Accepted Manuscript

Copper polytellurite-chlorides with A^{2+} cations (A = Cd, Pb) obtained by CVT reactions

Diana O. Zinyakhina, Oleg I. Siidra, Dmitri O. Charkin, Evgeniy V. Nazarchuk, Rimma S. Bubnova

 PII:
 \$1387-7003(16)30231-3

 DOI:
 doi: 10.1016/j.inoche.2016.07.007

 Reference:
 INOCHE 6383

6)30231-3 .inoche.2016.07.007 3

To appear in: Inorganic Chemistry Communications

Received date:8 June 2016Revised date:3 July 2016Accepted date:9 July 2016

Please cite this article as: Diana O. Zinyakhina, Oleg I. Siidra, Dmitri O. Charkin, Evgeniy V. Nazarchuk, Rimma S. Bubnova, Copper polytellurite-chlorides with A^{2+} cations (A = Cd, Pb) obtained by CVT reactions, *Inorganic Chemistry Communications* (2016), doi: 10.1016/j.inoche.2016.07.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copper polytellurite-chlorides with A^{2+} cations (A=Cd, Pb) obtained by CVT reactions Diana O. Zinyakhina^a, Oleg I. Siidra^{a,*},

Dmitri O. Charkin^b, Evgeniy V. Nazarchuk^a, Rimma S. Bubnova^a ^aDepartment of Crystallography, St. Petersburg State University, Universitetskaya Nab. 7/9, 199034 St.Petersburg, Russia ^bDepartment of Chemistry, Moscow State University, GSP-1, Moscow, 119991 Russia

* Corresponding author. Tel. +7 812 3506688. E-mail address: o.siidra@spbu.ru

ABSTRACT. Two novel polytellurite-chlorides $Pb_5Cu_2(Te_4O_{11})Cl_8$ (1) and $CdCu_2(Te_3O_8)Cl_2$ (2) were obtained by a chemical vapour transport (CVT-reactions) reactions. The structure of 1 is based on $[Pb_5Cu_2(Te_4O_{11})]^{8+}$ one-dimensional blocks with full and partially occupied Cl sites around. The structure of 2 can be described as being formed by two types of one-dimensional units formed by Cd,Cu-centered polyhedra and TeO₃, TeO₄ pyramids sharing via common O atoms into electroneutral $[CdCu_2(Te_3O_8)Cl_2]^0$ sheets. Obtaining of novel polytellurite-chlorides demonstrates effectiveness of CVT techniques for preparation of different tellurite-based complex layered materials.

KEYWORDS: copper, tellurium, polytellurites, CVT-reactions, single crystal x-ray diffraction, lone-pair

1

Crystalline materials with Te(IV) and divalent metal cations have received attention for their fascinating structural chemistry and physical properties [1-5]. One-sided TeO₃, TeO₄ or TeO₅ coordination environments are very typical for Te⁴⁺ cations due to the presence of $5s^2$ lone electron pair. Te⁴⁺O_n polyhedra reveal tendency to form various Te⁴⁺_nO_m polyanions in contrast to Se⁴⁺- and I⁵⁺-centered polyhedra. The degree of Te⁴⁺_nO_m polymerization is affected by the type and number of the other cations within the structure. Tellurite compounds with Cu²⁺ represent particular interest in the sense of copper asymmetric coordination environments attributable to Jahn–Teller distortions. Many of copper tellurite halides reveal interesting magnetic properties [6-8]. Insertion of large Pb²⁺ cations or Cd²⁺ into copper tellurite chlorides may result in formation of unusual structural topologies and possible interesting properties. To date only one Pb-Cu tellurite chloride was reported PbCu₂(TeO₃)₂Cl₂ [8] and Cd-Cu tellurite chlorides are unknown. Recently we have employed chemical vapor transport reactions for obtaining of Cu²⁺ selenite chlorides with various cations [9,10]. Thus it was decided to apply the latter method of synthesis for tellurite containing systems. Herein we report on the synthesis and structural studies of Pb₅Cu₂(TeO₃)₂Cl₂(2) obtained in evacuated quartz ampoules in CuCl₂-TeO₂-PbO and CuCl₂-TeO₂-CdO system, respectively [11-13].

The structure of **1** contains five symmetrically independent Pb²⁺ cations, two Cu²⁺, and four Te⁴⁺ sites. The coordination of all Pb sites is asymmetric due to the presence of the stereochemically active lone-pairs. Shorter and stronger Pb-O bonds are located in one coordination hemisphere and longer Pb-Cl in another. Te(1) and Te(2) atoms form TeO₃ trigonal pyramids with three short distances ranging from 1.8614(3) to 1.8908(2) Å for Te(1) and from 1.8365(3) Å to 1.8873(2) Å for Te(2). Te(3) and Te(4) form TeO₄ polyhedra. Te(3) have three short Te-O bonds of 1.8940(2)-1.9231(3) Å and one long Te(3)-O(4) bond of 2.3982(4) Å. Te(4) coordination is similar to Te(3). Thus Te sites demonstrate typical for Te⁴⁺ coordination environments with formation of Te(1)O₃, Te(2)O₃ and Te(3)O₄, Te(4)O₄ pyramids further interconnected via common corners into [Te₄O₁₁]⁶⁺ tetrameric units (Fig. 2). Similar [Te₄O₁₁]⁶⁺ isolated units were previously reported in Pr₂Te₄O₁₁ [16], Er₂Te₄O₁₁[17], Sr₃Te₄O₁₁ [18] and Ni₁₅Te₁₂O₃₄Cl₁₀[19]. The structure of **1** contains also two symmetrically independent Cu atoms forming CuO₄ squares isolated one from each other and further complemented by Cl atoms to CuO₄Cl₂ octahedra with the average <Cu-Cl> bond lengths equal to 2.8921(3)-2.962(5) Å. Taking into account only the strongest *A*-O (*A* = Pb, Te, Cu) bonds one-dimensional [Pb₅Cu₂(Te₄O₁₁])⁸⁺ block in the structure of **1** can be obtained via the list of subsequent

Fig. 1. General projections of the structure of **1** (below) and **2** (above) and their schematic representations (lone pairs on Pb^{2+} and Te^{4+} are symbolized as *e*). The structure of **1** (a) represents type of structural architecture with positively charged $[Pb_5Cu_2(Te_4O_{11})]^{8+}$ one-dimensional units and Cl⁻ anions (partially occupied Cl sites are highlighted) associating with stereochemically active lone electron pairs in between (b). The structure of **2** (c) consists of neutral $[CdCu_2(Te_3O_8)Cl_2]^0$ layers (d) interconnected via weak *A*-Cl (*A* = metal) bonds only. Crystals of **1** and **2** were obtained by the chemical vapour transport reactions in evacuated quartz ampoules. Crystals of **1** were grown in the deposition part of the tube, whereas crystals of **2** are observed in the source zone.

Fig. 2. $[Pb_5Cu_2(Te_4O_{11})]^{8+}$ block (a) in the structure of **1** can be obtained according to the following subsequent transformations: (1) $[Pb_3Cu_2O_{11})]$ units (b) are formed by CuO_4 squares and one-sided PbO₄ and PbO₂ polyhedra which are further stacked via common O(3) atoms and related by inversion center; (2) tellurite tetramers are inserted (c) in between $[Pb_3Cu_2O_{11})]$; (3) additional Pb(3) and Pb(5) atoms are attached under and above $[Pb_3Cu_2(Te_4O_{11})]$ units (d) thus forming $Pb_5Cu_2(Te_4O_{11})]^{8+}$ blocks (e).

transformations listed in Fig. 2. There are a number of Cl sites compensating positive charge of $[Pb_5Cu_2(Te_4O_{11})]^{8+}$ one-dimensional blocks in the structure of **1**. Lone-electron pairs on Te⁴⁺ and Pb²⁺ demonstrate typical halophilic behavior and locate jointly in the areas with Cl sites. Cl(1)-Cl(6) sites are fully occupied, whereas the rest of Cl sites demonstrate partial occupancies. Partially occupied Cl(7)-Cl(13) sites are segregated into separate regions of the structure of **1** depicted in Fig. 1 and reveal possible pathways for ionic conduction.

The structure of **2** contains one Cd^{2+} cation, one Cu^{2+} , and two Te^{4+} sites (Fig. 3). Cd atoms are coordinated by four O with the Cd-O bond lengths in the range of 2.313(1) - 2.414(1) Å and two Cl atoms at distances of 2.540(2) Å thus forming irregular CdO_4Cl_2 polyhedra. Te atoms form two types of polyhedra: TeO₃ and TeO₄. Te(1) atoms form three short Te(1)-O bonds in the range of 1.883(1)-1.911(1) Å, whereas Te(2) form four short Te(2)-O bonds each in the range of 1.868(1)-2.165(1) Å. The crystal structure of **2** contains one symmetrically independent Cu site coordinated by four O atoms thus forming CuO₄ squares (Fig. 3). CuO₄ squares share common edges thus

forming Cu_2O_8 dimers (Fig. 3). CdO_4Cl_2 polyhedra and Cu_2O_8 dimers via common corners produce one-dimensional

Fig. 3. Cations coordination environments in the structure of **2** (a, b). Cu_2O_6 dimers and CdO_4Cl_2 share via common corners into one-dimensional units (a), whereas TeO_4 and TeO_3 pyramids form $[Te_3O_8]^{4-}$ trimers (b). General projection of $[CdCu_2(Te_3O_8)Cl_2]^0$ units along the *b* axis (c). Orientation of Cd-Cu oxochloride (d) and $[Te_3O_8]^{4-}$ units (e) in the structure of **2**.

chains in the structure of **2** (Fig. 3a,c). TeO₃ and TeO₄ pyramids form $[Te_3O_8]^{4-}$ polyanions. The structure of **2** can be described as being formed by two intertwisting one dimensional units formed by Cd,Cu-centered polyhedra and tellurite pyramids thus forming electroneutral $[CdCu_2(Te_3O_8)Cl_2]^0$ sheets parallel to the (001) plane (Fig. 2). The interlayer space is occupied by lone-pairs on Te⁴⁺ cations. Compounds with electroneutral layers formed by lone-pair and transition elements were recently described as promising materials in different fields [20-22]. However crystal structure of **2** is the first example of such kind of structural architecture with Cd²⁺ cations.

In conclusion, our exploration of copper-tellurite systems with Pb^{2+} and Cd^{2+} produced two novel polytellurite-chlorides with complex structural topologies and demonstrates effectiveness of CVT techniques for preparation of different Te-based complex layered materials. Tellurites and metal halides play the role of transport agents. This method hasn't been used before for obtaining of Cd and Pb containing tellurites. However, difficulties of this method to obtain pure phases should be taken into account. Formation of Cu_2O_8 dimers in the structure of **2** could be of interest from the viewpoint of interesting magnetic properties. We are in the process of exploring new tellurite based compounds with copper by this method and their properties.

Acknowledgments

This work was supported by St. Petersburg State University through the internal grant 3.38.238.2015 and RFBR 15-35-20632. Technical support by the X-Ray Diffraction Resource Centre of Saint-Petersburg State University is gratefully acknowledged.

Appendix A. Supplementary data

CSD entries 431271 and 431270 contain structural data for **1** and **2**, respectively. Supplementary data for this paper can be found online at http://dx.doi.org/XX.XXXX/*.

SCER MANS

References

[1] J. Goodey, J. Broussard, P. S. Halasyamani, Synthesis, structure, and characterization of a new second-harmonic-generating tellurite: Na₂TeW₂O₉, Chem. Mater. 14 (2002),

[2] K. M. Ok, P. S. Halasyamani, Mixed-metal tellurites: Synthesis, structure, and characterization of Na_{1.4}Nb₃Te_{4.9}O₁₈ and NaNb₃Te₄O₁₆, Inorg. Chem. 44 (2005), 3919-3925.

[3] H. Yu, W. Zhang, P. S. Halasyamani, Large birefringent materials, $Na_6Te_4W_6O_{29}$ and $Na_2TeW_2O_9$: synthesis, structure, crystal growth, and characterization, Cryst. Growth Des. 16 (2016), 1081-1087.

[4] F. Kong, C.-F. Sun, B.-P. Yang, J.-G. Mao, Second-order nonlinear optical materials based on metal iodates, selenites, and tellurites, Struct. Bond. 144 (2012), 43-103.

[5] J. Zhang, Z. Zhang, Y. Sun, C. Zhang, X. Tao, Bulk crystal growth and characterization of a new polar polymorph of BaTeMo₂O₉: α-BaTeMo₂O₉, CrystEngComm (2011), 13, 6985-6990.

[6] S. Hu, A. Mace, M. Johnsson, V. Gnezdilov, P. Lemmens, J. Tapp, A. Moeller, Crystal structure and magnetic properties of the S = 1/2 quantum spin system $Cu_7(TeO_3)_6F_2$ with mixed dimensionality, Inorg. Chem. (2014), 53, 7661-7667.

[7] R. F. Takagi, M. Johnsson, S. Lidin, Single-crystal x - ray study of Ba₂Cu₂Te₄O₁₁Br₂ and its incommensurately modulated superstructure companion, Chem.-Eur. J. (2008), 14, 3434-3441.

[8] P. S. Berdonosov, O. Janson, A. V. Olenev, S. V. Krivovichev, H. Rosner, V. A. Dolgikh Crystal structures and variable magnetism of $PbCu_2(XO_3)_2Cl_2$ with X = Se, Te, Dalton Trans. (2013), 42, 9547–9554.

[9] V. M. Kovrugin, O. I. Siidra, M. Colmont, O. Mentré, S. V. Krivovichev, Emulating exhalative chemistry: synthesis and structural characterization of ilinskite, Na[Cu₅O₂](SeO₃)₂Cl₃, and its K-analogue, Mineral. Petrol. (2015), 109, 421–430.

[10] V. M. Kovrugin, M. Colmont, O. I. Siidra, O. Mentré, A. Al-Shuray, V. V. Gurzhiy, S. V. Krivovichev, Oxocentered Cu(II) lead selenite honeycomb lattices hosting Cu(I)Cl₂ groups obtained by chemical vapor transport reactions, Chem. Commun. (2015), 51, 9563–9566.

[11] Synthesis of 1 and 2: Single crystals of 1 and 2 were prepared by the chemical vapour transport reactions method from the mixture of CuCl₂, TeO₂ and PbO in the ratio of 3:1:1 for 1 and CuCl₂, TeO₂ and CdO in the ratio of 1:2:1 for 2. The reaction mixtures were grounded and put in a silica tube, which was evacuated and sealed. One end of silica tube with loaded mixture of reagents was heated to 450°C and another end to 430°C for 24 h and then slowly cooled to room temperature for 3 days for 1 and 10 days for 2. Green crystals of 1 (Fig. 1) were observed in deposition zone of the tube in association with crystals of PbCl₂ and CuTeO₃. Phase 2 appeared in the source zone together with Cu₂Te₂O₅Cl₂ [14] Qualitative electron microprobe analysis (Hitachi TM3000) revealed no other elements, except Pb, Cu, Cl and Te in 1 and Cd, Cu, Cl and Te in 2 with the atomic number greater than 11 (Na).

[12] Single crystal data collections (Bruker Apex II DUO diffractometer with a micro-focus X-ray tube at 100K) were performed on crystals of **1** and **2** mounted on glass fibers. Structure solution and refinement has been carried out using SHELX-2014 program [15]. **1**: crystal $0.12 \times 0.10 \times 0.05$ mm³, monoclinic, *C2/m*, *a* = 42.881(8), *b* = 5.4475(10), *c* = 10.741(2) Å, β = 103.340(3), *V* = 2441.4(8) Å³, ρ = 5.803 g cm⁻³, μ (MoK α) = 41.661 mm⁻¹, 9522 measured reflections, 2048 unique ($R_{int} = 0.056$), $R_1 = 0.049$, w $R_2 = 0.100$, $\rho_{max,min} = +3.42$ (1.17 Å from Pb(2))/-1.72 e.Å⁻³ (0.77 Å from Pb(5). **2**: crystal 0.10 × 0.06 × 0.04 mm³, monoclinic, *P2/c*, *a* = 8.5433(3), *b* = 7.9599(3), c = 7.9857(3) Å, β = 99.864(2)°, *V* = 535.03(3) Å³, ρ = 5.097 g cm⁻³, μ (MoK α) = 14.443 mm⁻¹, 17184 measured reflections, 5544 unique ($R_{int} = 0.036$), $R_1 = 0.024$, w $R_2 = 0.050$, $\rho_{max,min} = +2.19$ (0.50 Å from Te(1))/-2.12 e.Å⁻³ (0.52 Å from Te(2).

[13] Thermal behavior of **1** (Fig. 1S) was studied in air by means of a Rigaku Ultima X-ray diffractometer with Cu-K α radiation using a high-temperature camera Rigaku HTA 1600. The sample was prepared from heptane's suspension on a Pt-Rh plate. The temperature step was 10 °C in the range of 25-500 °C. Compound **1** reveals no phase transitions and starts to decompose at 340°C. Products of decomposition are: CuO, Pb₃O₂Cl₂ and Pb₃TeO₄Cl₂.

[14] M. Johnsson, K.W. Tornroos, F. Mila, P. Millet, Tetrahedral clusters of copper(II): crystal structures and magnetic properties of $Cu_2Te_2O_5X_2$ (*X*= Cl, Br), Chem. Mater. (2000), 12, 2853-2857.

[15] G. M. Sheldrick, New features added to the refinement program SHELXL since 2008 are described and explained, Acta Cryst. (2015), C71, 3-8.

[16] I. Ijjaali, C. Flaschenriem, J.A. Ibers, Synthesis and characterization of the wide band-gap compound $Pr_2Te_4O_{11}$, J. Alloy. Compd. (2003), 354, 115-119.

[17] Y. L. Shen, J. G. Mao, Synthesis, crystal structure and luminescent properties of $Er_2Te_4O_{11}$, J. Alloys Compd. (2004), 385, 86-89.

[18] O. Dytyatyev, V. Dolgikh, On the crystal structure of a new binary oxide $Sr_3Te_4O_{11}$, Mater. Res. Bull. 34 (1999) 733–740.

[19] D. Zhang, M. Johnsson, S. Lidin, R.K. Kremer, The new nickel tellurite chloride compound $Ni_{15}Te_{12}O_{34}Cl_{10}$ --synthesis, crystal structure and magnetic properties, Dalton T. (2013), 42, 1394-1399.

[20] I. Zimmermann, M. Johnsson, A synthetic route toward layered materials: introducing stereochemically active lone-pairs into transition metal oxohalides, Cryst. Growth Des. 2014, 14, 5252–5259.

[21] J. L. Her, Y. H. Matsuda, K. Suga, K. Kindo, S. Takeyama, H. Berger, and H. D. Yang, High-field magnetization of a two-dimensional spin frustration system, $Ni_5(TeO_3)_4X_2$ (X = Br, Cl), J. Phys. Condens. Matter (2009), 21, 436005-436012.

[22] R. Becker, M. Johnsson, R. K. Kremer, H.-H. Klauss, and P. Lemmens, Crystal structure and magnetic properties of $FeTe_2O_5X$ (X = Cl, Br): A frustrated spin cluster compound with a new Te(IV) coordination polyhedron, J. Am. Chem. Soc. (2006), 128, 15469–15475.

8

Graphical abstract legend

Single crystals of new copper polytellurite chlorides with Cd and Pb were prepared by chemical vapor transport reactions \rightarrow Both of compounds demonstrate novel structure types \rightarrow The structure of **1** represents type of structural architecture with positively charged $[Pb_5Cu_2(Te_4O_{11})]^{8+}$ one-dimensional units and Cl⁻ anions associating with stereochemically active lone electron pairs in between \rightarrow The structure of **2** consists of neutral $[CdCu_2(Te_3O_8)Cl_2]^0$ layers interconnected via weak *A*-Cl (*A* = metal) bonds only with lone electron pairs on Te⁴⁺ in between

SP

13