

Tetrahedron Letters 40 (1999) 9233-9234

TETRAHEDRON LETTERS

Bismuth(III) halides: remarkable doping agents for triflic acid in the catalytic sulfonylation of arenes

S. Répichet, C. Le Roux * and J. Dubac

Hétérochimie Fondamentale et Appliquée (Laboratoire associé au CNRS), Université Paul-Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France

Received 9 September 1999; accepted 15 October 1999

Abstract

The catalytic activity of triflic acid has been dramatically increased by the addition of a catalytic amount of bismuth(III) chloride. Thus, the catalytic sulfonylation of arenes using the new system BiCl₃-triflic acid has been successfully carried out while both components of this catalytic system are poorly active or inactive alone, which suggests a synergy between BiCl₃ and triflic acid. Other bismuth halide-triflic acid systems proved to be active. © 1999 Elsevier Science Ltd. All rights reserved.

Sulfones are of great use in organic synthesis¹ as well as for industrial applications.² Some metal halides (FeCl₃^{1a,3}), zeolithes,⁴ or Brönsted acids (polyphosphoric acid⁵) have been reported to catalyze the sulfonylation of arenes. While triflic acid (TfOH) efficiently catalyses the Friedel–Crafts acylation of aromatics,⁶ it poorly catalyses the sulfonylation of arenes.⁷ Recently, we have reported that Bi(OTf)₃ was an efficient catalyst for this reaction.⁸ The present paper reports our preliminary results on the catalysis of the sulfonylation of aromatics by the system BiCl₃–TfOH (see Eq. 1 and Table 1).

ArH + Ar'SO₂Cl _____BiCl₃ (5 %mol) + TfOH (10 %mol) ArSO₂Ar' + HCl (1)

As can be seen from Table 1, the simple addition of a catalytic amount of $BiCl_3$ to TfOH leads to high yields of sulfone in all the cases studied. Moreover, $BiCl_3$ as well as triffic acid when used alone are poor catalysts of this reaction (for example see Table 1, entries 2 and 3, for the very reactive anisole). In addition, the BiF_3 -TfOH, $BiBr_3$ -TfOH and BiI_3 -TfOH systems also proved to be active.

A typical experimental procedure is described for the benzenesulfonylation of mesitylene: In a 50 mL flask equipped with a condenser are successively introduced under argon, BiCl₃ (197 mg, 0.625 mmol), mesitylene (3 g, 24.96 mmol), benzenesulfonyl chloride (2.2 g, 12.48 mmol) and triflic acid (187 mg, 1.25 mmol). The mixture is heated at 120°C for 1 h. After cooling, 20 mL of a saturated aqueous NaHCO₃ solution are added and the products are extracted with CH₂Cl₂ (2×20 mL). After drying, evaporation

^{*} Corresponding author. Fax: (33) 5 61 55 82 04; e-mail: leroux@ramses.ups-tlse.fr

Entry	ArH ^a	Ar'SO ₂ Cl	Conditions	Catalyst ^c	Yield % ^d
			T °C ^b , (time, h)		[o:m:p]
1	anisole	PhSO ₂ Cl	120, (0.5)	A	82 [47:0:53] ^e
2		"	н	В	trace
3	"	н	"	С	4
4	mesitylene	"	120, (1)	Α	95 ^f
5	"	н	**	В	8
6	<i>m</i> -xylene	11	11	Α	93 ^g
7	"	11		В	14
8	toluene	"	120, (1.25)	Α	95 [39:6:55] ^h
9	"	"	**	В	trace
10	benzene	19	80, (12)	Α	65 ⁱ
11		"	"	В	7
12	chlorobenzene	ч	120, (4)	А	70 [3:0:97] ^j
13	н	"	11	В	28 [3:0:97]
14	toluene	4-Me-C ₆ H ₄ SO ₂ Cl	120, (1.25)	А	97 [29:5:66] ^k
15	**	"	41	В	25 [29:5:66]
16	"	4-Cl-C ₆ H ₄ SO ₂ Cl	••	Α	95 [42:7:51] ¹
17	"		"	В	4 [42:7:51]

 Table 1

 Sulfonylation of arenes catalyzed by the system BiCl₃-TfOH

^a ArH/Ar'SO₂Cl = 2/1; ^b temperature of the oil bath; ^c catalyst : A: BiCl₃ (5 %mol) + TfOH (10 %mol), B: TfOH (10 %mol), C: BiCl₃ (5 %mol); ^d by GC using tetradecane as internal standard; ^e (methoxyphenyl)-phenyl sulfone, accompanied by 15 % of phenyl benzenesulfonate; ^f (2,4,6-trimethylphenyl)-phenyl sulfone; ^g (2,4-dimethylphenyl)-phenyl sulfone, accompanied by 3 % of (2,6-dimethylphenyl)-phenyl sulfone; ^hphenyl tolyl sulfone; ⁱ diphenyl sulfone; ^j (chlorophenyl)-phenyl sulfone; ^k ditolyl sulfone; ⁱ (4-chlorophenyl)-tolyl sulfone.

of the organic phase and recrystallization of the solid product in ethanol, 2.82 g (87% yield) of (2,4,6-

trimethylphenyl)phenyl sulfone are obtained (Mp 81°C; litt.:⁹ 80°C).

Finally, a mechanistic investigation of the activation of the catalytic power of triflic acid, the comparison of the activity of these Bi-based systems and their use for other reactions are currently underway.

References

- 1. (a) Jensen, F. R.; Goldman, G. In Friedel-Crafts and Related Reactions; Olah, G., Ed.; Wiley Interscience: New York, 1964; Vol. III, pp. 1319–1367; (b) Simpkins, N. S. Sulfones in Organic Synthesis; Pergamon Press: Oxford, 1993, and references cited therein.
- 2. Roy, K. M. In *Ullmann's Encyclopedia of Industrial Chemistry*; Gerhartz, W., Ed.; VCH: Weinheim, 1985; Vol A25, pp. 487–501, and references cited therein.
- 3. Choudary, B. M.; Sreenivasa Chowdari, N.; Lakshmi Kantam, M.; Kannan, R. Tetrahedron Lett. 1999, 40, 2859.
- 4. Smith, K.; Ewart, G. M.; Randles, K. R. J. Chem. Soc., Perkin Trans. 1 1997, 1085-1086.
- 5. (a) Sipe Jr., H. J.; Clary, D. W.; White, S. B. Synthesis 1984, 283-284; (b) Ueda, M.; Uchiyama, K.; Kano, T. Synthesis 1984, 323-326.
- 6. Effenberger, F.; Epple, G. Angew. Chem., Int. Ed. Engl. 1972, 11, 300-301.
- 7. Effenberger, F.; Huthmacher, K. Chem. Ber. 1976, 109, 2315-2326.
- 8. Répichet, S.; Le Roux, C.; Dubac, J. J. Org. Chem. 1999, 64, 6479-6482.
- 9. Truce, W. E.; Ray, W. J.; Norman, O. L.; Eickemeyer, D. B. J. Amer. Chem. Soc. 1958, 80, 3625-3629.