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   Abstract 

 The C9 ′ -C15 ′  fragment of enacyloxins, a series of antibiot-
ics isolated from  Frateuria  sp. W-315, was synthesized from 
diethyl  d -tartrate.  

   Keywords:    antibiotics;   diethyl  d -tartrate;   enacyloxins; 
   Frateuria  sp. W-315;   synthesis.    

  Enacyloxins (ENXs) are unique polyhydroxy-polyenic and 
yellow-colored antibiotics produced by  Frateuria  sp. W-315 
in a Czapek-Dox medium spent by  Neurospora crassa  
(Scheme  1  ) (Watanabe et al. , 1990 ). ENXs show antibiotic 
activity against Gram-positive and Gram-negative bacte-
ria, but inactive for yeast and fungi (Watanabe et al. , 1990 ; 
Oyama et al. , 1994 ). Its mode of action was considered to be 
an inhibition of peptide biosynthesis by hindering the release 
of EF-Tu GDP from the ribosome (Parmeggiani et al. , 2006 ). 
Furthermore, ENXs have attracted considerable attention 
because of the inhibitory activity toward organelle protein 
synthesis in  Plasmodium falciparum  (Clough et al. , 1999 ). 
The whole stereochemistry of ENXs [ENX IVa ( 1 )] was elu-
cidated by our synthetic (Fujimori et al. , 2001 ; Takeuchi et 
al. , 2001 ; Watanabe et al. , 2001 ) and spectroscopic studies 
(Furukawa et al. , 2007 ), and Parmeggiani ’ s X-ray crystal-
lographic analysis of the  Escherichia coli  EF-Tu/guanylyl 
iminodiphosphate-ENX IIa ( 2 ) complex (Parmeggiani et al. , 
2006 ). Continuing our chemical work of ENXs, we began the 
synthetic studies of the polyol fragment. Here, we describe an 
effi cient synthesis of C9 ′ -C15 ′    fragment. 

 Scheme 1 shows our retrosynthetic plan. Disconnection 
of the whole molecule ( 1  or  2 ) leads to three fragments  A , 
 B , and  C . The C8 ′ -C9 ′  double bond could be formed by 
Wittig reaction and nucleophilic addition is suitable for the 
C15 ′ -C16 ′  connection. The stereochemistry of fragments  A  
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 Scheme 1    Enacyloxins and their retrosynthetic analysis.    

and  B  could make use of naturally occurring methyl ( S )- β -
hydroxyisobutyrate (HIBA-Me) or diethyl  d -tartrate. 

 We fi rst chose ( S )-HIBA-Me as a starting material as its 
( S )-confi guration was to be applied to the C12 ′ -position of the 
C9 ′ -C15 ′  fragment (Scheme  2  ). ( S )-HIBA-Me was converted 
to the known dibromide  5  according to the literature (Ley et 
al. , 2009 ). A lithium acetylide formed by basic treatment of 
 5  was trapped with formaldehyde to afford a propargyl alco-
hol  6  in 88 %  yield. Hydroalumination followed by adding 
 N -chlorosuccimide (NCS) (Heathcock et al. , 1984 ) gave a 
vinyl chloride  7 . The hydroxy group of  7  was protected as 
 p -methoxyphenylmethyl ether ( 8 ). Acidic removal of the THP 
group proceeded in 82 % , however, sometimes suffered from 
concomitant dechlorination. TEMPO oxidation and Wittig 
reaction of  9  gave an enone  10 ; however, the next Sharpless 
asymmetric dihydroxylation resulted in a complex mixture. 

 In addition, it was found that partial epimerization occurred 
during the oxidation of  3 . To confi rm this and to elucidate 
optimized conditions, various oxidants were tested as shown 
in Table  1  . The optical purity of aldehyde  4  was determined 
by derivatization to  12 . Optical rotation value was compared 
with that of the known  ent - 12  (Nagaoka and Kishi , 1981 ). The 
optical purity of  12  was further confi rmed by  1 H NMR analy-
sis of the corresponding ( S )-MTPA ester ( 13 ). As a result, all 
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the moderate conditions caused the epimerization. Thus, we 
thought HIBA-Me was insuffi cient as a starting material and 
formation of the vinylic chloride moiety should be introduced 
at a later step of synthesis. 

 Next, we planned to use a dihydroxy moiety of  d -tartrate 
for the C13 ′ -C14 ′  position (Scheme  3  ). Araki et al.  (2002)  
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 Scheme 2    Synthetic studies of C9′  -C15 ′  fragment-1. (a) i. DHP, 
PPTS, CHCl 3 . ii. LiAlH 4 , THF. (b) Swern oxidation. (c) CBr 4 , PPh 3 , 
Et 3 N, MeCN (69 %  from  3 ). (d) BuLi, (CH 2 O) n , THF (88 % ). (e) 
Red-Al  ®  , PhMe, then NCS (50 % ). (f) NaH,  p -methoxyphenylmethyl 
chloride, NaI, THF (quant.). (g) PPTS, MeOH (82 % ). (h) i. TEMPO, 
KBr, aq. NaOCl, CH 2 Cl 2 . ii. Ph 3 P = CHCO 2 Et, PhMe (77 %  from  9 ). 
(i) AD-mix  β , MeSO 2 NH 2 ,  t -BuOH-H 2 O.    

 Table 1        Oxidation conditions for  3  and optical purity of 
derivative  13.    
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 (a) LiAlH 4 , THF. (b) i. NaH, BnCl, NaI, THF. ii. TsOH, MeOH 
(ca. 55 %  from  3 ). (c) ( R )-MTPACl, Py, CH 2 Cl 2  (quant.). 

Entry Conditions [ α ] d  
of  12  a 

Optical 
purity ( % ) b 

1 DMSO, (COCl) 2 , Et 3 N, 
 - 70 ° C to 0 ° C

 – 14.0 ° 81

2 DMSO, SO 3  · Py, Et 3 N, 0 ° C  – 12.0 ° 69
3 Dess-Martin periodinane, 

CH 2 Cl 2 , 0 ° C
 – 14.6 ° 85

4 PCC, MS4 Å , CH 2 Cl 2 , 0 ° C  – 6.9 ° 40

    a [ α ] D  ( c  = 4.00, CHCl 3 ).    
b Optical purity was calculated based on 

 ent-  12  { > 98 %  ee, [ α ] D  =  + 17.2 °  ( c  = 3.24, CHCl 3 )} reported by 
Nagaoka and Kishi  (1981) .    
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 Scheme 3    Synthesis of C9 ′ -C15 ′  fragment 2. 
 (a, b) Araki et al. , 2002  .  (c) i. Swern oxidation (87 % ). ii. CBr 4 , PPh 3 , 
Et 3 N, CH 2 Cl 2  (43 % ). (d) BuLi, (CH 2 O) n , THF (43 % ). (e) i. ethyl 
vinyl ether, PPTS, CH 2 Cl 2  (quant.). ii. TBAF, THF (76 % ). (f) Dess-
Martin periodinane (68 % ).    

reported the conversion of diethyl  d -tartrate to alcohol  15 , 
which had all the asymmetric center of the target fragment. 
Introduction of the asymmetric methyl group was performed 
by hydroboration-oxidation of  14  with 9-BBN. The hydroxy 
group of  15  was converted to a dibromide  16  and then to a 
propargyl alcohol  17 . Epimerization of the methyl group 
was not detected. The TBS group was removed ( 18 ) and the 
resulting hydroxy group was oxidized to give C9 ′ -C15 ′  frag-
ment aldehyde  19 . The overall yield was 8.3 %  in six steps 
from  14 . 

 In conclusion, the C9 ′ -C15 ′  fragment for the total synthe-
sis of enacyloxin antibiotics was prepared from the known 
alcohol derived from diethyl  d -tartrate. Preparation of a C16 ′ -
C23 ′  is described by Igarashi et al.  (2011) .  
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