorded at 243 K and at 298 K) revealed the presence of CH_2Cl_2 , compound **2b**, CH_3Cl (¹H NMR: 3.00 ppm³⁴), TaCl₅(1,4-dioxane),¹⁸ 1,4-dioxane, 1,2dichloroethane and [TaCl₃(OCH₃)₂]₂^{24,25} in *ca*. 20:9:16:3:2:1:1 ratio. CH₃Cl, 1,4-dioxane and 1,2-dichloroethane were also detected by GC/MS analysis carried out on an aliquot of the mixture at the end of reaction. When complex **1b** (0.25 mmol) was reacted with dme (2.8 mmol) in CDCl₃, compound TaCl₅(1,4-dioxane) was not ascertained by ¹H NMR spectroscopy.

Analogous results were achieved by NMR and GC/MS investigations on the reactions of **1a** with dme in different stoichiometric ratios.

NbOCl₃(dme), **2a**. Anal. Calcd for C₄H₁₀Cl₃O₃Nb: C, 15.71; H, 3.30; Nb, 30.44; Cl, 34.82. Found: C, 15.93; H, 3.24; Nb, 29.82; Cl, 33.97%. IR (solid state): 2946 w, 1466 m, 1448 m-s, 1277 w-m, 1238 w-m, 1188 w, 1123 w, 1071 m, 1016 s, 984 s, 954 vs [$v_{Nb=0}$], 927 ms, 854 vs, 818 s cm⁻¹. ¹H NMR (400 MHz, CD₂Cl₂): δ = 4.20 (s, 2H, CH₂), 3.98 ppm (s, 3H, CH₃). ¹³C NMR (400 MHz, CD₂Cl₂): δ = 74.0 (CH₂), 63.5 ppm (CH₃).

Preparation of $\overline{\text{MCl}_4[O(\text{Me})\text{CH}_2\text{CH}_2\text{C}]}$, M = Nb, Ta. The preparation of **3a** is described in detail; compound **3b** was obtained by analogous procedure. Liquid MeO(CH₂)₂OH (0.068 mL, 0.86 mmol) was added to a suspension of **1a** (0.230 g, 0.851 mmol) in CH₂Cl₂ (10 mL). The mixture was stirred for 30 min at room temperature, during which progressive dissolution of the solid and gas evolution (HCl) were observed. Compound **3a** was obtained

as a colourless microcrystalline solid from a dichloromethane solution layered with pentane, at -20 °C. Yield: 0.211 g (80%). Anal. Calcd for C₃H₇Cl₄NbO₂: C, 11.63; H, 2.27; Nb, 29.99; Cl, 45.77. Found: C, 11.48; H, 2.35; Nb, 30.25; Cl, 44.98%. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.23$ (t, ³J_{HH} = 5.86 Hz, 2H, CH₂ONb), 4.43 (t, ³J_{HH} = 5.86 Hz, 2H, CH₂OMe), 4.02 ppm (s, 3H, Me). ¹³C NMR (400 MHz, CDCl₃): $\delta = 78.7$ (CH₂ONb), 78.3 (CH₂OMe), 65.2 ppm (Me).

*T*_{*a*}*Cl*₄*[O(Me)CH*₂*CH*₂*O]*, *3b.* Colourless, air sensitive solid; 79% yield from **1b** (0.180 g, 0.502 mmol) and MeO(CH₂)₂OH (0.040 mL, 0.51 mmol). Anal. Calcd for C₃H₇Cl₄O₂Ta: C, 9.06; H, 1.77; Ta, 45.48; Cl, 35.64. Found: C, 9.21; H, 1.82; Ta, 45.30; Cl, 34.95%. IR (solid): 2944 w, 2891 w, 2846 w, 1597 w-m, 1455 m, 1260 *m*-s, 1228 m, 1061 vs, 1007 s, 988 s, 932 s, 843 vs, 797 vs cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 5.34 (t, ³J_{HH} = 5.86 Hz, 2H, *CH*₂OTa), 4.51 (t, ³J_{HH} = 5.86 Hz, 2H, *CH*₂OMe), 4.19 ppm (s, 3H, Me). ¹³C NMR (400 MHz, CDCl₃): δ = 81.2 (*C*H₂OTa), 74.1 (*C*H₂OMe), 66.2 ppm (Me).

Reactivity of MCl_s, **1a–b**, with dme (dme/M molar ratio = 1 : 1). The reactions of **1** (0.40 mmol), in CH₂Cl₂ (7 mL), with dme (0.40 mmol) in Schlenk tubes afforded clear solutions, which were layered with pentane. Compounds **3a–b** were obtained as microcrystalline solids after 12 h at -20 °C, in 55–60% yields.

In a different experiment, the pentachloride (0.30 mmol) was suspended in $CDCl_3$ (0.8 mL) in a NMR tube, and then treated with dme (0.30 mmol). The tube was sealed, and progressive dissolution of the solid was observed. ¹H-NMR spectrum, recorded 30 min after mixing, showed the presence of CH_3Cl (3.00 ppm) and **3**, in about 1:1 ratio. GC/MS carried out on aliquots of the solutions, after hydrolysis and filtration on alumina, showed the presence of 2-methoxyethanol, methyl chloride and minor amounts of 1,4-dioxane.

Reaction of 3a with dme: formation of NbOCl₃(dme), 2a, CH₃Cl and 1,4-dioxane. Compound 3a (0.25 mmol) was dissolved in CDCl₃ (0.7 mL) in a NMR tube and treated with dme (0.50 mmol). After 3 d, a mixture of 3a, 2a,⁸ CH₃Cl and 1,4-dioxane (10:20:15:8 ratio) was detected.

Preparation of MOCl₃(dme)MCl₅ (*M*–*O*–*M*), **M** = Nb, Ta. The preparation of **4a** is described in detail; compound **4b** was obtained by analogous procedure. A suspension of NbCl₅ (0.350 g, 1.30 mmol) in CH₂Cl₂ (25 mL) was treated with dme (0.10 mL, 0.96 mmol), and the yellow mixture was stirred at room temperature for 45 min, during which progressive dissolution of the solid occurred. Hence, the mixture was filtered and layered with pentane. Pale yellow crystals of **4a** suitable for X-ray analysis were obtained after 24 h at room temperature. Yield: 0.058 g (21% yield). Anal. Calcd for C₄H₁₀Cl₈Nb₂O₃: C, 8.34; H, 1.75; Nb, 32.28; Cl, 49.28. Found: C, 8.09; H, 1.81; Nb, 32.05; Cl, 48.72%. IR (solid state): 2943 w, 2885 w, 2833 w, 1462 m, 1454 m-s, 1447 m-s, 1274 m, 1239 m, 1185 m, 1126 w, 1062 m-s, 1008 s, 996 s, 976 s, 956 m-s, 876 s [$v_{Nb-O-Nb}$], 836 vs, 811 vs cm⁻¹.

 $TaOCl_3(dme)TaCl_5$ (Ta–O–Ta), **4b**. Colourless, air sensitive solid; 15% yield from **1b** (0.360 g, 1.00 mmol) and dme (0.080 mL, 0.77 mmol). Anal. Calcd for C₄H₁₀Cl₈O₃Ta₂: C, 6.39; H, 1.34; Ta, 48.15; Cl, 37.73. Found: C, 6.25; H, 1.38; Ta, 47.80; Cl, 37.19%. IR (solid): 2962 w, 2916 vw, 1400 br-m, 1260 ms, 1074 br-s, 1013 vs, 872 s [$v_{Ta-O-Ta}$], 797 vs cm⁻¹.

Reaction of NbOCl₃(dme)NbCl₅ (*Nb–O–Nb*) with dme. The reaction of crystalline **4a** (0.050 g, 0.087 mmol) with dme (0.020 mL, 0.19 mmol), in CH₂Cl₂ (8 mL), afforded a dark yellow solution in 3 h time. The solution was layered with pentane: crystals of compound **2a** formed overnight in nearly 80% yield. The identity of **2a** was checked by IR (strong absorption at 954 cm⁻¹), whereas GC/MS analysis of the liquor pointed out the presence of CH₃Cl and 1.4-dioxane.

Reactivity of NbCl₅ with 1,2-diethoxyethane. Preparation of NbCl₄[O(Et)CH₂CH₂O], 5. A suspension of 1a (0.150 g, 0.555 mmol) in CH2Cl2 (10 mL) was treated with 1,2diethoxyethane (0.070 mL, 0.50 mmol), and stirred at room temperature for 30 min. The final mixture was filtered in order to remove some solid, then it was layered with pentane. Compound 5 was obtained as a yellow solid after 12 h at -20 °C. Yield: 0.125 g (77%). Anal. Calcd for C4H9Cl4NbO2: C, 14.84; H, 2.80; Nb, 28.69; Cl, 43.79. Found: C, 14.65; H, 2.71; Nb, 28.45; Cl, 43.21%. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.25$ (t, 2H, ${}^{3}J_{HH} = 5.86$ Hz, CH₂ONb), 4.53 (q, 2H, ${}^{3}J_{HH} = 6.59$ Hz, OCH_2CH_3), 4.52 (t, 2H, ${}^{3}J_{HH} = 5.86$ Hz, CH_2OEt), 1.51 ppm (t, 3H, ${}^{3}J_{HH} = 6.59$ Hz, OCH₂CH₃). ${}^{13}C$ NMR (400 MHz, CDCl₃): $\delta = 78.9$ (CH₂ONb), 76.0 (CH₂OEt), 40.9 (OCH₂CH₃), 19.1 ppm (OCH₂CH₃). GC/MS analysis on an aliquot of the mixture at the end of reaction revealed the presence of ethyl chloride. The reaction of NbCl₅ (0.105 g, 0.389 mmol) with 1,2diethoxyethane (0.12 mL, 0.85 mmol), in a mixture of CDCl₃ (0.65 mL) and CH₂Cl₂ (0.0256 mL, 0.400 mmol), gave a solution which was analyzed by ¹H NMR and GC/MS: CH₂Cl₂, EtCl and Cl(CH₂)₂OCH₂CH₃ were detected in ca. 10:20:15 ratio (¹H NMR), together with some unreacted 1,2-diethoxyethane.

Reactivity of NbCl₅ with 1,2-dimethoxypropane. Preparation of **NbCl₄[O(Me)CH(Me)CH₂O]**, 6. To a suspension of 1a (0.205 g, 0.759 mmol) in CH₂Cl₂ (15 mL) 1,2-dimethoxypropane (0.079 mL, 0.65 mmol) was added, and the mixture was stirred at room temperature for additional 30 min. The final red mixture was filtered in order to remove some solid, then the filtrated solution was layered with pentane. Dark-red microcrystalline compound 6 was obtained as a mixture of two isomeric forms after 12 h at -20 °C. Yield: 0.181 g (82%). Anal. Calcd for C₄H₉C₁₄NbO₃: C, 14.14; H, 2.67; Nb, 27.34; Cl, 41.73. Found: C, 14.04; H, 2.70; Nb, 26.91; Cl, 41.02%. ¹H NMR (400 MHz, CDCl₃): δ (major isomer) = 5.24, 5.08 (m, 2H, NbOC H_2), 4.68 (m, 1H, CH), 3.98 (s, 3H, OMe), 1.60 ppm (d, 2H, ${}^{3}J_{HH} = 6.23$ Hz, CHMe); δ (minor isomer) = 5.29, 5.02 (m, 2H, NbOCH₂), 4.45 (m, 1H, CH), 4.02 (s, 3H, OMe), 1.53 ppm (d, 2H, ${}^{3}J_{HH} = 5.86$ Hz, CHMe). Isomer ratio = 2:1. ¹³C NMR (400 MHz, CDCl₃): δ (major isomer) = 87.7 (NbOCH₂), 84.6 (CH), 63.1 (OMe), 15.6 ppm (CHMe); δ (minor isomer) = 87.5 (NbOCH₂), 83.6 (CH), 62.4 (OMe), 16.8 ppm (CHMe).

When the reaction of **1a** (0.65 mmol) with 1,2dimethoxypropane (0.52 mmol) was carried out in CDCl₃ inside a NMR tube, ¹H NMR spectroscopy revealed the presence of methyl chloride, in *ca*. 1:1 ratio with respect to **6**.

The reaction of **1a** (0.110 g, 0.407 mmol) with 1,2dimethoxypropane (0.11 mL, 0.90 mmol), in CDCl₃, gave a mixture which was analyzed by ¹H NMR and GC/MS: MeCl, 2,5dimethyl-1,4-dioxane and some unreacted 1,2-dimethoxypropane were detected. Reactivity of NbCl₅ with 1-chloromethoxy-2-methoxyethane. Preparation of NbCl₄[O(CH₂Cl)CH₂CH₂O], 7. A suspension of 1a (0.209 g, 0.774 mmol) in CH₂Cl₂ (15 mL) was treated with 1-chloromethoxy-2-methoxyethane (0.070 mL, 0.61 mmol), and the mixture was stirred at room temperature for additional 45 min. The final yellow mixture was filtered in order to remove some solid, then it was layered with pentane. Compounds 3a and 7 were obtained in admixture as a dark-yellow solid, after 12 h at -20 °C. Complex 7. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.60$ (s, 2H, *CH*₂Cl), 5.28 (t, 2H, ³J_{HH} = 5.86 Hz, *CH*₂ONb), 4.64 ppm (t, 2H, ³J_{HH} = 5.86 Hz, *CH*₂OCH₂Cl). ¹³C NMR (400 MHz, CDCl₃): $\delta = 84.8$ (*C*H₂Cl), 79.7 (*C*H₂OCH₂Cl), 74.0 ppm (*C*H₂ONb).

When the reaction of 1a (0.70 mmol) with ClCH₂O(CH₂)₂OCH₃ (0.60 mmol) was carried out in CDCl₃ in a NMR tube, ¹H NMR spectroscopy revealed the presence of methyl chloride, 3a and 7 in *ca.* 3:5:2 ratio.

The reaction of **1a** (0.110 g, 0.407 mmol) with $ClCH_2O(CH_2)_2OCH_3$ (0.10 mL, 0.88 mmol), in a mixture of $CDCl_3$ (0.70 mL) and CH_2Cl_2 (0.0260 mL, 0.405 mmol), gave a solution which was analyzed by ¹H NMR and GC/MS: CH_2Cl_2 , $O(CH_2Cl_2$, diglyme (100:18:17 molar ratio) and unreacted 1-chloromethoxy-2-methoxyethane were detected.

Reactivity of MCl₅ with diglyme. Isolation and characterization of NbCl₄[OCH₂CH₂O(CH₂)₂O(Me)NbCl₅], 8, NbOCl₃(diglyme), 9, and [MeO(CH₂)₂O(CH₂)₂O(H)Me][NbCl₆], 10. A suspension of 1a (0.140 g, 0.518 mmol) in CH₂Cl₂ (15 mL) was treated with diglyme (0.055 mL, 0.38 mmol), and the mixture was stirred at room temperature for additional 20 min. The final yellow mixture was filtered in order to remove some solid, then the filtrated solution was layered with pentane. Compound 8 was obtained as an ochre-yellow microcrystalline solid, after 48 h at room temperature. Yield: 0.079 g (49%). Anal. Calcd for C₅H₁₁Cl₉Nb₂O₃: C, 9.62; H, 1.78; Nb, 29.78; Cl, 51.13. Found: C, 9.71; H, 1.75; Nb, 29.54; Cl, 50.81%. ¹H NMR (400 MHz, CDCl₃): \delta = 5.51 (m, 2H, CH₂ONb), 4.8 (m-br, 6H, CH₂), 4.31 ppm (s, 3H, Me).

When the reaction of 1a (0.50 mmol) with diglyme (0.40 mmol) was carried out in CDCl₃ in a NMR tube, ¹H NMR spectroscopy revealed the presence of **8**, **3a** and methyl chloride, in about 10:1:20 ratio.

The reaction of **1a** (0.085 g, 0.31 mmol) with diglyme (0.095 mL, 0.66 mmol), in CDCl₃/CH₂Cl₂ (CDCl₃ 5.0 mL, CH₂Cl₂ 0.308 mmol), afforded a solution which was analyzed by ¹H NMR and GC/MS: CH₂Cl₂, MeCl, MeOCH₂CH₂Cl₁, 1,4-dioxane, 1,2-dichloroethane were detected in 20:30:5:7:1 ratio (¹H NMR). Compound **9** was isolated by layering the CDCl₃ solution with pentane, at -20 °C. Yield: 0.043 g (40%). Anal. Calcd for C₆H₁₄Cl₃NbO₄: C, 20.62; H, 4.04; Nb, 26.59; Cl, 30.44. Found: C, 20.51; H, 4.11; Nb, 26.22; Cl, 29.88%. IR (solid): 934 vs [*v*_{Nb=0}] cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 4.42 (m, 2H, CH₂), 3.95 (m, 4H, CH₂), 3.7 ppm (m-br, 8H, CH₂ and CH₃).

In a second attempt of crystallization, at -20 °C, X-ray quality crystals of **10** were collected: yield 12% from **1a** (0.090 g, 0.33 mmol) and diglyme (0.049 mL, 0.34 mmol). Anal. Calcd for C₆H₁₅Cl₆NbO₃: C, 16.35; H, 3.43; Nb, 21.08; Cl, 48.26. Found: C, 16.02; H, 3.34; Nb, 21.05; Cl, 48.43%. IR (solid): 3175 w [v_{0-H}] cm⁻¹.

Preparation of MOCl₃, M = Nb, Ta. The preparation of **11a** is described in detail; compound **11b** was obtained by analogous procedure. Crystalline NbOCl₃(dme), **2a** (0.120 g, 0.393 mmol), was added to CH₂Cl₂ (15 mL), hence the mixture was treated with TiCl₄ (0.065 mL, 0.59 mmol). Precipitation of colourless **11a** occurred nearly instantaneously from a yellow solution. Yield: 0.071 g, 84%. Anal. Calcd for Cl₃NbO: Nb, 43.16; Cl, 49.41. Found: Nb, 43.02; Cl, 48.90%. The yellow solution was dried under vacuum, and an aliquot of the residue was dissolved in CDCl₃ (0.5 mL): ¹H NMR analysis revealed the presence of TiCl₄(dme) [δ = 4.28 (s, 2H, CH₂), 4.08 ppm (s, 3H, CH₃)].³⁵ A second aliquot of the residue was dissolved in CH₂Cl₂, and the solution was layered with pentane. Crystals of TiCl₄(dme), which were identified by X-ray analysis, were collected after 24 h at room temperature.

 $TaOCl_3$, **11b**. Colourless, air sensitive solid; 80% yield from **2b** (0.160 g, 0.407 mmol) and TiCl₄ (0.070 mL, 0.64 mmol). Anal. Calcd for Cl₃OTa: Ta, 59.66; Cl, 35.07. Found: Ta, 59.20; Cl, 34.95%.

Preparation of NbCl₃(dme), 12. Crystalline NbOCl₃(dme), **2a** (0.060 g, 0.20 mmol), was added to CH₂Cl₂ (8 mL), thus the mixture was treated with SnBu₃H (0.12 mL, 0.45 mmol). A brickred solid, corresponding to NbCl₃(dme), **12**, quickly formed. The solid was recovered by filtration, washed with pentane (2 × 10 mL) and dried under reduced pressure. Yield: 0.050 g, 87%. Anal. Calcd for C₄H₁₀Cl₃NbO₂: C, 16.60; H, 3.48; Nb, 32.10; Cl, 36.75. Found: C, 16.78; H, 3.56; Nb, 31.77; Cl, 36.31%.

X-Ray crystallography

Crystal data and collection details for NbOCl₃(dme)NbCl₅ (*Nb*–*O*–*Nb*), **4a**, TaOCl₃(dme)TaCl₅ (*Ta*–*O*–*Ta*), **4b**, and [MeO(CH₂)₂O(CH₂)₂O(H)Me][NbCl₆], **10**, are listed in Table 3. The diffraction experiments were carried out on a Bruker APEX II diffractometer equipped with a CCD detector and using Mo-K α radiation. Data were corrected for Lorentz polarization and absorption effects (empirical absorption correction SADABS).³⁶ Structures were solved by direct methods and refined by full-matrix least-squares based on all data using F^2 .³⁶ The asymmetric unit of **10** contains one independent [NbCl₆]⁻ anion located on a general position and half of a second [NbCl₆]⁻ anion located on an inversion centre, as well as one fully independent [MeO(CH₂)₂O(CH₂)₂O(H)Me]⁺ cation and a second one located on an inversion centre. All non-hydrogen atoms were refined with anisotropic displacement parameters.

H-atoms bonded to carbons were placed in calculated positions and treated isotropically using the 1.2 fold U_{iso} value of the parent atom except methyl protons, which were assigned the 1.5 fold U_{iso} value of the parent *C*-atom. The *O*-bonded hydrogen atoms in **10** [H(1), H(3) and H(5)] were located in the Fourier map and refined isotropically using the 1.2 fold U_{iso} value of the parent *O*-atom. Restraints were applied to the O–H distances. The O(3)–H(3) group is located close to an inversion centre and forms a hydrogen bond to a symmetry generated O(3) atom. Therefore, H(3) appears to be disordered over two symmetry related positions with 0.5 occupancy factor each. As a consequence of this fact, in order to maintain one protonated oxygen atom per diglyme molecule, the hydrogen atom involved in the H-bond between O(1) and O(5) has been split into two equally populated positions, one

Complex	4a	4b	10
Formula	$C_4H_{10}Cl_8Nb_2O_3$	$C_4H_{10}Cl_8O_3Ta_2$	C ₆ H ₁₅ Cl ₆ NbO ₃
Fw	575.54	751.62	440.79
λ/Å	0.71073	0.71073	0.71073
T/K	100(2)	100(2)	100(2)
Crystal system	Orthorhombic	Monoclinic	Monoclinic
Space group	$P2_{1}2_{1}2_{1}$	$P2_{1}/n$	C2/c
a/Å	7.0287(5)	6.6388(3)	21.528(3)
b/Å	13.5297(9)	26.0083(13)	15.3879(19)
c/Å	17.5555(12)	9.9726(5)	17.492(2)
$\beta/^{\circ}$	90	103.1160(10)	124.665(2)
Cell volume/Å ³	1669.5(2)	1676.99(14)	4766.1(10)
Z	4	4	12
$D_{\rm c}/{\rm g}~{\rm cm}^{-3}$	2.290	2.977	1.843
μ/mm^{-1}	2.644	14.305	1.756
F(000)	1104	1360	2616
Crystal size/mm	$0.21 \times 0.15 \times 0.12$	$0.16 \times 0.14 \times 0.12$	$0.22 \times 0.19 \times 0.15$
θ limits/°	1.90-27.00	1.57-27.00	1.75-25.03
Reflections collected	9274	18476	11126
Independent reflections	3564	3666	4066
	$(R_{\rm int} = 0.0173)$	$(R_{\rm int} = 0.0354)$	$(R_{\rm int} = 0.0276)$
Data/restraints/parameters	3564/0/156	3666/0/156	4066/2/228
Goodness on fit on F^2	1.068	1.053	1.017
$R1 \left[I > 2\sigma(I) \right]$	0.0138	0.0194	0.0247
wR2 (all data)	0.0327	0.0428	0.0499
Largest diff. peak/hole, e Å ⁻³	0.255/-0.401	1.336/-0.702	0.407/-0.399

Table 3 Crystal data and experimental details for NbOCl₃(dme)NbCl₅ (Nb-O-Nb), 4a, TaOCl₃(dme)TaCl₅ (Ta-O-Ta), 4b, and [MeO(CH₂)₂O-(CH₂)₂O(CH₂)₂O(H)Me][NbCl₆], 10

directly bonded to O(1) and the other to O(5). Therefore, one *O*-bonded H⁺ is present on each diglyme molecule, which is located alternatively on one or the other of the two terminal methoxy groups in each independent cation.

CCDC reference numbers 691886–691888 contain the supplementary crystallographic data for this paper. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b810210d

Acknowledgements

The authors wish to thank the Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR, Roma), Programmi di Ricerca Scientifica di Notevole Interesse Nazionale 2004–2005, for financial support.

References

- Comprehensive Organometallic Chemistry, G. Wilkinson, F. G. A. Stone and E. W. Abel, Eds., Pergamon Press, New York, 1982 and 1995; R. H. Crabtree, *The Organometallic Chemistry of the Transition Elements*, 4th Edition, Wiley, New York, 2005.
- 2 (a) M. T. Reetz, *Top. Curr. Chem.*, 1982, **106**, 1; G. A. Olah, *Acc. Chem. Res.*, 1987, **20**, 422; (b) A. D. Ryabov, *Chem. Rev.*, 1990, **90**, 403; (c) F. Musso, E. Solari, C. Floriani, K. Schenk, A. Chesi-Villa and C. Rizzoli, *Organometallics*, 1997, **16**, 4889; (d) S. Chandrasekhar, T. Ramachandar and T. Shyamsunder, *Ind. J. Chem.*, 2004, **43B**, 813.
- 3 Q. Guo, T. Miyaji, R. Hara, B. Shen and T. Takahashi, *Tetrahedron*, 2002, **58**, 7327, and the references cited therein.
- 4 (a) W. J. Evans, T. A. Ulibarri and J. W. Ziller, Organometallics, 1991, 10, 134; (b) C. Eaborn, P. B. Hitchcock, K. Izod and J. D. Smith, J. Am. Chem. Soc., 1994, 116, 12071; (c) B.-J. Deelman, M. Booij, A. Meetsma, J. H. Teuben, H. Kooijman and A. L. Spek, Organometallics, 1995, 14, 2306; (d) K. Takaki, M. Maruo and T. Kamata, J. Org. Chem., 1996, 61, 8332; (e) D. J. Duncalf, P. B. Hitchcock and G. A. Lawless, Chem. Commun., 1996, 269; (f) M. C. Cassani, M. F. Lappert and F. Laschi, Chem. Commun., 1997, 1563; (g) I. L. Fedushkin, F. Girgsdies,

H. Schumann and M. N. Bochkarev, *Eur. J. Inorg. Chem.*, 2001, 2405; (*h*) C. A. Bradley, L. F. Veiros, D. Pun, E. Lobkovsky, I. Keresztes and P. J. Chirik, *J. Am. Chem. Soc.*, 2006, **128**, 16600.

- 5 (a) Y. K. Gun'ko, P. B. Hitchcock and M. F. Lappert, J. Organomet. Chem., 1995, **499**, 213; (b) M. C. Cassani, Y. K. Gun'ko, P. B. Hitchcock, A. G. Hulkes, A. V. Khvostov, M. F. Lappert and A. V. Protchenko, J. Organomet. Chem., 2002, **647**, 71; (c) S. Le Caër, M. Heninger, J. Lemaire, P. Boissel, P. Maître and H. Mestdagh, Chem. Phys. Lett., 2004, **385**, 273; (d) S. Le Caër, M. Heninger, P. Pernot and H. Mestdagh, J. Phys. Chem. A, 2006, **110**, 9654; (e) C. A. Bradley, L. F. Veiros and P. J. Chirik, Organometallics, 2007, **26**, 3191.
- 6 F. Marchetti, G. Pampaloni and S. Zacchini, Dalton Trans., 2007, 4343.
- 7 The fluorides of niobium(v) and tantalum(v) have tetranuclear structures in the solid state, while the corresponding heavier halides are dinuclear in the solid state and mononuclear in the vapour phase [A. F. Wells, *Structural Inorganic Chemistry*, 5th Edition, Clarendon Press, Oxford, 1993]. For sake of simplicity, in this paper the general formula MX₅, when dealing with the niobium(v) and tantalum(v) halides, will be used.
- 8 F. Marchetti, G. Pampaloni and S. Zacchini, *Chem. Commun.*, 2008, 3651.
- 9 (a) A. H. Cowley, F. Fairbrother and N. Scott, J. Chem. Soc., 1958, 3133; (b) F. Fairbrother, A. H. Cowley and N. Scott, J. Less-Common Met., 1959, 1, 206.
- (a) S. F. Pedersen, J. B. Hartung, jr., E. J. Roskamp and P. S. Dragovich, *Inorg. Synth.*, 1992, **29**, 119; (b) C. G. Dewey, J. E. Ellis, K. L. Fjare, K. M. Pfahl and G. F. P. Warnock, *Organometallics*, 1983, **2**, 388; (c) J. E. Ellis, G. F. P. Warnock, M. V. Barybin and M. K. Pomije, *Chem.-Eur. J.*, 1995, **1**, 521; (d) K. S. Heinselman, V. M. Miskowski, S. J. Geib, L. C. Wang and M. D. Hopkins, *Inorg. Chem.*, 1997, **36**, 5530; (e) M. V. Barybin, J. E. Ellis, M. K. Pomije, M. L. Tinkham and G. F. P. Warnock, *Inorg. Chem.*, 1998, **37**, 6518; (f) W. W. Brennessel, J. E. Ellis, M. K. Pomije, V. J. Sussman, E. Urnezius and V. G. Young, Jr., *J. Am. Chem. Soc.*, 2002, **124**, 10258.
- 11 (a) T. Oshiki, K. Tanaka, J. Jamada, T. Ishiyama, Y. Kataoka, K. Mashima, K. Tani and K. Takai, *Organometallics*, 2003, 22, 464; (b) J. A. Varela and C. Saá, *Chem. Rev.*, 2003, 103, 3787, and the references cited therein.
- 12 A. J. Jones and J. D. Wilkins, J. Inorg. Nucl. Chem., 1976, 38, 95.
- 13 (a) P. J. McKarns, M. J. Heeg and C. H. Winter, *Inorg. Chem.*, 1998, 37, 4743; (b) K. Stumpf, R. Blachnik and G. Roth, Z. *Kristallogr.*, 1999,

214, 251; (*c*) E. Hey, F. Weller and K. Dehnicke, *Z. Anorg. Allg. Chem.*, 1983, **502**, 45; (*d*) A. Noll and U. Müller, *Z. Anorg. Allg. Chem.*, 1999, **625**, 1721.

- 14 F. Bottomley and L. Sutin, Adv. Organomet. Chem., 1988, 28, 339.
- 15 (a) F. A. Cotton and R. C. Najjar, *Inorg. Chem.*, 1981, **20**, 1866; (b) F. A. Cotton, S. A. Duraj and W. J. Roth, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.*, 1985, **41**, 881.
- 16 M. H. Chisholm, J. C. Huffman and L.-S. Tan, *Inorg. Chem.*, 1981, 20, 1859.
- 17 M. Ströbele and H.-J. Müller, Z. Anorg. Allg. Chem., 2002, 628, 488.
- 18 F. Marchetti, G. Pampaloni and S. Zacchini, *Inorg. Chem.*, 2008, 47, 365.
- 19 (a) G. Malandrino, R. Lo Nigro, P. Rossi, P. Dapporto and I. L. Fragalà, *Inorg. Chim. Acta*, 2004, **357**, 3927; (b) W. J. Evans, D. B. Rego and J. W. Ziller, *Polyhedron*, 2006, **25**, 2691.
- 20 J. Pauls, E. Iravani, P. Köhl and B. Neumüller, Z. Anorg. Allg. Chem., 2004, 630, 876.
- 21 G. P. Pez, P. Apgar and R. K. Crissey, J. Am. Chem. Soc., 1982, 104, 482.
- 22 (a) C. Djordjevic and V. Katovic, J. Inorg. Nucl. Chem., 1963, 25, 1099;
 (b) L. G. Hubert-Pfalzgraf, R. C. Muller, M. Postel and J. G. Riess, Inorg. Chem., 1976, 15, 40; (c) M. G. B. Drew, D. A. Rice and D. M. Williams, Inorg. Chim. Acta, 1986, 118, 165; (d) V. C. Gibson, T. P. Kee and A. Shaw, Polyhedron, 1988, 7, 2217; (e) V. C. Gibson, T. P. Kee and W. Clegg, J. Chem. Soc., Dalton Trans., 1990, 3199; (f) W. A. Herrmann, F. Dyckhoff and E. Herdtweck, Chem. Ber, 1992, 125, 2651; (g) J. Sundermeyer, J. Putterlick, M. Foth, J. S. Field and N. Ramesar, Chem. Ber, 1994, 127, 1201.
- 23 J. C. Daran, Y. Jeannin, J. E. Guerchais and R. Kergoat, *Inorg. Chim.* Acta, 1979, 33, 81.
- 24 The presence of complex $[TaCl_3(OCH_3)_2]_2$ was revealed by the weak NMR signals at 4.69 and 4.42 ppm (^1H NMR) and at 64.7 and

62.7 ppm (13 C NMR), in accordance with the NMR data available for this compound in solution of CD₃OD. The, same resonances were found in the spectra of the solution obtained by reacting a suspension of TaCl₅ (0.120 g, 0.335 mmol), in CDCl₃, with two equivalents of CH₃OH.

- 25 A. Karaliota, M. Kamariotaki and D. Hatzipanayioti, *Transition Met. Chem.*, 1997, **22**, 411.
- 26 A. Antiñolo, A. Otero, F. Urbanos, S. Garcia-Blanco, S. Martinez-Carrera and J. Sanz-Aparicio, J. Organomet. Chem., 1988, 350, 25.
- 27 (a) W. Uhl, A. Vester, D. Fenske and G. Baum, J. Organomet. Chem., 1994, 464, 23; (b) W. Uhl, R. Gerdin and A. Vester, J. Organomet. Chem., 1996, 513, 163; (c) W. Uhl, Coord. Chem. Rev., 1997, 163. 1.
- Chem., 1996, **513**, 163; (c) W. Uhl, Coord. Chem. Rev., 1997, **163**, 1.
 28 M. Westerhausen, C. Birg, H. Nöth, J. Knizek and T. Seifert, Eur. J. Inorg. Chem., 1999, 2209.
- 29 A. Ecker, R. Köppe, C. Üffing and H. Schnöckel, Z. Anorg. Allg. Chem., 1998, 624, 817.
- 30 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1.
- 31 (a) K. Dehnicke, Naturwissensch., 1965, 58; (b) E. Preuss, G. Lambing and S. Müller-Becker, Z. Anorg. Allg. Chem., 1994, 620, 1812.
- 32 W. Menzel and M. Fröhlich, Ber. Dtsch. Chem. Ges., 1942, 75, 1055.
- 33 D. A. Skoog and D. M. West, *Fundamentals of Analytical Chemistry*, 2nd Edition, Holt, Rinehart and Winston, Chatham, UK, 1974, p. 233.
 34 C. J. Pouchert and J. Behnke, *The Aldrich Library of ¹³C and ¹H FT*
- 34 C. J. Pouchert and J. Behnke, *The Aldrich Library of ¹³C and ¹H FT NMR Spectra*, I edition, Aldrich Chemical Company Inc., Milwaukee, USA, 1993.
- 35 E. Turin, R. M. Nielson and A. E. Merbach, *Inorg. Chim. Acta*, 1987, 134, 67.
- 36 G. M. Sheldrick, SHELX97-Program for the refinement of Crystal Structure, University of Göttingen, Göttingen, Germany, 1997.