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ABSTRACT: Though ammonia—borane (AB) is recognized as an excellent
hydrogen storage material, efficient dehydrogenation of AB still remains a
challenge. Herein, we report that cyclic (alkyl)(amino)carbene iridium
complexes are highly efficient for both the thermal dehydrogenation and
hydrolysis of AB under mild conditions. At 30 °C, the two processes are
completed within 15 and 5 min, releasing 2.1 and 2.8 equiv of H, per AB,
respectively. Moreover, 2.8 equiv of H, can be released within 10 min by
thermal dehydrogenation at 60 °C. Kinetic studies revealed that the activation
energies for thermal dehydrogenation and hydrolysis of AB are 10.7 and 8.5
kcal/mol, respectively. The catalyst can be recycled without significant loss of
activity at least six times for both processes. The reaction mechanisms were
further explored by theoretical calculations, stoichiometric reactions, and

kinetic isotope effect experiments.

B INTRODUCTION

Due to its high hydrogen content (19.6 wt %), nontoxicity, and
stability at normal pressure and temperature,, ammonia—
borane, BH;-NH; (AB), is regarded as an excellent chemical
hydrogen-storage material.” Up to now, the dehydrogenation
of AB has been studied extensively, through two different
processes, namely hydrolysis® and thermal dehydrogenation.”

Rh@ZSM-5-H,*® Ni/Pt@ZIF-8," Rh/VO,* and Ru/PC*
represent the most efficient catalysts for AB hydrolysis, since
the process can be completed in a few minutes even at room
temperature. In the case of thermal dehydrogenation, some
catalysts afford linear polyaminoborane and 1 equiv of H,,
while others can generate >2 equiv of H, with concomitant
formation of a cyclic iminoborane trimer (borazine) and its
BN-cross-linked oligomers (polyborazylene).” Thermal dehy-
drogenation of AB is more difficult, and only a fraction of the
hydrogen can be released in hours even at high temper-
atures.” ™7 For example, AB thermal dehydrogenation
catalyzed by sterically encumbered pyridones releases only
1.9 equiv of H, at 80 °C in 2 h." Using Fe pincer complexes,
2.5 equiv of H, is released at 60 °C, but after 15 h.** When
graphene oxide was used as the catalyst, the reaction required
100 °C to release 2.3 equiv of H, in 8 h.° It is quite clear that,
due to the difference in mechanisms for AB thermal
dehydrogenation and hydrolysis, the catalysts reported for
these two processes are quite different.

Cyclic (alkyl)(amino)carbenes (CAACs),” in which one of
the electron n-donating and o-withdrawing electronegative
amino substituents of NHCs is replaced by a o-donor alkyl
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group, are more nucleophilic (o-donating) but also more
electrophilic (7-accepting) than NHCs.* These electronic
properties give them the ability to activate a variety of bonds
and small molecules’ and to stabilize highly reactive main-
group and transition-metal diamagnetic and paramagnetic
species.'” CAACs can be used as very robust catalysts for a
variety of applications.'' Manners and co-workers used
different CAACs as hydrogen acceptors to study the
dehydropolymerization of phosphine—borane."”

Bertrand et al. and we have already reported that CAAC
copper complexes are active in AB hydrolysis,>® but we found
that they have no activity for the thermal dehydrogenation
process. Herein, we show that CAAC iridium complexes
efficiently promote both the hydrolysis and thermal dehydro-
genation of AB under mild conditions. More than 2.7 equiv of
H, can be released in both processes. Moreover, mechanisms
for the hydrolysis and thermal dehydrogenation reactions are
proposed.

Received: May 20, 2021
Published: July 19, 2021

https://doi.org/10.1021/acs.organomet.1c00302
Organometallics 2021, 40, 2643—2650


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lei+Zhou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dejin+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jinling+Hu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Youting+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jiao+Geng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xingbang+Hu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.organomet.1c00302&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00302?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00302?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00302?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00302?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.1c00302?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/orgnd7/40/15?ref=pdf
https://pubs.acs.org/toc/orgnd7/40/15?ref=pdf
https://pubs.acs.org/toc/orgnd7/40/15?ref=pdf
https://pubs.acs.org/toc/orgnd7/40/15?ref=pdf
pubs.acs.org/Organometallics?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.organomet.1c00302?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/Organometallics?ref=pdf
https://pubs.acs.org/Organometallics?ref=pdf

Organometallics

pubs.acs.org/Organometallics

B RESULTS AND DISCUSSION

Synthesis of Complexes 1a—c and 2a—c. Two CAACs
(CAAC®? and CAAC®) and one NHC were prepared from
the correspondmg conjugate acids a—c according to reported
procedures.”* Then, [Ir(cod)Cl], was reacted with these
carbenes to give (CAAC?)Ir(cod)Cl (1a), (CAAC®)Ir-
(cod)Cl (1b), and (NHC)Ir(cod)Cl (1c) (Scheme 1).

Scheme 1. Synthetic Toute of CAAC/NHC-Ir Complexes
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“Hydrogen atoms are omitted for clarity. Selected bond lengths (A)
and angles (deg): Ir—Cl 2.3977(17), Ir—C21 2.012(6), N—C21
1.327(7), Ir—C21—N 128.8(4).

Crystals of 1b suitable for a single-crystal X-ray diffraction
analysis were obtained in ethyl ether solution. Subsequent
carbonylation13 was carried out to produce (CAACETZ)Ir—
(CO),Cl (2a), (CAACNI(CO),Cl (2b), and (NHC)Ir-
(CO),CI (2¢). All of these complexes are stable in air for
months.

Thermal Dehydrogenation of AB. (CAAC)Ir complexes
lab (5 mol %) were first tested for the AB thermal
dehydrogenation, and after 2 h at 60 °C, 2.2 and 2.5 equiv
of H,, respectively, were released (Figure 1). Carbonyl
complexes 2a,b were even more eflicient, with 2.8 and 2.7
equiv of H, released, under the same experimental conditions.
Interestingly, only 1.5 equiv of H, was released with 2c,
featuring an NHC ligand. The superior efficiency of (CAAC)Ir
complexes, over their NHC counterparts, is probably due to
their better o-donating and 7-accepting properties.”*'*
Although potassium tert-butoxide itself has no catalytic activity
for the dehydrogenation, we found that addition of KO‘Bu
greatly accelerates the reaction: 2.8 and 2.1 equiv of H, were
obtained within 10 and 15 min at 60 and 30 °C, respectively
(Figure 2). This combination represents the most active
catalytic system for the thermal dehydrogenation of AB
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Figure 1. Thermal dehydrogenation of AB (15 mg) at 60 °C with
different catalysts (S mol %). Solvent: 0.5 mL of dried THF and 2 mL
of dried diglyme.
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Figure 2. Thermal dehydrogenation of AB (15 mg) at 30 °C using 2a
(5 mol %) with different amounts of KO'Bu. Solvent: 0.5 mL of dried
THF and 2 mL of dried diglyme.

reported to date (the TOF value is up to 2880 molyy, mol ™
h™! at 30 °C; see Table S1).

The products of AB thermal dehydrogenation were
characterized by ''B NMR (Figure 3) and FT-IR (Figure
$39). On comparison with the literature,*"®*" the thermal
dehydrogenation products were confirmed to be cyclo-
triborazane (CTB), borazine, and ;3 5yborazylene (PB), and
no polyaminoborane was observed.

Hydrolysis of AB. In addition to the thermal dehydrogen-
ation, 2a also serves as a highly effective catalyst for the AB
hydrolysis, and KO'Bu also facilitates this process (Figure 4). It
is worth noting that KO*Bu had no catalytic activity, but it can
be used as an effective additive. On the one hand, it might
increase the pH value of the reaction system, which is
beneficial for AB dehydrogenation (Figure $29). On the other
hand, it is possible that deactivation of the catalyst is decreased
under the more basic conditions, as alkoxides could protect the
active sites.””'® At 30 °C, 2.8 equiv of H, was obtained within
S min in the presence of 2a and KO'Bu. Moreover, nearly 3.0
equiv of H, was obtained within 2 min at 45 °C. On the basis
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Figure 3. ''B NMR spectrum of AB thermal dehydrogenation, with
NaBPh, as an internal standard in THF, locked by a C4Dj capillary
insert. Reaction conditions: 2a 5% + KO'Bu 30%, 30 °C, 20 min.
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Figure 4. Hydrolysis of AB (15 mg) at 30 °C using 2a (5 mol %) with
different amounts of KO'Bu. Solvent: 0.5 mL of dried THF and 2 mL
of deionized water.

of "B NMR (Figure 5) and FT-IR (Figure S39), the AB
hydrolysis products were confirmed to be borates.* ™

—_11.44

Figure 5. ''B NMR spectra of the product of AB hydrolysis (Iocked
by D,0).

Figure 6 displays the effect of AB concentration on the AB
hydrolysis with 2a as the catalyst; with an increase in AB
concentration, the amount of H, released increased.'” The
influence of different 2a loadings on the H, generation rate was
investigated. As shown in Figure 7, the AB hydrolysis rate
increased continuously with increasing catalyst loading.'®

Recycling of Catalysts in AB Thermal Dehydrogen-
ation and Hydrolysis. The recycling of a catalyst is one of
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Figure 6. Time dependence of hydrogen evolution versus time with
different concentrations of AB on AB hydrolysis at 30 °C, with 5 mol
% of 2a as catalyst. Solvent: 0.5 mL of dried THF and 2 mL of
deionized water. Portions of 12.3, 18.5, 24.6, and 30.8 mg of AB were
added to prepare solutions with different concentrations of AB.
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Figure 7. Time dependence of hydrogen evolution versus time with
different concentrations of 2a on AB hydrolysis at 30 °C. Solvent: 0.5
mL of dried THF and 2 mL of deionized water.

the most important aspects for practical applications.’® The
results of AB thermal dehydrogenation and hydrolysis
recycling processes are shown in Figure 8. For each cycle,
the thermal dehydrogenation and hydrolysis reactions were
finished within 15 and 5 min, and the releases of H, were
about 2.1 and 2.8 equiv, respectively. The mixture of 5% 2a
and 30% KO'Bu was reused six times without any noticeable
loss of catalytic activity.

Mechanisms for AB Thermal Dehydrogenation and
Hydrolysis. To understand the high efficiency of (CAAC)Ir
complexes for the AB dehydrogenation, a stoichiometric
reaction between 2a and AB was performed (Scheme 2). In
addition to a signal at —10.1 ppm due to the formation of the
two Ir—H—B groups, a signal for Ir—H was found in the 'H
NMR at —13.3 ppm (Figure S43), suggesting that the reaction
may produce the oxidative addition product of B—H bonds to
the CAAC-Ir complex (CAAC)IrH(BH,CINH,)(CO), (4)."”
The resonance at —8.4 ppm in ''B NMR spectra (Figure S34)
indicates the existence of BH,CI'NH,." Indeed, theoretical
calculations revealed that the Gibbs free energy change from
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Figure 8. (a) Recycling of catalyst in the AB thermal dehydrogenation
at 30 °C (5% 2a + 30% KO'Bu). Reaction time for each cycle: 15 min.
Solvent: 0.5 mL of dried THF and 2 mL of dried diglyme. (b)
Recycling of catalyst in the AB hydrolysis at 30 °C (5% 2a + 30%
KO'Bu). Reaction time for each cycle: S min. Solvent: 0.5 mL of dried
THF and 2 mL of deionized water.

Scheme 2. Plausible Path for the Stoichiometric Reaction
between 2a and AB“
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“The Gibbs free energy change from 4’ to 4 is —20.1 kcal/mol.

(CAAC)IrHCI(BH,NH;)(CO), 4’ to 4 was —20.1 kcal/mol.
On the other hand, we found that 2a reacts with potassium
tert-butoxide to give (CAAC)Ir(CO),0'Bu (3), which
appeared to be highly reactive with water, affording (CAAC)-
Ir(CO),0H (5), even at room temperature. The energy
barrier for this reaction was calculated to be only 7.4 kcal/mol,
and the Gibbs free energy change was —1.7 kcal/mol (Figure
S41). Hence, we hypothesize that (CAAC)IrH(BH,CINH,)-
(CO), (4) and (CAAC)IrOH(CO), (5) are the active
intermediates in the thermal dehydrogenation and hydrolysis,
respectively (Scheme 3), and calculations were performed (see
the Supporting Information for the details of calculation
methods).

For the thermal dehydrogenation catalyzed by CAAC-Ir, the
reactive speciation 4-IrH can be released by 4 with a small
Gibbs free energy change (3.7 kcal/mol) (Figure 9a). Because
the hydrogen of Ir—H carried a negative charge (—0.101), the
formation of H, between 4-IrH and BH;-NH; is quite easy via
the transition state TS1,,. In TSIPy, the Ir—H bond length
increases from 1.665 to 1837 A, and the H—H distance is
0.848 A. Following TS1,, a (CAAC)IrNH,BH,(CO),
intermediate is formed. A hydride transfer from H—B of
NH,BHj; to the Ir center via TS2,, regenerates 4-IrH. The
energy barrier for the rate-determining step of the thermal
dehydrogenation is only 14.7 kcal/mol (TS1,,), which is
significantly lower than those reported using 6-tert-butyl-2-
thiopyridone (26.8 kcal/mol),” a nickel N-heterocyclic
carbene (25.1 kcal/mol),2 an Ir dihydrogen pincer comg)lex
(18.1 keal/mol),” and Ir- (PCys),(H), (21.3 kcal/mol)”

Scheme 3. Proposed Dehydrogenation Mechanism for AB
Thermal Dehydrogenation and Hydrolysis Catalyzed by
CAAC-Ir Complexes
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Figure 9. Energy profile and optimized structures for the thermal
dehydrogenation catalyzed by (a) (CAAC)Ir and (b) (NHC)Ir
complexes. The values in italics are the energies in kcal/mol, and
other values are the bond distances in A.

catalysts. A similar process catalyzed by NHC-Ir has also been
investigated (Figure 9b). In comparison with CAAC-Ir, NHC-
Ir gives a higher energy barrier for the rate-determining step
(18.2 vs 14.7 keal/mol). This agrees well with the experimental
result,s which show that CAAC-Ir is more reactive (Figure 1).

For the hydrolysis, the formation of H, occurs between the
proton of Ir—OH and H—B via the transition state TSI,
(Figure 10). In TS1y,, the O—H bond length increases from
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Figure 10. Energy profile and optimized structures for the hydrolysis
catalyzed by (CAAC)Ir complexes. The values in italics are energies
in kcal/mol, and other values are bond distances in A.

0.963 to 1.348 A, and the H—H distance is 0.930 A.
(CAAC)Ir(CO),OBH,NH; is formed as an intermediate.
Being similar to (CAAC)Ir(CO),0Bu (3), CAAC-Ir-
OBH,NH; is sensitive to H,0. Hydrolysis of (CAAC)Ir-
(C0O),0BH,NH, via TS3,, (barrier: 5.7 kcal/mol) regenerates
(CAAC)Ir(CO),0H (5). The energy barrier for the rate-
determining step is only 10.7 kcal/mol (TSlhy) , which is lower
than those of other catalysts, such as [Cp*Ir(6,6’-(OH),-
bpy)(OH,)]SO, (242 kcal/mol) and Ru-(p-Cym)(bipy)
(15.1 keal/mol).**

Since (CAAC)IrH(BH,CINH,)(CO), (4) and (CAAC)-
IrOH(CO), (5) are the postulated active intermediates for the
thermal dehydrogenation and hydrolysis, their formation is
crucial for the dehydrogenation process. It is interesting to find
that the rate of Ir—H formation in the presence of KO'Bu is
faster than that without KO'Bu (Figure 11). This agrees well
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Figure 11. Rate of Ir—H formation between 2a and AB with and
without KO'Bu. The reaction took place in a nuclear magnetic tube at
RT. Rate,_y; = n(Ir—H)/n(2a) determined by '"H NMR (see Figure
S41).

with the thermal dehydrogenation results (Figure 2),
confirming that the Ir—H compound is the active intermediate
in the thermal dehydrogenation. On the other hand, previous
reports revealed that the reaction between (CAAC)AuO'Bu
and water to produce (CAAC)Au—OH is almost 144 times
faster than the jon exchange between (CAAC)AuCl and
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KOH.> Replacing the KO'Bu with KOH in the hydrolysis of
AB resulted in a slower dehydrogenation rate (Figure S42),
further supporting that (CAAC)Ir(CO),OH (5) is the active
intermediate in this process.

In addition, a series of deuterated amine—boranes have been
prepared.”* As illustrated in Figure 12, deuteration of AB on
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Figure 12. Consumption of NH;-BH; and its isotopomers (0.25 M in
1/4 THF/diglyme 2.5 mL) in the presence of 5 mol % of 2a at RT.

either the nitrogen or the boron site results in a slower rate.
The result of the individual KIEs (kinetic isotope effects)
(R, 813/ kni,p,) X (knpysa,/ ki sa,) = 1.64 X 1.86 = 3.05)
is similar to the KIE observed for the doubly labeled substrate
(kw, 811,/ knp, 8, = 2-80). This reveals that both B—H and N—

H bonds are broken in the rate-determining step,*™ which
agrees well with the theoretical calculation results.

Further experiments were performed in order to confirm the
fate of the reaction between Ir—H and Ir—OH and BH;-NH,.
To avoid the uncontrollable reaction of BH;-NH;, BEt;-NH;
was used to react with Ir—H and the dehydrogenation product
6’ was characterized by mass spectroscopy but was not isolable
(Scheme 4). Similarly, ammonia—9-borabicyclo[3.3.1]nonane

Scheme 4. Further Evidence for the Involvement of Ir—H
and Ir—OH Complexes in the AB Thermal
Dehydrogenation and Hydrolysis

>(jé/\\co BEt;NH;

Hy N oo —N"/,.CO
2% > Dipp~ 11 — — > Dipp T
A"\ Neo  H a*7\co
HH H NH,BEt,
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HO co HaN(CeH1 )8
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5 7

(BH(CgH,;4,)NH;) was used to react with (CAAC)Ir-
(CO),0H (5) and the dehydrogenation product 7’ was
observed, again only by mass spectroscopy.

Finally, to further verify the computational results, kinetic
studies of AB thermal dehydrogenation and hydrolysis were
performed. The dehydrogenation reactions of AB catalyzed by
2a were carried out at different temperatures, and the results
are shown in Figure 13. They suggest that both thermal
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Figure 13. (a) (I) Effect of the temperature on the thermal
dehydrogenation rate of AB with S mol % of 2a. (II) Arrhenius plots
of the rate constant of AB thermal dehydrogenation. (b) (I) Effect of
the temperature on the hydrolysis rate of AB with S mol % of 2a. (II)
Arrhenius plots of the rate constant of AB hydrolysis.

dehydrogenation and hydrolysis of AB are first-order
reactions,” with activation energies of 10.7 and 8.5 kcal/
mol, respectively. These experimental results are in agreement
with the theoretical data, considering the systematic error of
both experiment and theoretical calculations. They show that
the energy barrier for the hydrolysis is lower than that for the
thermal dehydrogenation.

B CONCLUSIONS

Under mild conditions, a mixture of CAACEIr(CO),Cl and
KO'Bu promotes the hydrolysis and thermal dehydrogenation
of AB. These processes are completed within 5 and 15 min,
and 2.8 and 2.1 equiv of H, per AB, respectively, are released.
Moreover, 2.8 equiv of H, can be released in less than 10 min
by AB thermal dehydrogenation at 60 °C. The catalytic
solution can be handled in air and recycled without a
significant loss of activity. Experiments combined with
theoretical calculations revealed that (CAAC)Ir(CO),H and
(CAAC)Ir(CO),0H are most likely the active intermediates
for the thermal dehydrogenation and hydrolysis, respectively.
From kinetics experiments, the activation energies of the AB
thermal dehydrogenation and hydrolysis were found to be 10.7
and 8.5 kcal/mol, respectively.

For the first time, a single catalyst is reported to be highly
effective for both the hydrolysis and thermal dehydrogenation
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of AB, and CAAC-Ir complexes represent the most active
catalysts reported so far for the thermal dehydrogenation.
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