New Compounds

Synthesis of New Urethans. *p*-Cyclohexylsulfamoyl and *p*-Piperidinosulfonylcarbanilic Acid Esters

I. LALEZARI* AND H. GOLGOLAB

Department of Chemistry, Faculty of Pharmacy, University of Tehran, Tehran, Iran

Received March 19, 1971

In continuation of our search for new anticancer compounds,¹ new urethans listed in Table I were pre-

TABLE I

RSO ₂ NHCOOR'										
Mp, Yield,										
R.	R'	°C	%	Formula ^a						
Су ^ь	\mathbf{Et}	187	68	$C_{15}H_{22}N_2O_4S$						
Су	<i>i</i> -Pr	188	77	${ m C_{16}H_{24}N_2O_4S}$						
Су	<i>tert</i> -Bu	182	61	${ m C_{17}H_{26}N_2O_4S}$						
Су	<i>n</i> -Am	142	76	$C_{18}H_{28}N_2O_4S$						
Cy	<i>n</i> -Hex	130	72	$C_{19}H_{30}N_2O_4S$						
Су	n-Oct	135	73	$C_{21}H_{34}N_2O_4S$						
Cy	Allyl	172	64	${ m C_{16}H_{22}N_2O_4S}$						
Су	Benzyl	180	71	$C_{20}H_{24}N_2O_4S$						
Cy	Cholesteryl	225	40	$C_{40}H_{61}N_2O_4S$						
Cy	Cyclopentyl	200	87	$\mathrm{C_{18}H_{26}N_2O_4S}$						
Cy	Cyclohexyl	176	82	$C_{19}H_{28}N_2O_4S$						
Cy	Cycloheptyl	194	62	$C_{20}H_{30}N_2O_4S$						
Су	Cycloctyl	178	86	$\mathrm{C_{21}H_{32}N_2O_4S}$						
Cy	o-Methoxyphenyl	160	54	$C_{20}H_{24}N_2O_5S$						
Су	p-Nitrophenyl	187	40	$C_{19}H_{21}N_3O_6S$						
Су	Ethylfurfuryl	154	97	$C_{20}H_{26}N_2O_5S$						
Су	α -Cyclohexyl- α - methylbenzyl	198	30	$C_{27}H_{36}N_2O_4S$						
Су	Ph_2CH	209	63	$C_{26}H_{28}N_2O_4S$						
Pip^{c}	Thymyl	178	85	$C_{22}H_{28}N_2O_4S$						
Pip	o-Carboxyphenyl	141.5	92	$C_{19}H_{20}N_2O_6S$						
Pip	Trityl	110	82	$C_{31}H_{30}N_2O_4S$						
a A 11 .		and for C	11	the needles mean						

^a All compounds were analyzed for C, H, and the results were satisfactory. Similarly ir and nmr spectra were as expected. ^b Cyclohexylamino. ^c Piperidino.

pared by Curtius degradation of appropriate benzoyl azides.

The compounds proved to be inactive² (T/C = 89-103% at 400 mg/kg) against the L 1210 lymphoid leukemia in BDF₁ mice, and the Walker carcinosarcoma 256 in random-bred albino rats.

Experimental Section³

 $p\mbox{-}CyclohexylsulfamoylbenzoylAzide.—}p\mbox{-}Cyclohexylsulfamoylbenzoic acid ethyl ester (mp 100) was prepd by known methods from <math display="inline">p\mbox{-}cyclohexylsulfamoylbenzoic acid^4}$ and transformed to $p\mbox{-}$

(1) N. Sharghi, I. Lalezari, Gh. Niloufari, and F. Ghabgharan, J. Med. Chem., 13, 1248 (1970).

(2) Screening results were supplied by CCNCS of the National Institutes of Health, Bethesda, Md.

(3) Melting points were taken on a Leitz hot stage microscope and were uncorrected. The ir spectra were determined with a Leitz Model III spectrograph. Nmr spectra were obtained on a Varian A60A instrument.

(4) C. S. Miller, U. S. Patent 2,608,512 (1953); Chem. Abstr., 47, 5440d (1953).

cyclohexylsulfamoylbenzhydrazide (mp 174°). The hydrazide (2.97 g, 0.01 mole) in 20 ml of 50% AcOH was stirred at ice bath temp with 20 ml of a 5% aq NaNO₂ to give 2.56 g of azide (80%), mp 110° dec. Anal. ($C_{13}H_{16}N_4O_3S$) C, H.

p-Piperidinosulfonylbenzoyl azide was prepd similarly. p-Piperidinosulfonylbenzoic acid⁵ was transformed to the corresponding ester (mp 100°) then to hydrazide (mp 205°). This treated as above gave 1.8 g of azide (90%), mp 115° dec. Anal. ($C_{12}H_{14}N_4O_3S$) C, H.

General Preparation of Urethans.—The benzoyl azides (0.01 mole) and 0.02 mole of appropriate alcohol or phenol were refluxed for 1 hr in 20 ml of dry PhMe. The solvent was evapd and the residue was recrystd from dil EtOH. Et esters were also prepd by 5-hr refluxing of the azide in 10 times its wt of abs EtOH.

(5) Fujio Nagasawa, Japanese Patent 278 (1954); Chem. Abstr., 49, 11024e (1955).

Aldehyde Disubstituted Aminoacethydrazones as Potential Hypertensive Agents

A. TAJANA* AND R. POZZI

Research Division, Recordati s.a.s., Milan, Italy

Received March 27, 1971

In the course of our research on new nitrofuran derivatives, the usual pharmacological screening showed a hypertensive activity for 5-nitrofuran-2-aldehyde diethylaminoacethydrazone, 5-nitrofuran-2-aldehyde N-pyrrolidinoacethydrazone, and 5-nitrofuran-2-aldehyde N-piperidinoacethydrazone.¹

This observation prompted us to synthesize a series of disubstituted acethydrazones. No activity on arterial pressure was found except for compds 1, 8, 15, 16, 33, and 44 which exhibited a light hypotensive activity. Some derivatives of naphthaldehydes, of 2,3,5,6-tetramethylbenzaldehyde, of 2-methylbenzofuran-3-aldehyde and of *p*-chlorobenzaldehyde (10, 11, 13, 21, 30, 32, 37, 48, 50, and 56) were found active ip in mice at 30-50 mg/kg (corresponding to about 0.2 LD_{50}) as anticonvulsants in electroshock.²

Experimental Section³

2-Formylbenzofuran.⁴—A mixt of 48.6 g (0.03 mole) of benzofuran-2-carboxylic acid and 178.47 g (1.5 moles) of SOCl₂ was refluxed for 2 hr. The SOCl₂ was distd at reduced pressure. The residue, dissolved in 450 ml of PhMe, was reduced by the procedure of Rosenmund. The catalyst was filtered, and the solvent was evapd *in vacuo* at 40° under N₂. The crude oil distd at 98° (0.5 mm), yield 31 g (72%). Anal. (C₉H₆O₂) C, H.

Aminoacethydrazones. Method A.—A mixt of 0.01 mole of aldehyde, 0.01 mole of aminoacethydrazide, and 3 ml of EtOH was refluxed for 2 hr. When the products crystd, they were collected

(1) E. Massarani, D. Nardi, A. Tajana, and L. Degen, J. Med. Chem., 14, 633 (1971).

(2) E. Massarani, D. Nardi, and M. J. Magistretti, *ibid.*, 9, 617 (1966).

(3) Melting points are uncorrected and were determined in a capillary tube. Analyses are indicated only by the symbols of the elements. The anal, results were within $\pm 0.4\%$ of theor values.

(4) Other authors synthesized this compound with other methods [T. Reichstein and I. Reichstein, *Helv. Chim. Acta*, **13**, 1275 (1930); H. Normont, C. R. Acad. Sci., **218**, 683 (1944); M. Bisagni, J. Chem. Soc., 3688 (1955)].

No.	R	Method	Recrystn	Mp, °C	Yield, %	Formula ^a	
1	$2-ClC_6H_4$	AB	Hexane	76	70	$C_{13}H_{18}ClN_{3}O$	
-	- 0100004	nıb	EtOH	208	10	$C_{13}H_{18}CIN_3O \cdot HCl$	
2	4-ClC ₆ H ₄	AB	<i>i</i> -PrOH	161-162 70		$C_{13}H_{18}CIN_3O \cdot HCl$	
$\overline{3}$	2-HOC ₆ H ₄	AA	EtOH	202-203	61	$C_{13}H_{19}N_3O_2 \cdot HCl$	
4	4-HOC ₆ H ₄	AD	MeOH-Et ₂ O	252	88	$C_{13}H_{19}N_3O_2 \cdot HCl$	
5	$3,4-HOC_6H_3$	AA^b	<i>i</i> -PrOH	183	80	$C_{13}H_{19}N_3O_3$	
	,		EtOH	175		$C_{13}H_{19}N_3O_3 \cdot HCl$	
6	$2-O_2NC_6H_4$	\mathbf{AC}	C ₆ H ₆ -petr ether	68-69	63	$C_{13}H_{18}N_4O_3$	
			<i>i</i> -PrOH	168	0.5	$C_{13}H_{18}N_4O_3 \cdot HCl \cdot H_2O$	
7	$4-O_2NC_6H_4$	AA	EtOH-H ₂ O	141	60	$C_{13}H_{18}N_4O_3$	
			EtOH	147	00	$C_{13}H_{15}N_4O_3 \cdot HCl \cdot H_2O$	
8	3,4,5-(CH ₃ O) ₃ C ₆ H ₂	В	Ligroin	110-111	50	$C_{16}H_{25}N_{3}O_{4}$	
	, , , , , , , , , , , ,		<i>i</i> -PrOH	177-179		$\mathrm{C}_{16}\mathrm{H}_{25}\mathrm{N}_{3}\mathrm{O}_{4}\cdot\mathrm{HCl}$	
9	Н	В	Petr ether	73-74 47		$C_{13}H_{25}N_3O$	
10	1-Naphthyl	В	Ligroin	92 - 93	51	$\mathrm{C}_{17}\mathrm{H}_{21}\mathrm{N}_{3}\mathrm{O}$	
	L U		EtOH-Et ₂ O	208-210		$C_{17}H_{21}N_3O \cdot HCl$	
11	4-Cl-1-naphthyl	В	Ligroin	126 - 127	74	$C_{17}H_{20}CIN_3O$	
			EtOH-Et ₂ O	203 - 205		C ₁₇ H ₂₀ ClN ₃ O·HCl	
12	2-Naphthyl	В	EtOH-Et ₂ O	230-232 25		$C_{17}H_{21}N_3O \cdot HCl$	
	H ₃ C CH ₃						
13	\square	В	Ligroin	141 - 143	-50	$\mathrm{C}_{17}\mathrm{H}_{27}\mathrm{N}_{3}\mathrm{O}$	
			EtOH-Et ₂ O	187-188		$\mathrm{C_{17}H_{27}N_{3}O\cdot HCl}$	
	H ₃ C CH ₃						
14	2-Furyl	AD	<i>i</i> -PrOH	177 - 178	75	$\mathrm{C}_{11}\mathrm{H}_{17}\mathrm{N}_{3}\mathrm{O}_{2}\cdot\mathrm{HCl}$	
15		\mathbf{B}^{c}	Ligroin	89-91	63	$\mathrm{C}_{11}\mathrm{H}_{16}\mathrm{ClN_3O_2}$	
			EtOH	196 - 198		$C_{11}H_{16}ClN_3O_2 \cdot HCl$	
16		В	Ligroin	97-99	64	$\mathrm{C}_{11}\mathrm{H}_{15}\mathrm{Cl}_2\mathrm{N}_3\mathrm{O}_2$	
	\		EtOH-Et ₂ O	181 - 182		$\mathrm{C}_{11}\mathrm{H}_{15}\mathrm{Cl}_{2}\mathrm{N}_{3}\mathrm{O}_{2}\cdot\mathrm{HCl}$	
17		4 15 4	EOU	0.00	0.0		
17		AD^d	EtOH	228	83	$\mathrm{C}_{15}\mathrm{H}_{19}\mathrm{N}_{3}\mathrm{O}_{2}\cdot\mathrm{HCl}$	
18		AB^d	EtOH-H ₂ O	109	52	$\mathrm{C_{16}H_{21}N_{3}O_{2}}$	
	CH3		<i>i</i> -PrOH	207		$\mathrm{C_{16}H_{21}N_{3}O_{2}\cdot HCl}$	

TABLE I: DIETHYLAMINOACETHYDRAZONES (C₂H₅)₂NCH₂CONHN=CHR

^{*a*} All compds gave analyses for C, H, N, and Cl within 0.4% of theory. ^{*b*} Reaction in *i*-PrOH. ^{*c*} The reaction was carried out in stoppered flask, because of the ready sublimation of 5-chlorofuran-2-aldehyde. ^{*d*} Reaction in *i*-PrOH for 4 hr.

TABLE II: N-PYRROLIDINOACETHYDRAZONES

NCH ₂ CONHN=CHR									
RecrystnMp,Yield,No.RMethodSolvent°CTormula ^d									
19	$C_{6}H_{3}$	AC	EtOH-H ₂ O	130-131	91	$C_{13}H_{17}N_3O$			
20	$2-Cl-C_6H_4$	AC	EtOH-1100 EtOH	150 - 151 150	67	$C_{13}H_{16}ClN_{3}O$			
20	2-01-06114	1111	EtOH	232	01	$C_{13}H_{16}CIN_{3}O \cdot HCl$			
21	4-Cl-C ₆ H ₄	AA	C_6H_6	135	60	$C_{13}H_{16}CIN_{3}O \cdot H_{4}O$			
	1 01 0,000		EtOH	175	00	$C_{13}H_{16}CIN_3O \cdot HCl \cdot H_2O$			
22	2-HOC ₆ H ₄	AA	EtOH	154-155	81	$C_{13}H_{17}N_3O_2$			
23	4-HOC ₆ H ₄	\mathbf{A}^{b}	EtOH-Et ₂ O	224	45	$C_{13}H_{17}N_3O_2 \cdot HC_1$			
$\overline{24}$	3,4-HOC ₆ H ₃	AA	EtOH	218 - 220	75	$C_{13}H_{17}N_3O_3 \cdot HCl$			
25	$2-O_2NC_6H_4$	AA	EtOH	133	73	$C_{13}H_{16}N_4O_3$			
			EtOH	224 - 225		$C_{13}H_{16}N_4O_3 \cdot HCl$			
26	$4-O_2NC_6H_4$	AA	MeOH	168	74	$\mathrm{C}_{13}\mathrm{H}_{16}\mathrm{N}_4\mathrm{O}_3\cdot\mathrm{H}_2\mathrm{O}$			
			EtOH	241		$C_{13}H_{16}N_4O_3\cdot HCl$			
27	3,4,5-(CH ₃ O)C ₆ H ₂	В	C_6H_6 -ligroin	142 - 143	62	$\mathrm{C_{16}H_{23}N_{3}O_{4}}$			
			EtOH-Et ₂ O	230 - 231		$\mathrm{C}_{16}\mathrm{H}_{23}\mathrm{N}_{3}\mathrm{O}_{4}\cdot\mathrm{HCl}$			
28	Н	AC^{c}	Ligroin-petr ether	95	72	$C_{13}H_{23}N_3O$			
29	1-Naphthyl	В	EtOH-H ₂ O	116 - 117	57	$C_{17}H_{19}N_{3}O$			
			EtOH-Et ₂ O	210 - 211		$C_{17}H_{19}N_{3}O\cdot HCl$			
30	4-Cl-1-Naphthyl	В	EtOH−H₂O	183 - 184	71	$C_{17}H_{18}ClN_{3}O$			
	-		EtOH-Et ₂ O	234 - 236		$C_{17}H_{18}ClN_3O\cdot HCl$			
31	2-Naphthyl	В	EtOH-Et ₂ O	240-242	32	$\mathrm{C}_{17}\mathrm{H}_{19}\mathrm{N}_{3}\mathrm{O}\cdot\mathrm{HCl}$			

TABLE II (Continued)								
No.	R	Method	Recrystn Solvent	Mp, °C	Yield, %	Formula ^a		
32	H ₃ C H ₃ C CH ₃	В	C ₆ H ₆ -ligroin EtOH-Et ₂ O	167 - 169 233 - 235	63	${f C_{17} H_{25} N_{3} O} \ {f C_{17} H_{25} N_{3} O \cdot HCl}$		
33	2-Furyl	AC	C_6H_6 EtOH	112–113 225 dec	90	$\begin{array}{c} C_{11}H_{15}N_{3}O_{2} \\ C_{11}H_{15}N_{3}O_{2} \cdot HCl \end{array}$		
34		Bď	EtOH-H ₂ O EtOH-Et ₂ O	138-140 220-221	48	$C_{11}H_{14}ClN_3O_2$ $C_{11}H_{14}ClN_3O_2 \cdot HCl$		
35		В	EtOH EtOH-Et ₂ O	144-145 222-223	55	${f C_{11} H_{13} Cl_2 N_3 O_2} \ {f C_{11} H_{13} Cl_2 N_3 O_2 \cdot HCl}$		
36		AC ^e	EtOH−H₂O EtOH	149 238	59	$\begin{array}{c} C_{15}H_{17}N_{3}O_{2} \\ C_{15}H_{17}N_{3}O_{2} \cdot HCl \cdot H_{2}O \end{array}$		
37		AAe	EtOH−H₂O MeOH	140–141 260 dec	56	$\begin{array}{c} \mathrm{C_{16}H_{19}N_{3}O_{2}}\\ \mathrm{C_{16}H_{19}N_{3}O_{2}} \cdot \mathrm{HCl} \end{array}$		

^a All compds gave analyses for C, H, N, and Cl within 0.4% of theory. ^b The base was pptd by adding H₂O. ^c Reaction for 4 hr. ^d See footnote c, Table I. ^e Reaction in *i*-PrOH for 4 hr.

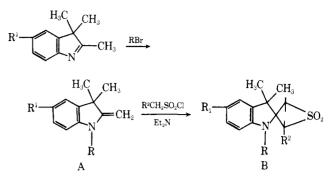
TABLE III: N-PIPERIDINOACETHYDRAZONES

NCH ₂ CONHN=CHR								
No.	R	Method	Recrystn solvent	Mp, °C	Yield, %	Formula ^a		
38	C_6H_5	AC^b	EtOH-H ₂ O	153 - 154	96	$C_{14}H_{19}N_3O$		
			EtOH	231 - 232		$C_{14}H_{19}N_{3}O \cdot HCl$		
39	$2-\mathrm{ClC}_{6}\mathrm{H}_{4}$	AA	EtOH	153 - 154	7 5	$C_{14}H_{18}ClN_3O$		
			EtOH	242		$C_{14}H_{18}ClN_{3}O \cdot HCl$		
40	4-ClC ₆ H ₄	AB	EtOH-H ₂ O	140 - 141	35	$C_{14}H_{18}ClN_3O\cdot H_2O$		
			EtOH	236 - 237		$\mathrm{C_{14}H_{18}ClN_{3}O\cdot HCl}$		
41	$2-HOC_6H_4$	AA	EtOH	109-110	85	$\mathrm{C_{14}H_{19}N_3O_2\cdot H_2O}$		
			MeOH-Et ₂ O	243 - 245		$C_{14}H_{19}N_3O_2 \cdot HCl$		
42	4-HOC ₆ H ₄	AA	MeOH	243 - 245	69	$\mathrm{C}_{14}\mathrm{H}_{19}\mathrm{N}_{3}\mathrm{O}_{2}\cdot\mathrm{HCl}$		
43	$3,4-(HO)_2C_6H_3$	AA	EtOH	213 - 214	65	$C_{14}H_{19}N_3O_3 \cdot HCl$		
44	$3,4,5-(CH_{3}O)_{3}C_{6}H_{2}$	В	C_6H_6 -ligroin	147 - 148	79	$C_{17}H_{25}N_{3}O_{4}$		
			EtOH-Et ₂ O	211-213		$C_{17}H_{25}N_3O_4 \cdot HCl$		
4 5	$2-O_2NC_6H_4$	AA	EtOH	135	70	$C_{14}H_{18}N_4O_3$		
			EtOH	209-210		$\mathrm{C_{14}H_{18}N_4O_3\cdot HCl\cdot H_2O}$		
46	$4-O_2NC_6H_4$	AA	EtOH-H ₂ O	187	62	$C_{14}H_{18}N_4O_3$		
			MeOH	259-261		$C_{14}H_{18}N_4O_3\cdot HCl$		
47	H	AC^{c}	Ligroin	93-94	90	$C_{14}H_{25}N_{3}O$		
48	1-Naphthyl	В	Ligroin	134 - 136	49	$C_{18}H_{21}N_3O$		
10		-	EtOH-Et ₂ O	208-209		$C_{18}H_{21}N_3O \cdot HCl$		
49	4-Cl-Naphthyl	В	C_6H_6	168 - 169	59	$C_{18}H_{20}ClN_3O$		
50		τ.	EtOH-Et ₂ O	244-246		$C_{18}H_{20}ClN_3O\cdot HCl$		
50	2-Naphthyl	в	EtOH-Et ₂ O	239 - 241	27	$\mathrm{C}_{18}\mathrm{H}_{21}\mathrm{N}_{3}\mathrm{O}\cdot\mathrm{HCl}$		
	H ₃ C CH ₃							
51	\sim		EtOH	160 - 162	60	$C_{18}H_{27}N_3O$		
	\rightarrow		EtOH-Et ₂ O	199 - 201		$C_{18}H_{27}N_3O \cdot HCl$		
	н₄с́сн₃							
52	2-Furyl	\mathbf{AC}	EtOH-H ₂ O	124	76	$C_{12}H_{17}N_{3}O_{2}$		
	4791	no	EtOH 1120	248 - 250	10	$C_{12}H_{17}N_{3}O_{2} \cdot HCl$		
53	8	Bď	C_6H_6 -ligroin	150-151	72			
00	⋳⊸Ҷ₀┖ᅳ	D-	EtOH-Et ₂ O	150-151 235-237	75	$C_{12}H_{16}ClN_3O_2$		
54	Cl-r-Cl	В	EtOH-H ₂ O	235-237 173-174	62	$C_{12}H_{16}ClN_3O_2 \cdot HCl$		
01		U	MeOH-Et ₂ O	265 dec	02	$C_{12}H_{13}Cl_2N_3O_2$		
55	Â		-			$\mathrm{C_{12}H_{15}Cl_2N_3O_2\cdot HCl}$		
99		AB	EtOH	176	63	$C_{16}H_{19}N_3O_2$		
			EtOH	250 dec		$\mathrm{C_{16}H_{19}N_{3}O_{2}\cdot HCl}$		
56		$\mathbf{A}\mathbf{A}^{f}$	EtOH	150	54	$\mathrm{C_{17}H_{21}N_{3}O_{2}}$		
	CH ₃		EtOH	$253 \mathrm{dec}$		$\mathrm{C}_{17}\mathrm{H}_{21}\mathrm{N}_{3}\mathrm{O}_{2}\cdot\mathrm{HCl}$		

^{*a*} All compds gave analyses for C, H, N, and Cl within 0.4% of theory. ^{*b*} Reaction in 10 ml of EtOH. ^{*c*} Reaction time 4 hr. ^{*d*} See footnote c, Table I. ^{*c*} The reaction was carried out in 6 ml for 4 hr. ^{*f*} The reaction was carried out in 6 ml for 4 hr.

and recrystd (AA). Sometimes the crystn took place by addn of H_2O (AB). In other cases the EtOH was evapd, and the residue was washed with H_2O and crystd (AC). When we were not able

to isolate the bases, we obtd the hydrochlorides by acidification of the reaction mixt (Al)) (see Tables I, II, and III). **Method B.**—A solu of 0.01 mole of aldehyde and 0.011 mole of aminoacethydrazide in 10 ml of AcOH was stirred for 2 hr at $21-25^{\circ}$. Then 20% aq Na₂CO₃ was added to alkalinity. Some products pptd as solids, others sepd as thick oils which solidified on standing. The sepd solids were collected and crystd. The hydrochlorides were prepd by conventional procedures (see Tables I, II, and III).


1-Substituted-3,3-dimethylspiro[indoline-2,3'thietane] 1',1'-Dioxides Derived from 2-Methyleneindolines

CHARLES H. TILFORD¹

Chemistry Department, Emory University, Atlanta, Georgia 30322

Received February 12, 1971

The enamine character of 2-methylene-1,3,3-trimethylindoline (A, R = Me; R¹ = H) was the subject of a review in 1949 by Coenen.² Stork and Borowitz³ more recently reported a new class of amino-substituted, four-membered cyclic sulfones (thietane 1,1-dioxides) synthesized by reaction of enamines with CH_2 =-SO₂, the intermediate sulfene generated *in situ* from MsCl upon treatment with $Et_3N.^4$ Cycloaddition of CH_2 == SO₂ and PhCH=SO₂ to 1-substituted-2-methylene-3,3dimethylindolines (A) under the Stork-Borowitz conditions has resulted in the new spiroindolinethietane ring system B as shown in the following reaction sequence.

No significant activity was observed under conditions of the test models in antiviral, antibacterial, antifungal, anthelmintic, hypotensive, and antiinflammatory, or reproductive physiology screening procedures.

Experimental Section

The following examples serve as general procedures for the preparation of compds A and B listed in Table I.

3,3-Dimethyl-1-hexyl-2-methyleneindoline (A-5).—A mixt of 68 ml (0.4 mole) of 2,3,3-trimethylindolenine (Fairmount Chemical Co.) and 65 g (0.4 mole) of n-C₈H₁₃Br in 250 ml of PhMe was refluxed 24 hr with stirring.⁶ The semisolid reaction mixt was treated with 100 ml of 30% KOH and stirred vigorously for 0.5 hr.⁶ The PhMe layer was sepd and fractionally distd. After a forerun of unchanged n-C₈H₁₃Br, 30 ml of starting indolenine was recovered at $75-78^{\circ}$ (0.25 mm). The desired product distd at 115–117° (0.82 mm) and amounted to 42 g of yellow oil that turned purple on exposure to air.

1-Hexyl-3,3-dimethylspiro[indoline-2,3'-thietane] 1',1'-Di-

TABLE 1
1-Substituted-3,3-dimethylspiro[indoline-2,3'-thietane] 1',1'-Dioxides (B)
and Their Intermediate 2-Methyleneindolines (A)

	,		·			,	J	3	
				%	Formula		Mp (corr)	%	Formula
	R	R١	Bp (mm), °C	vield	(Analysis) ^{<i>a</i>}	R^2	°C (dec)	vield	(Analysis) a
1	CH_3	H	Ь			Н	138 - 140	62	$\mathrm{C}_{13}\mathrm{H}_{17}\mathrm{NO}_2\mathrm{S}$
2	CH_3	Н	b			\mathbf{Ph}	130°	45	$C_{19}H_{21}NO_2S$
3	CH_3	Н	b			CH_2CH_2Cl	129 - 30	25	$\mathrm{C}_{15}\mathrm{H}_{20}\mathrm{ClNO}_{2}\mathrm{S}^{d}$
4	CH_3	Cl	e			Н	200°	50	$\mathrm{C}_{13}\mathrm{H}_{16}\mathrm{ClNO}_2\mathrm{S}$
5	n-Hexyl	Н	115117(0.28)	43	$\mathrm{C}_{17}\mathrm{H}_{25}\mathrm{N}$	Н	90-91	62	$\mathrm{C}_{18}\mathrm{H}_{27}\mathrm{NO}_2\mathrm{S}$
6	$\rm CH_2\rm CO_2\rm Et$	Н	111 - 113(0.10)	29	$\mathrm{C}_{15}\mathrm{H}_{19}\mathrm{NO}_{2}{}^{\prime}$	Н	143 - 144	57	$C_{16}H_{21}NO_4S$
7	Benzyl	Н	130.432(0.20)	48	$\mathrm{C}_{18}\mathrm{H}_{19}\mathrm{N}^{g}$	H	201°	41	$\mathrm{C}_{19}\mathrm{H}_{21}\mathrm{NO}_2\mathrm{S}$
8	2-Phenethyl	Н	134 - 136(0, 25)	50	$\mathrm{C}_{19}\mathrm{H}_{21}\mathrm{N}$	Н	143 - 144	53	$\mathrm{C}_{20}\mathrm{H}_{23}\mathrm{NO}_2\mathrm{S}$
9	1-Naphthylmethyl	H	188-193(0,20)	49	$\mathrm{C}_{20}\mathrm{H}_{21}\mathrm{N}^{h}$	Н	190 - 192	20	$\mathrm{C}_{23}\mathrm{H}_{23}\mathrm{NO}_2\mathrm{S}$

^{*n*} C, H, N (type A) and C, H, S (type B) analyses were within $\pm 0.4\%$ of calcd values unless indicated in this column. ^{*b*} Obtd from Aldrich Chemical Co., Inc. ^{*c*} Decomposes without melting. ^{*d*} S anal, not obtained; Cl and N values in good agreement with calcd. ^{*c*} Obtained from Gallard-Schlesinger Chemical Mfg. Corp. ^{*f*} Not analyzed as it decompd rapidly and required immediate use. ^{*g*} N anal, inadvertently omitted. ^{*b*} Used crude without anal.

The ir, uv, and nmr spectra, as well as elementary anal., were compatible with the structure proposed for B. For example, the nmr spectrum of B-1 (R = Me; $R^1 = R^2 = H$) showed chemical shifts as follows: $\delta 1.36$ (singlet, 6 H, 3, 3-Me₂); 2.95 (singlet, 3 H, NMe); 4.20, 4.25, 4.28, and 4.30 (singlets, each 1 H, 4 thietane ring H's); 6.3-7.3 (multiplet, 4 H, arom). Unexpectedly, these compds (B) were not sufficiently basic to form HCl salts. **oxide** (**B-5**).—To a stirred mixt of 32 g (0.2 mole) of the indoline A-5 and 40 ml of Et_aN in 200 ml of pure PhMe maintained at 5° was added dropwise 16.5 ml (0.2 mole) of MsCl in 30 ml of PhMe in 1 hr.³ The mixt was stirred overnight at room temp then filtered, and the ppt was washed with 100 ml of PhMe. The product obtained by rotary evapu of the filtrate was recrysted from MeOH and washed with Et_aO to remove pink coloration.

Acknowledgments.—The author greatly appreciates the assistance of Dr. Alfred Richardson, Jr., of The Wm. S. Merrell Company, Cincinnati, Ohio, particularly in interpretation of nmr spectra. Acknowledgment is also made of the contributions of the biological divisions of The Wm. S. Merrell Company, The National Drug Company, and Hess and Clark

⁽¹⁾ Present address: 2167 Greensward Dr., N.E., Atlanta, Ga. 30345.

⁽²⁾ M. Coenen, Angew. Chem., 61, 11 (1949).

⁽³⁾ G. Stork and I. Borowitz, J. Amer. Chem. Soc., 84, 313 (1962); similar results were published almost simultaneously by G. Opitz and H. Adolph, Angew. Chem., Int. Ed. Engl., 1, 113 (1962).

⁽⁴⁾ The existence of CH_{2} =:SO₂ and related sulfenes as intermediates generated in situ has been well documented since 1962; cf. the reviews by T. J. Wallace, Quat. Rev., **20**, 67 (1966), and G. Opitz, Angew. Chem., Int. Ed. Engl., **6**, 107 (1967). Opitz also reviews the cycloaddition of sulfenes to enamines.

⁽⁵⁾ P. Lochon and O. O. Jamboo-Geoffroy, Bull. Soc. Chim. Fr., 393 (1965), quarternarized with CLC==CHCl as solvent.

⁽⁶⁾ B. Robinson, J. Chem. Soc., 586 (1963), reported this procedure