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Synthesis and opioid receptor binding properties of a highly
potent 4-hydroxy analogue of naltrexone
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Abstract—Very high affinity for opioid receptors (e.g., Ki = 0.052 nM for l) has been observed in the rationally designed naltrexone
analogue 5. SAR and physical data supports the hypothesis that the 4-OH group of 5 stabilizes the 3-carboxamido group in the
putative bioactive conformation.
� 2005 Elsevier Ltd. All rights reserved.
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Figure 1. Structures of lead compounds for this study.
As part of our broad goal to identify long-acting opioid
receptor interactive agents useful in the treatment of co-
caine and heroin addiction in humans, we recently re-
ported the synthesis and opioid receptor binding data
of 3-desoxy-3-carboxamidonaltrexone 1.1 This novel
analogue of naltrexone (2) where its phenolic OH group,
typical of opioid receptor interactive agents, was re-
placed with a carboxamido group displayed high affinity
for the l opioid receptor. Relative to naltrexone, car-
boxamide 1 had approximately one order of magnitude
reduced affinity for l. This SAR was not in synch with
that noted for 2,6-methano-3-benzazocines [e.g., cyclaz-
ocine (4)] where comparable or enhanced affinity was
seen for the 8-carboxamides [e.g., 8-carboxamidocyc-
lazocine (8-CAC, 3)] relative to the corresponding phe-
nolic OH parent (Fig. 1).2

To explain this divergent SAR, we hypothesized that the
ether oxygen of the furan ring in the 4,5a-epoxymorph-
inan derivative 1 stabilizes a conformation (1a in Fig. 2)
that is different than the putative bioactive conforma-
tion 1b and that an energy penalty would be required
for the more stable (unbound state) conformer 1a to at-
tain the bioactive conformation resulting in reduced
binding affinity. Evidence supporting 1b as the bioactive
conformation was derived, in part, from comparative
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proton NMR data for 1 and 3 in CDCl3. For 1, we ob-
served a strong intramolecular H-bond that bridges the
carboxamido group to the neighbouring ether oxygen of
the furan ring (NH protons appear as singlets at d 5.77
and 7.16 that do not coalesce upon warming to 45 �C).
These NMR data contrast that of 3 where the two car-
boxamide NH�s appear as broad singlets (d 5.63 and
6.04) and coalesce into a very broad singlet (d 5.80) be-
tween 30 and 40 �C. 8-CAC (3) has no neighbouring fur-
an ring with which the carboxamide can
intramolecularly H-bond, which results in little or no
preference/barrier for/between conformations 3a/b in
the unbound state. This knowledge, coupled with the
divergent SAR noted above, led us to reason that
the l opioid receptor can bind 3b, the putative bioac-
tive conformation, with no conformational energy
penalty.
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Figure 2. Conformational preferences of carboxamide groups.
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Scheme 2. Reagents and conditions: (i) BBr3, CHCl3, 25 �C, 30 min.
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In hopes of gaining additional insight into the SAR of
these carboxamido-containing opiates, we have designed
and synthesized a series of analogues of 1 as probes to
help further define its bioactive conformation. We rea-
soned that higher affinity would arise by rigidifying the
carboxamido group of 1 into a conformational state
similar to 1b. This could be accomplished by, for exam-
ple, incorporating the carboxamido group into a cyclic
structure with an appropriate 4-substituent via covalent
or non-covalent bonds. We now wish to report our re-
sults showing that such a rigidified naltrexone analogue
5 characterized by having a 4-OH group has very high
affinity for l and j opioid receptors that is 14- and 48-
fold, respectively, higher than 1. We also made and eval-
uated novel naltrexone analogues 6 (3-CONH2–4-
OCH3) and 8 (3,4-dihydroxy) as well as the N-cyclobu-
tylmethyl derivative 13 to aid in the interpretation of
these SAR data.

4-Hydroxy-morphinans can be easily made via furan
ring cleavage of a wide variety of 4,5a-epoxymorph-
inan substrates using reductive,3–8 based-induced elimi-
nation,4,9 photolytic,10 and acid catalysis11 methods.
As shown in Scheme 1, we used one of these reductive
cleavage methods4 (Zn/HOAc/HCl) to prepare target 5
from 1 in 50% yield. The corresponding 4-methoxy tar-
get 6 was made in 72% yield by treating 5 with
(CH3)3SiCHN2, Et3N in methanol/acetonitrile.12 To
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Scheme 1. Reagents and conditions: (i) Zn, 37% HCl, HOAc, 125 �C, 15 mi
determine the effect of 4-OH substitution on naltrexone
itself, we made novel catechol 8 as the HBr salt in 73%
yield by treating known compound 73,4 with BBr3 in
chloroform (Scheme 2).

An additional 3-carboxamido-4-hydroxymorphinan
analogue, 13, was made to determine if changes (cyclo-
propylmethyl ! cyclobutylmethyl) at the basic nitrogen
would affect binding. Commercially available nalbu-
phine (9) was converted to its corresponding 3-triflate
ester 10 in 98% yield using PhN(Tf)2

13 in Et3N/CH2Cl2.
Treating 10 with Zn(CN)2/Pd(PPh)4

14 provided nitrile
11 in 83% yield, which was oxidized [(COCl)2, Et3N,
DMSO] to ketone 12 in 92% yield. Target 13 was made
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n; (ii) (CH3)3SiCHN2, Et3N, MeOH, MeCN, 25 �C, 24 h.
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in 71% yield from 12 via a reductive/hydrolytic process
using Zn in HCl/H2O/HOAc (Scheme 3).

Affinities of target compounds for human l, d and j opi-
oid receptors stably expressed in CHO cells were as-
sessed by generating Ki values using well-documented
receptor binding assays.15 These data are summarized
in Table 1. Ring-opened target compound 5 displays
very high affinity for l and j (Ki = 0.052 nM and
0.23 nM, respectively), and good affinity (Ki = 2.6 nM)
for the d receptor. Compared to 1, the original lead hav-
Table 1. Opioid receptor binding data for 3-carboxamido-4-hydroxymorphi
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Compd

X [3H]DAM

1b,c A CONH2 0.71 ± 0.

2 (Naltrexone)c,d A OH 0.11 ± 0.

5e B CONH2 0.052 ± 0.

6e 11 ± 0.

8e B OH 17 ± 4.

13e 0.13 ± 0.

a Binding assays used to screen compounds are similar to those previously r

expressed one type of the human opioid receptor were incubated with 12 d

[3H]U69,593 (l), 0.25 nM [3H]DAMGO (d) or 0.2 nM [3H]naltrindole (j
Incubation times of 60 min were used for [3H]U69,593 and [3H]DAMGO. B

incubation was used with this radioligand. Samples incubated with [3H]naltr

fluoride. Non-specific binding was measured by inclusion of 10 lM nalo

Schleicher & Schuell No 32 glass fibre filters using a Brandel 48-well cell ha

cold 50 mM Tris–HCl, pH 7.5, and were counted in 2 mL Ecoscint A scin

were soaked in 0.1% polyethylenimine for at least 60 min before use. IC50 va

Ki values of unlabelled compounds were calculated from the equation Ki =

gand)—see Ref. 20. Data are the mean ± SEM from at least three experim
b See Ref. 1.
c In our original work (Ref. 1), binding affinities for compounds 1 and 2 w

Relative affinities for 1 and 2 using human or guinea pig receptors were ve
d Obtained from commercial sources.
e Proton NMR, IR and MS were consistent with the assigned structures of al

new targets and most intermediates and were within ±0.4% of theoretical
ing the furan ring intact, 5 has 14-, 212- and 48-fold
higher affinity for l, d and j, respectively. These results
fit nicely with our pharmacophore hypothesis that the 4-
OH (as H-bond donor) stabilizes the �carboxamide-
acceptor� putative bioactive conformation 5b. Addi-
tional physical and SAR data were generated to pre-
clude that (a) the 4-OH stabilizes the alternate
�carboxamide-donor� conformation 5a and/or (b) the
newly introduced 4-OH group enhances binding via di-
rect interaction with receptor protein. Methyl ether 6,
an analogue close to 5 that is highly unlikely to adopt
nans and related compounds
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13O O
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Ki (nM ± S.E.)a

GO (l) [3H]Naltrindole (d) [3H]U69,593 (j)

058 550 ± 40 11 ± 0.36

006 60 ± 3.2 0.19 ± 0.005

004 2.6 ± 0.26 0.23 ± 0.018

69 480 ± 35 23 ± 2.6

0 130 ± 6.6 2.2 ± 0.16

0083 4.2 ± 0.36 0.27 ± 0.013

eported (see Ref. 15). Membrane protein from CHO cells that stably

ifferent concentrations of the compound in the presence of either 1 nM

) in a final volume of 1 mL of 50 mM Tris–HCl, pH 7.5 at 25 �C.
ecause of a slower association of [3H]naltrindole with the receptor, a 3 h

indole also contained 10 mMMgCl2 and 0.5 mM phenylmethylsulfonyl

xone. The binding was terminated by filtering the samples through

rvester. The filters were subsequently washed three times with 3 mL of

tillation fluid. For [3H]naltrindole and [3H]U69,593 binding, the filters

lues will be calculated by least squares fit to a logarithm-probit analysis.

(IC50)/1 + S where S = (concentration of radioligand)/(Kd of radioli-

ents performed in triplicate.

ere measured for opioid receptors from guinea pig brain membranes.

ry similar.

l new compounds. C, H and N elemental analyses were obtained for all

values.
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the �carboxamide-acceptor� conformation 6b due to
incompatibility of the oxygen�s lone pairs, has substan-
tially lower (212-, 185- and 100-fold) affinity than 5 for
l, d and j, respectively.16 Proton NMR data in CDCl3
for 5 and 6 lend additional support of our pharmaco-
phore hypothesis. Chemical shift difference (ca.
0.5 ppm) and the broad line shape for the two NHs of
5 is very different than seen with 1 but very close to that
observed for 3. Also, the proton of the phenolic hydro-
xyl of 5 is highly deshielded (d 13.3) and appears as a
sharp singlet, properties characteristic of participation
in an intramolecular H-bond as donor (i.e., �carboxam-
ide-acceptor� conformation 5b).17 Results from NMR
dilution experiments with 5 also confirms the relative
stability of conformer 5b. At five concentrations (100,
50, 10, 5 and 1 mM) of 5 in CDCl3, no change was noted
in the chemical shift or line shape of the phenolic H
whereas the amide H�s (broad singlets at d 6.2 and 6.7
at 100 mM) coalesced into a broad singlet at d 5.8 at
1.0 mM; both observations indicate that conformer 5b
(�carboxamide-acceptor�) is highly stabilized relative to
5a.18 The NH�s of the poorly active methyl ether 6 have
magnetic environments very similar to those of 1 signify-
ing the higher stability of conformer 6a (�carboxamide-
donor�) relative to 6b. Like naltrexone, compounds 1
and 5 were pure antagonists at the l receptor, as mea-
sured by its inhibition of DAMGO-stimulated
[35S]GTPcS binding (unpublished results).

We also made catechol derivative 8, the ring-opened ver-
sion of naltrexone, to directly assess the contribution of
the 4-OH to binding affinity in the 3-OH subseries and
indirectly gauge if the 4-OH of 5 contributes to high
affinity binding via intramolecular effects (as we hypoth-
esized) or intermolecular interaction(s) with receptor.
Our hypothesis was corroborated when we observed
that compared to naltrexone (2), there is a substantial
reduction (155-fold) in binding affinity for l upon cleav-
age of the furan ring to give 8. This result greatly con-
trasts the corresponding 3-CONH2 pair, 1 and 5,
where the ring-cleaved analogue is 14-fold more potent.
Compound 8 had a 2- and 12-fold lower affinity than 2
for d and j receptors, respectively. Lastly, the cyclobu-
tylmethyl analogue 13, which has the same 3-CONH2,
4-OH motif and proton NMR pattern as 5, has similarly
high affinity (within 2-fold) for all three receptors.

Our results show that 4-OH substitution on morphinans
significantly enhances binding affinity when the 3-substi-
tuent is CONH2 but greatly decreases affinity with a 3-
OH group, the prototypic substituent of opiates. There
are hundreds of 4-hydroxy-morphinans in the literature
with some, for example thebainone,19 dating as far back
as the 1920s. To our knowledge, however, none have a
3-CONH2 or similar group and none have reached the
therapeutic prominence of the corresponding 4,5a-
epoxymorphinans. We have also presented SAR and
proton NMR data showing the benefits of the 4-OH
group with a 3-CONH2 substituent is possibly a conse-
quence of stabilizing an intramolecular H-bonded bioac-
tive conformation where carboxamide is acceptor and 4-
OH is donor. As these NMR studies were conducted in
CDCl3 rather than in an aqueous environment more rel-
evant to the actual biological system, research aimed at
the design, synthesis and evaluation of novel carboxa-
mido-containing opiates where the CONH2 (or isosteric
group) is rigidified in the putative bioactive conforma-
tion via covalent attachments is underway in our
laboratories.
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