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Summary. Litmo reagents derived from 1-trimopropylsllylpropyne (,1) and 1,3-k- [triisopropyl- 

silyllpropyne (3) are effective for the synthesm of 2 or E_ termmal enyne units (CH=CH-CZCH) 

aud for carbon-carbon bond formation with halides, aldehydes, ketones, epomdes, and o,p-enones. 

We recently described a simple synthesm of trusopropylsrlyltriflate (TIPS-Trf), an excellent 

reagent for the introduction of the TIPS group at nucleophillc centers. 
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It was also pomted out 

that the TIPS group has excellent potential as a control element m synthesns smce the three 

mopropyl groups provide strong steric screening not only for the salmon to which they are 

attached but to the next atom and even beyond. 
1 

For example, m a phenolic TIPS ether the 

carbons ortho to oxygen are stermally shielded. In additlon, lt 1s clear that because of the bulk 

of the TIPS group, a greater measure of stereochemmal control and position selectivity in 

carbon-carbon bond formmg processes might result from the use of thm group rather than the 

more common trimethylsllyl unit. In tms note we illustrate the uniqueness and utility of TIPS- 

containing reagents for the case of two prototypical propargylm nucleophiles. 

1-TIPS-propyne (1,), bp 100-101” (5mm), was readily prepared in 870/O yield from 1-litmopropyne 

and 1 eqmv of TIPS-Trf in ether at -40” to 0”. It undergoes clean metallatlon with either 

n-butyllitmum-tetramethylene&amme in ether (-15”, 2 hr), art-butyllithium in ether-pentane 

(-lo”, 4 hr) or n-butyllithmm m tetrahydrofurau (THF) (-20”, 15 mm) to form lithio l-TIPS- 

propyne (2) whmh can be converted to 1,3-bis-TIPS-propyne (3), bp 130-135” (0.08 mm), 100% - 

yreld, by reaction with a slight excess of TIPS-Trf (-78 to -4O”, 1 hr). 
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T IPS--C=C--CH, (TIPS-CEC-CH,) Li TI PS-C=C-CH,-TIPS 

I 2 2 

Reaction of 3, urlth 1 eqmv of n_butylllthium in THF at -20” for 15 mm results in deprotonatiou 

to form lithiated 3, whmh is a highly useful reagent for the synthesis of either ~19 or traus enynes, 

a subject previously studied iu these laboratorles in connection with the synthesm of histrionico- 

toxln. 3.4 

Addition of cyclohexane carboxaldehyde to the lithio derivative of 3 m THF at -78” followed 

by gradual warming (ca. 6 hr) to 23”, extractive isolatmn and filtration through silica gel afforded 

cis enyne 4, R = cyclohexyl, with >20 1 Z/E stereoselectivlty (pmr analysis), m 71% yield. - -- 
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Similarlg ;-heptanal and trimethylacetaldehyde afforded 4, R = ;-C6H13, (57%) and 4, R = t -Bu, 

(79%) with comparable stereoselectivity. 
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In contrast, when the same reactions were conducted in THF wrth 5 equiv of hexamethyl- 

phosphorictrramide (RMPA) (relative to aldehyde) at -78” for 15-20 seconds (followed by quenching 

at -78” and isolation) the enynes ,5, R = cyclohexyl, i-C6H13 and t-Bu, were formed wrth 

E /Z ratros in the range 2O:l to 1O:l and yields of 60-65s. -- The lrthio derrvatrve of l-TIPS- 

3-TMS-propyne m contrast afforded no enyne product at all under these oomhtlons. 

Thus, with the aldehydes g-heptanal, cyclohexane carboxaldehyde, and trrmethylacetaldehyde, 

in which the formyl function 1s situated either on a lo, 2”, or 3” carbon, a simple method 1s now 

available for the synthesis of enynes 4 or 5 with high selectivity and in good yield. Aromatic 

aldehydes seem to deviate from thrs pattern, however. Benzaldehyde, for example, affords 4 

and 5,, R = C6H5, in a ratio of 2.1 in THF and 1:s in THF containmg 1 eqmv of HMPA. For 

E-anisaldehyde the ratios of 4 to 5 were 6:l in THF and l-4.5 for THF containing 1 equiv of HMPA. 
_ “, 

Thus, there is an interestmg and substantial effect of the I?-methoxy substltuent to increase 

stereoselectivrty for formation of Z_enyne in THF, that is to displace the behavior of thrs 

substrate toward that of non-arematic aldehydes. 

We rationalize these results as follows. In THF solution the lithlated 3 probably exists at 

least partially as the lithio allene 6. Reaction of 6 with the aldehyde through a g-membered 

cyclic transition state wrth mmimal steric repulsion is expected to lead to 4. In THF-BMPA 

solution the anionic conjugate base of 3 may be a major species and probably is the most active 

nucleophile. Reaction of this allenic/propargylic anion via minimum repulsion transltlon 

state 7 would afford the observed E_ enyne 5. 
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The lack of mgh stereoselectivity with benzaldehyde as substrate could be a result of Its 

greater electron affinity Q., stability of the radical anion C6H5CHO’ ) and the intervention 

of a competmg electron transfer pathway. 5,6 The occurrence of substantially greater z 

stereoselectlvity with E-anisaldehyde m THF relative to benzaldehyde supports this view. 

That the effect of RMPA in favoring formation of E_-enyne 5 over g-enyne 2 is due to 

the carbonyl addition step and not to a special influence on the mode of further reaction of the 

aldehyde carbonyl adduct could be demonstrated 111 a straightforward way. Reaction of 

cyclohexanecarboxaldehyde with lithio 3 in THF at -78” for 10 set, quenching with pH 7 buffer 

at -78”, extractlve isolation and chromatography gave the erythro p-hydroxysilane $ in 12% 

yield along unth the two allenic isomers (llstotal), startmg aldehyde and Z-enyne 4, R = 

cyclohexyl . The erythro stereochemistry of the adduct 8 was supported by (1) the pmr spectrum 

which showed JAB = 1 5 Hz, (2) conversion with p-butyllithium in THF exclusively to Z_enyne 4, 

R = cyclohexyl; and (3) conversion by trifluoroacetic acid or boron trifluoride to g-enyne 5, 

R = cyclohexyl. Treatment of 8_ m THF-HMPA at -78” urlth n_butyllithlum afforded agam the 

Z-enyne as major product (ratio gE ca. 6). Thus it is evident that HMPA does not reverse -- 

the stereochemistry of the elimination step and that its influence to favor E_enyne formation from 

llthio 3,~ exerted at the prior stage of reaction, 5, carbonyl addition to cyclohexane 

carboxyldehyde. (It should be noted that 4 and 5 are stable under the reaction conditions in . - 
THF or THF-HMPA. ) 

Subsequent to our discovery of the use of lltmo ,3 for the conversion of aldehydes to either 

z-or E_-enynes as described above, a communication from the laboratory of Prof. H. Yamamoto 

(Nagoya Unlverslty) appeared m which the use of magnesia derivatives of various silylated 
n 

propynes other than 3 in THF for the preparation of g enynes is described. ’ Our results and 

those of Prof. Yamamoto are mutually consistent and consonant with the rationale presented above 

We also report here on some uses of the reagent TIPSC:CCH2Li (2) as a more sophisticated 

version of Me3SLCz CCH2L1 (9) introduced by us In 1968. 839 As IS the case with 9, 2 is an effective - - 
reagent for the conversions RBr + RCH2C:CSiR’3 and R2C0 (ketone) + R2C(OH)CH2C~CSiR’3 

Such transformations of 2 occur cleanly with substrates such as benzyl bromide (THF, -78”to 23”, 

16 hr, 96%), geranyl bromide (THF, -78” to 23”, 16 hr, 78’Q, cyclohexanone (THF, -78” to 23”, 

16 hr, 63%) with at most only traces of allenic by-product However, m contrast with 9 wmch 

reacts with aldehydes to afford both allenm and acetylenic adducts as major products, 2 reacts 

cleanly in ether -RMPA (2 1) at -78” to afford only acetylenic product according to the equation 

RCHO + 2, * RCH(OH)CH2Cr CTIPS Smooth propargylation of oxiranes by 2 has also been 

observed as mdicated by the followmg example: 
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2 
THF 82% 

l -20 05 hr 
D l.shr 

+ 4 5 % allene 

Since the CH2CECTIPS unit can be transformed readily into a urlde variety of other substructures 

including among others CH2COC H3, CH2C:CCOOCH3, CH2C%CCH20H, CH2CH2COOH, 
10 

the versatility of ,Z is clear. 

Finally, we report that 2 in 3:l THF-HMPA at -78” to -40” undergoes efficient conjugate 

addition to P-monosubstituted cx,p-enones, but 1,2-addition in THF alone* 
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3.1 THF- 
+ 2 81% 

THF 
J 

HMPA* q 

H&EC-TIPS 

0 

H 

H,C=C-TIPS 

93% 
Earlier work on the /3-propargylation of cu,p-enones had yielded only margmal results. 
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Multistep sequences have also been used to effect this overall transformatmn. 
12, 13 
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