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N-Heterocyclic Carbene (NHC) Catalyzed Atom Economical 
Construction of 2,3-Disubstituted Indoles 
Battu Harish,ab Manyam Subbireddy,a and Surisetti Suresh*ab 

A novel organocatalytic approach harnessing the unique 
reactivities of N-hererocyclic carbenes (NHCs) has been revealed 
for the construction of indoles. The NHC catalysed atom economic 
synthesis of a wide range of 2-substituted indole-3-acetic acid 
derivatives is displayed. Strategic application of the developed 
method was demonstrated for a short synthesis of cyclin-
dependent kinase (CDK) inhibitor, paullone. 

Historically, the construction of indole nucleus is one of the 
most sought after challenges that has received a great deal of 
attention from chemistry community over several decades.1 
There have been excellent methods developed for the 
construction of indole framework ranging from the classical 
Möhlau and Fischer indole syntheses to the modern Larock 
indole synthesis.2 Many of these syntheses suffer from strong 
acidic/basic conditions, use of toxic metal catalysts, low yields, 
less stable or expensive starting materials, atom economy 
issues and generation of by-products. Considering these 
concerns, metal-free approaches utilizing readily available 
precursors for the construction of indoles are very much 
required and such routes would definitely complement the 
hitherto known strategies. Despite the concept of 
organocatalysis has marked the significant breakthroughs in 
the plethora of organic transformations,3 its application in the 
construction of indole nucleus has been very scarcely realized. 

2-Substituted indole-3-acetic acid derivatives have gained 
considerable attention because they have shown a wide range 
of potential biological activity profiles (Figure 1).4 Though 
there have been several syntheses reported for these class of 

compounds, the methods involve the use of unfriendly 
reagents, toxic metals and harsh reaction conditions.5 
Recently, Opatz et al. and Lee et al. have reported sodium 
cyanide mediated and catalysed reactions, respectively.5i,j 

Organocatalytic approaches underpinning atom-economics 
would provide alternative route and complement the existing 
routes for the construction of these important entities. 
However, very few reports are available on the organocatalytic 
routes for indole construction in general6 and such routes are 
elusive for the synthesis of 2-substituted indole-3-acetic acid 
derivatives. For more than a decade, N-heterocyclic carbenes 
(NHCs) have emerged as powerful organocatalysts by their 
unique reactivities towards electrophiles to reverse their 
polarities known as umpolung.7 

Sheidt and co-workers8 have developed the synthesis of 2-
arylindoles by the addition of acyl anion equivalents, 
generated through NHC, to the transient aza-ortho quinine 
methides. We envisioned the synthesis of 2-substituted indole-
3-acetic acid derivatives from ortho-imino cinnamate 2 using 
the disconnection approach as shown in the Scheme 1.  
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We hypothesized that NHC can inverse the polarity of 
electrophilic centers of either β-carbon of the α,β-unsaturated 
ester (via deoxy-Breslow intermediate I)7d,9 or imine carbon 
(via aza-Breslow intermediate III)10 of the precursor 2 that 
would provide a neucleophilic center (through umpolung) and 
subsequently add on to the remaining electrophilic center. 
This course would eventually lead to cyclization-aromatization 
cascade to provide 2-substituted indole-3-acetic acid 
derivatives. 

Accordingly, we have started our investigations using the 
precursor 2a under NHC catalysis settings. Initially, we have 
performed the reaction of 2a with the NHC precursors such as 
thiazolium (A), imidazolium (B) salts and a base like DBU (Table 
1, entries 1-2). However, these reactions were not successful 
to provide the desired product. Much to our delight, triazolium 
NHC precatalyst C in the presence of DBU has furnished the 
desired product 1a in high yield (Table 1, entry 3). It is 
interesting to note that while bicyclic triazolium NHC 
precatalyst D bearing N-mesityl group has afforded the 
product 1a in good yield (Table 1, entry 4), triazolium NHC 
precatalyst E containing N-pentafluorophenyl group has failed 
to give the product (Table 1, entry 5). DBU was found to give 
better yields among the bases screened (Table 1, entries 3 and 
6-7). It should be noted that this transformation did not work 
with either base or NHC alone. 

With the suitable NHC and base in hand, we turned to 
perform this transformation sequentially―starting from ortho-
aminocinnamate 3a. Accordingly, 3a and benzaldehyde 4a 
were reacted to give the imine 2a. Subsequently, the crude 2a 
was subjected to NHC catalysis conditions to obtain the 
product 1a in 90% yield (Scheme 2). Later several bases, 
solvents and reaction conditions were screened for this 
sequential transformation (see supporting information for a 
detailed optimization study). It turned out that NHC 
precatalyst C in the presence of DBU in THF solvent stands out 
the best combination amongst the conditions tested. 

We then studied the scope of this NHC-catalyzed 
transformation. Initially, the scope of the ester group on the 
acrylate part has been studied (Scheme 3). All the tested esters 
gave comparable yields of the corresponding indole derivatives 
1a-c while methyl ester stands out the best. This 
transformation was well tolerated with the cinnamide 
precursor as the corresponding 2-phenyl substituted indole-3-
acetamide derivative 1d was synthesised in 66% yield. ortho-
Imino cinnamonitrile has also been converted to the 
corresponding 2-phenyl 3-indole acetonitrile derivative 1e 
under the NHC catalysis settings. Later we turned our 
attention to rework on the aniline part―as expected we have 
isolated the differently substitued indoles 1f-h in moderate to 
good yields. Next the generality of the benzaldehyde part has 
been tested using different electron withdrawing groups like 
NO2, CN, CF3―all gave high yields of the corresponding indole 
derivatives 1i-k. Halogen substituted benzaldehydes have been 
used in this sequential transformation―ortho-imino 
cinnamates derived from o-, m- and p-substituted chloro 

benzaldehydes have provided the corresponding indloles 1l-n 
in very good yields under the NHC catalysis conditions. Indoles 
1o-r bearing fluoro and bromo substitutions on the 2-aryl 
group have also been synthesized in high yields. 
Comparatively, ortho-imino cinnamates primed from 
benzaldehydes having electron donating substituents have 
resulted in slightly lower yields of the corresponding 2-aryl-
indol-3-acetic esters 1s-w. ortho-imino cinnamates derived 
from multisubstituted benzaldehydes bearing halogen and 
electron donating groups furnished the corresponding 
substituted indole derivatives 1x-y in 69-75% yields. Biphenyl-
4-carboxaldehyde- and 1-naphthaldehyde-derived ortho-imino 
cinnamates have also been tested in this transformation to 
afford the corresponding indole derivatives 1z and 1aa in 80% 
and 62% yields, respectively. 

It is interesting to note that different heteroaromatic 
aldehydes including pyridyl, quinolinyl, thiophenyl, pyrrolyl 
and pyrazolyl aldehyes have proven to be successful to afford 
the corresponding variously substituted 2-heteroaryl indol-3-
acetic esters 1ab-af in very good yields (Scheme 4). 

Table 1   Optimization studya 
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Entry NHC Base %yield of 1ab 

1 A DBU ― 

2 B DBU ― 

3 C DBU 85 (90)c 

4 D DBU 82 

5 E DBU ― 

6 C TBD 65 

7 C Cs2CO3 68 
aReaction conditions: 2a (0.5 mmol), NHC (30 mol%), base 
(1.2 equiv), THF (4 mL); bYields are for isolated products; 
cReaction was performed at 80 oC for 4 h; Mes: 2,4,6-
trimethylphenyl 
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Scheme 2   Sequential imine formation―NHC catalysed 
construction of methyl 2-(2-phenyl-1H-indol-3-yl)acetate 
1a; MS: Molecular Sieves 
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Further, this transformation is not limited to only aromatic 
aldehydes as α,β-unsaturated aldehydes have also furnished 
the corresponding 2-vinyl substituted indol-3-acetic esters 
1ag-ak in moderate to good yields (Scheme 5). With the 
aliphatic subtituents like (CH2)2Ph on the aldehyde part, the 
desired indole derivative was not obtained under the reaction 
conditions. 

It is worth noting that the presented method has enabled to 
scale up the reaction to a gram scale for the synthesis of 
methyl 2-(2-(2-bromophenyl)-1H-indol-3-yl)acetate 1q while 
maintaining the high yield (Scheme 6). 

The synthetic utility of the present transformation has been 
demonstrated with the synthesis of a cyclin-dependent kinase 
(CDK) inhibitor, paullone.4d In continuation of our interest in 
the development of copper catalysed tandem reactions,11 we 

became interested to exploit the strategy to the synthesis of 
paullone. It is worth mentioning that a tandem copper 
catalyzed N-arylation followed by amidation of the methyl 2-
(2-(2-bromophenyl)-1H-indol-3-yl)acetate 1q gave the desired 
paullone 5 in a single step (Scheme 7). The overall yield for the 
synthesis of paullone is 46% starting from 2-iodoaniline in 
three simple steps. It should be mentioned that while the 
same has been synthesized in 12% overall yield starting from 
2-iodoaniline in eight steps besides the use of special 
precursors.5e 

We have also synthesized the indole-3-acetic acid 6 of 
methyl 2-(2-(2-bromophenyl)-1H-indol-3-yl)acetate by simple 
hydrolysis (Scheme 8). 

In conclusion, an NHC catalyzed novel approach has been 
established for the construction of variously substituted 2-
aryl/heteroaryl/vinyl indole-3-acetic acid derivatives. Gram 

NHC-C/DBU

toluene, 4Å MS THF, 80 oC, 4 h
NH2

acrylate partaniline part

N N
H

aldehyde part3
2 1

OHC

 

N
H

COOMe

Ph
N
H

COOEt

Ph
N
H

COOtBu

Ph

1a, 90% 1b, 79% 1c, 73%

scope at acrylate part

N
H

CN

Ph

1e, 26% (74%)

N
H

COOMe

1h, 59%
Me

Me

N
H

COOMe

1f, 81%

F

N
H

COOMe

1g, 60%

Cl

scope at aminophenyl part

N
H

COOMe

N
H

COOMe

1i, 71% 1k, 77%

NO2
CF3

N
H

COOMe

1j, 88%

CN

scope at aldehyde part-EWG substituents

N
H

Ph

O

N

1d, (66%)

 

N
H

COOMe

N
H

N
H

COOMe

N
H

COOMe

N
H

COOMe

N
H

COOMe

N
H

COOMe

1o, 80%

1r, 72%1p, 84% 1q, 85%

1l, 69% 1m, 74% 1n, 76%

F

MeOOC
Br

F

Br

Br

Cl Cl

Cl

scope at aldehyde part-halogen substituents

 

N
H

COOMe

N
H

COOMe

1t, 70% 1u, 68%

Me OMe
N
H

1s, 56%

MeOOC
HO

scope at aldehyde part-EDG substitents

N
H

1v, 64%

OMe

OMe

OMe
MeOOC

N
H

COOMe

1w, 13% 
(30%)

NMe2

 

N
H

N
H

1x, 75% 1y, 69%

MeOOC MeOOC
Br Br

O

O
N
H

N
H

1aa, 62%1z, 80%

MeOOCMeOOC

OMe

scope at aldehyde part-EDG & halogen substitents scope at aldehyde part-polyaromatic

 
Scheme 3   Synthesis of 2-aryl substituted indole-3-acetic 
acid derivatives. Yields in parenthesis correspond to the 
reactions with isolated imine. 
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Scheme 4   Synthesis of 2-heteroaryl substituted indole-3-
acetic acid derivatives. 
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Scheme 5   Synthesis of 2-vinyl substituted indole-3-acetic 
acid derivatives. 
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Scheme 6   Gram scale synthesis of 1q. 
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Scheme 7   Retro-synthetic analysis and synthesis of 
paullone by tandem reaction triggered by copper catalysis. 
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scale synthesis of a representative example, methyl 2-(2-(2-
bromophenyl)-1H-indol-3-yl)acetate has been presented. A 
short two-step synthesis of cyclin-dependent kinase (CDK) 
inhibitor, paullone has been accomplished from N-heterocyclic 
carbene catalysed reaction of methyl (E)-3-(2-(((E)-2-
bromobenzylidene)amino)phenyl)acrylate followed by copper 
catalysed N-arylation-amidation. Efforts are underway to 
investigate the mechanism of the present NHC catalysed 
indole construction. Further studies are in progress on 
exploring the utilization of the presented concept for suitable 
organic synthesis. 

We thank the Department of Science and Technology (DST), 
India for Fast track grant (SB/FT/CS-055/2012) and CSIR, New 
Delhi for financial support as part of XII Five Year plan the 
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