Sodium Borohydride-Nickel Chloride-Methanol Catalytic System for Regioselective Reduction of Electron-Rich Conjugated Dienes and Reductive Cleavage of Allyl Esters Involving π -Allylnickel Intermediates

Biao-Lin Yin,^{a,*} Cong-Bi Cai,^a Jin-Qiang Lai,^a Ze-Ren Zhang,^a Li Huang,^a Li-Wen Xu,^b and Huan-Feng Jiang^a

^a School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China

^b Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Peoples Republic of China

Received: August 2, 2010; Published online: December 6, 2011

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adcs.201100612.

Abstract: The regioslective reduction of electronrich dienes to monoolefins and the reductive cleavage of allyl esters were fulfilled by employing a sodium borohydride-nickel chloride-methanol catalytic system with exceedingly simple manipulations and high functional group tolerability. Both of the reductive reactions may involve π -allylnickel intermediates generated from fresh nickel boride.

Keywords: allylic esters; π -allylnickel intermediate; hydrogenation; selective reduction; sodium borohydride-nickel chloride

The combination of NaBH₄ with a catalytic amount of NiCl₂, which generates a highly reactive nickel boride species in situ, has been extensively employed to reduce functional groups that are inert to sodium borohydride alone.^[1] For example, several groups have reported the reduction of the C=C double bonds of α,β -unsaturated esters with NaBH₄-NiCl₂ in the synthesis of numerous natural and unnatural bioactive molecules.^[2] The NaBH₄-NiCl₂ system has also been used in the reduction of aliphatic nitro groups or nitroarenes to amines,^[3] α -amino acids to 1,2-amino alcohols,^[4] 4,5-dihydro-2-oxazole to oxazolidine,^[5] and in desulfurization processes.^[6] This system is especially attractive for its low cost, simple manipulations (air atmosphere and moisture tolerant), non-pyrophoric nature, short reaction times (generally requiring only a few minutes). Therefore, expanding the application

of this reducing system in organic synthesis is of great practical significance. However, to the best of our knowledge, little attention has been paid to the regioselectivity and stereoselectivity of these reductive reactions involving the NaBH₄-NiCl₂ system.

It is well known that π -allylnickels can be obtained by a hydronickellation of dienes or an oxidative addition of allyl substrates to Ni(0) species. This complex can be coupled with both electrophiles as well as nucleophiles in a regioselective or (and) stereoselective fashion and has been extensively used in organic synthesis.^[7] Previous studies demonstrated that the fresh nickel boride had the composition of (Ni_2B) ·H₃ and it might be transformed into a nickel hydride during the reaction process.^[8] We envisaged that the reaction of fresh nickel boride with dienes or allylic substrates would also produce a π -allylnickel complex A via a hydronickellation of diene or an oxidative addition of allyl substrate (Scheme 1). After the selective attack of hydride on the complex, the regioselective hydrogenation of dienes or reductive cleavage of allyl esters could be fulfilled. Developing alternative methods for these two reductive reactions and improving their selectivities are highly desirable.^[9,10] In this communication, we describe our findings on the regioselective reduction of electron-rich conjugated dienes to monoolefins and the reductive cleavage of allylic esters with the NaBH₄-NiCl₂-MeOH system.

Initially, a series of dienes **1a–1g** with an electrondonating group (alkylamino, alkyloxy, or silyloxy) at the 1-position were chosen as substrates. As shown in Table 1, upon treatment with NaBH₄-NiCl₂ at room temperature in MeOH/DME (1/1, v/v), the evaluated

Fax: (+ 86)-20-8711-3735; phone: (+86)-20-8711-3735; e-mail: blyin@scut.edu.cn

Scheme 1. Possible pathways for the reaction of dienes or allylic substrates with fresh nickel boride resulted from the system of $NaBH_4$ -NiCl₂-MeOH.

dienes afforded high yields of monoolefins within 5 min, and the 3,4-carbon carbon double bonds (including mono-, di- and tri-substituted) were selectively hydrogenated (entries 1–7). Furthermore, even when the amount of NaBH4 was increased to 10 equivalents, no over-reduction was observed. During the reaction, the isolated double-bond of 1e was not influenced. Interestingly, when a large excess of NaBH₄ (20 equiv.) was used, reduction of the isolated double bond of 1g was observed, producing 2g in excellent yield (90%). Notably, the hydrogenation did not give rise to the cleavage of the protective groups of Cbz and Bn (entries 2, 4 and 6). For dienes with an alkyloxy group at the 2-position and a bulky phenyl group at the 1-position, their 3,4-double bonds were selectively reduced, providing 2h-2l in fair to

Adv. Synth. Catal. 2011, 353, 3319-3324

Table 1. (Continued)

Entry	Diene	Product	Yield [%] ^[b]
10	Ph 1j O		70
11	p-Cl-C ₆ H ₄ NEt	p-CI-C ₆ H ₄ P-CI-C ₆ H ₄	75
12	<i>p</i> -NO ₂ -C ₆ H ₄ II O	<i>p</i> -NH ₂ -C ₆ H ₄ 2I O	60
13 ^[d]	OTBS 1m	D OTBS D 3a	84
14	Ph-1n	Ph ^{ro^{or}}	81 ^[e]
15	p-MeO-C ₆ H ₄	ρ-MeO-C ₆ H ₄ ^{σ^{ρ^{σσ}}}	73 ^[f]
16	OTBS 1p	OTBS 3d	67 ^{g]}

^[a] Unless otherwise noted, the reaction conditions were: 1 mmol of 1, 0.2 mmol of NiCl₂, 10 mmol of NaBH₄, 5 mL of MeOH/DME (1/1, v/v), room temperature, and 5 min.

^[b] Isolated yield.

- ^[c] 20 mmol of NaBH₄.
- ^[d] NaBD₄ and CD₃OD were used.
- [e] Z/E = 1/1.
- ^[f] Z/E = 1/1.
- ^[g] Z/E = 1/6.

good yields (entries 8-16) and with the enol ether being left intact. Except for the nitro group, which was reduced to an amino group, other functional groups such as acetals, aryl chlorides, and amides were tolerated under these reaction conditions. Interestingly, for conjugated 2-silvloxydienes 2m-2p, selective 1,4-reduction was observed, resulting in the corresponding mono-silvl enol ethers 3a-3d in good yields. The conjugated silvloxydiene has a high electron density, and its selective hydrogenation has never been reported before. The conventional preparation of silyl enol ethers involves silylation of the enolates generated from the corresponding ketones and a strong bulky base. For unsymmetrical ketones, the less-substituted silvl enol ethers are preferentially formed. Importantly, this protocol provided the hitherto unknown 1,4-reduction of electron-rich 2-silyloxydienes, allowing for the preparation of more-substituted silyl enol ethers.

Encouraged by the above results, we next investigated the reductive cleavages of allyl esters using NaBH₄-NiCl₂ system. As shown in Table 2, in the presence of 10 equivalents of NaBH₄ and a catalytic amount of NiCl₂ (0.2 equiv.) in MeOH at room temperature, the acetyloxy and benzoyloxy groups placed at the allylic position of variously protected glycals were removed successfully in 5 min, producing the corresponding 3-deoxy glycals with good to excellent yields (Table 2, entries 1–7). 3-Acetoxy glycals generally led to higher yields than 3-benzoyloxy glycals (5b > 5c; 5d > 5e; and 5f > 5g), which may be due to the better leaving ability of acetoxy group than that of benzoyloxy group. Using this protocol, a variety of hydroxy-protecting groups (e.g., Ac, Bz, TBDPS,

Table 2. Reductive cleavage	of allyl	esters	with	the	NaBH4
NiCl ₂ -MeOH system. ^[a]	-				

к	² OAc	NiCl ₂ (0.2 equiv.) NaBH ₄ (10 equiv.)	R'
	R ² 4 (1 equiv.)	MeOH, r.t., 5 min	R ² 5
Entry	Allyl ester	Product	Yield [%] ^[b]
1	AcO OAc		88
2	4a OAc OAc AcO 4b	5a OAc AcO 5b OBz	93
3	BzO 4c	BzO 5c	84
4	AcO 4d	PS OTBDPS	89
5	BzO 4e	BzO 5e OTBS	83
6	AcO 4f		95
7	BzO 4g	Bzo 5g	85
8	AcO 4h		92
9		Ph 5i OAc	84
10		Me OMe	84
11			79

 Table 2. (Continued)

Entry	Allyl ester	Product	Yield [%] ^[b]
12 ^[c]	AcO 4b	AcO D d-5b	90
13	OAc Ph 4m O	Ph 5m O	84
14	Ph OAc 4I	Ph Me 5I	77

 ^[a] Unless otherwise noted, the reaction conditions were: 1 mmol of 4, 0.2 mmol of NiCl₂, 10 mmol of NaBH₄, 5 mL of MeOH, room temperature, 5 min.

^[b] Isolated yield.

^[c] NaBD₄ and CD₃OD were used.

TBS, and Bn) were tolerated. Known methods for 3deoxygenation of glycals usually involve the formation of π -allyl-Pd complexes that are then attacked by a hydride under strong acidic conditions.^[10] This reductive system provided an alternative access to diversified 3-deoxy glycals conveniently under mild basic conditions. For 1-alkyloxy-2,3-unsaturated monosaccharides 4i and 4j, both the reductive cleavage at the 3-position and hydrogenation of the C=C double bond occurred, giving rise to 5i and 5j in good yields (entries 10 and 11). In addition, 3-phenylallyl acetate 4l and furan-2-yl-phenylmethyl acetate 4m were also reduced under these reaction conditions (entries 13 and 14). To study the stereochemistry of this cleavage, the reaction of 4b with NaBD₄/NiCl₂ in CD₃OD was performed. To our delight, d-5b was produced with complete inversion of the configuration at the C-3 position (Table 2, entry 12). The stereochemistry of *d*-5b was verified via NOESY experiments and by comparison of their NMR spectra with those reported in the literature.^[10a]

Although the NaBH₄-NiCl₂ system has been extensively used in organic synthesis, its reaction mechanism is still under discussion.^[11] Based on the above outcomes, two preliminary mechanisms are proposed for the reductions (Scheme 2). For these dienes, a hydronickellation of $(Ni_2B)_2 \cdot H_3$ with dienes gives rise to a π -allylnickel complexs of **6**. When R¹ is an electrondonating group, hydride attacks exclusively at the 3postion of the complex, leading to the formation of **2**.^[12] If \mathbf{R}^2 is an electron-donating group and \mathbf{R}^1 is a phenyl group , due to the steric bulk of \hat{R}^1 and (or) its conjugated effect with the olefin, hydride also attacks exclusively at the 3-postion to form **2**. But when R^1 is an alkyl group, hydride attacks exclusively at the 1postion, giving rise to double bond isomerization and forming **3**.^[13] For allyl esters, an oxidative addition of

3322 asc.wiley-vch.de

Scheme 2. Proposed mechanistic pathway for the reductive reactions.

the allylic substrate **4b** to $(Ni_2B)_2 \cdot D_3$ species on the back side of the 3-acetoxy gives the π -allylnickel complex **7**. Then hydride attacks exclusively at the 3-position of the complex to liberate the olefin *d*-**5b** with the generation of the $(Ni_2B)_2 \cdot D$ which reacts with D_2 and carries on the catalytic cycle.

In summary, for the first time, we used fresh nickel boride, generated in situ from the combination of NaBH₄ with NiCl₂, to fulfill the regioselective reduction of electron-rich conjugated dienes to monoolefins and reductive cleavage of allyl esters with exceedingly simple manipulations. Both of these reactions may involve the generation of π -allylnickel complexes via the hydronickellation of dienes and the oxidative addition of the ally ester, respectively. The selectivity strongly depends on the features of the substrates. The selective attack of hydride on the allylnickel complexes is responsible for the selectivity. The studies give us hints that the fresh nickel boride is a Ni(0)species with high catalytic activity and it can catalyze some useful allylation reactions. Further studies on the detailed mechanism and design of some novel nickel-catalyzed coupling reactions involving the $NaBH_4$ -NiCl₂ system are ongoing in our lab, and the results will be reported in due course.

Experimental Section

Typical Procedure for the Reduction of Dienes with NaBH₄-NiCl₂ System (to form 2f)

To a solution of 1f (442 mg, 1 mmol) in 5 mL of MeOH/ DME (1/1, v/v) was added NiCl₂ (26 mg 0.2 mmol), then NaBH₄ (380 mg, 10 mmol) in portions over 5 min at room temperature with the formation of a black solid and evolution of hydrogen. After additional stirring for 5 min, the reaction was quenched with 10 mL H₂O. The resulting mixture was extracted with ethyl acetate $(3 \times 10 \text{ mL})$. The combined organic layers were washed with brine and dried over Na₂SO₄. Removal of the solvents yielded a crude product, which was purified by column flash chromatography on silica gel to afford **2f** as colourless oil; yield: 411 mg (93%); $[\alpha]_{D}^{23}$: -3.6 (c 0.5 gmL⁻¹, CH₃COCH₃). ¹H NMR (400 MHz, $CDCl_3$): $\delta = 7.39-7.32$ (m, 15 H), 6.30 (s, 1 H), 4.79-4.52 (m, 6H), 4.21-4.15 (m, 1H), 4.12-4.11 (d, J=4.8 Hz, 1H), 4.01-3.98 (dd, J=6.8 Hz, 4.8 Hz, 1 H), 3.86–3.82 (dd, J=10.4 Hz, 5.6 Hz, 1 H), 3.78-3.74 (dd, J=10.8 Hz, 4.0 Hz, 1 H), 2.11-2.05 (m, 2H), 1.05–1.01 (t, J=7.4 H z, 3H); ¹³C NMR $(100 \text{ MHz}, \text{ CDCl}_3): \delta = 139.6, 138.3, 138.0, 128.4, 128.3,$ 127.8, 127.7, 127.6, 127.5, 113.9, 76.0, 75.7, 73.7, 73.3, 72.8, 71.3, 68.3, 21.9, 12.8; HR-MS (ESI): *m/z* = 445.2371, calcd. for $C_{29}H_{33}O_4 [M+H]^+: 445.2379$.

Typical Procedure for the NiCl₂-Catalyzed Reductive Cleavage of Allyl Esters

To a solution of 4d (1 mmol) in MeOH (3 mL) was added NiCl₂ (26 mg 0.2 mmol), then NaBH₄ (10 mmol) in portions over 5 min at room temperature. After additional stirring of 5 min, the reaction was quenched with 10 mL H₂O. The resulting mixture was extracted with ethyl acetate $(3 \times 10 \text{ mL})$. The combined organic layers were washed with brine and dried over Na₂SO₄. Removal of the solvents yielded a crude product, which was purified by column flash chromatography on silica gel to afford **5d** as a colorless oil; yield: 366 mg (89%). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.75 - 7.71$ (m, 4H), 7.46-7.42 (m, 6H), 6.36 (d, J=6.4 Hz, 1H), 5.31-5.26 (m, 1H), 4.65-4.62 (m, 1H), 4.06-4.02 (m, 1H), 3.91-3.82 (m, 2H), 2.46-2.40 (m, 1H), 2.10-2.06 (m, 4H), 1.11 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 170.1$, 142.8, 135.7, 133.3, 129.8, 127.8, 97.1, 76.2, 66.0, 62.6, 26.8, 24.8, 21.2, 19.3; HR-MS (ESI): m/z = 411.1988, calcd for $C_{29}H_{33}O_4$ [M + H]⁺ 411.1992.

Acknowledgements

This work was support by Doctoral Fund of Ministry of Education of China (200805611041), Fundamental Research Funds for the Central Universities (2009M0241), the National Natural Science Foundation of China (No. 21072062), the Natural Science Foundation of Guangdong Province, China (10351064101000000).

References

- [1] Concerning the preparation and properties of nickel borides, see: a) C. A. Brown, H. C. Brown, J. Am. Chem. Soc. 1963, 85, 1003-1005; b) H. C. Brown, C. A. Brown, J. Am. Chem. Soc. 1963, 85, 1005-1006; c) C. A. Brown, V. K. Ahuja, J. Org. Chem. 1973, 38, 2226-2230; d) P. C. Maybury, R. W. Mitchell, M. F. Hawthome, J. Chem. Soc. Chem. Commun. 1974, 534-535; e) B. Ganem, J. O. Osby, Chem. Rev. 1986, 86, 763-780; f) Y. Okamoto, Y. Nitta, T. Imanaka, S. Teranishi, J. Chem. Soc. Faraday Trans. 1 1979, 75, 2027-2039; g) C. M. Belisle, Y. M. Young, B. Singaram, Tetrahedron Lett. 1994, 35, 5595-5598; h) G. N. Glavee, K. J. Klabunde, C. M. Sorensen, G. C. Hadjipanayis, Langmuir 1994, 10, 4726-4730; i) Z.-J. Wu, S.-H. Ge, M.-H. Zhang, W. Li, S.-C. Mu, K.-Y. Tao, J. Phys. Chem. C: 2007, 111, 8587-8593; j) J. Geng, D. A. Jefferson, B. F. G. Johnson, Chem. Commun. 2007, 969-971.
- [2] a) S. Watanabe, S.; Ikishima, T. Matsuo, K. Yoshida, J. Am. Chem. Soc. 2001, 123, 8402–8403; b) P. A. Jacobi, K. Lee, J. Am. Chem. Soc. 2000, 122, 4295–4303; c) P. A. Jacobi, K. Lee, J. Am. Chem. Soc. 1997, 119, 3409–3410; d) Y. Moritani, C. Fukushima, T. Miyagishima, H. Ohmizu, T. Iwasaki, Bull. Chem. Soc. Jpn. 1996, 69, 2281–2286; e) Y. Morimoto, K. Nishida, Y. Hayashi, H. Shirahama. Tetrahedron Lett. 1993, 34, 5773–5776.
- [3] a) D. Setamdideh, B. Khezri, Asian J. Chem. 2010, 22, 5575–5580; b) N. P. Bandgar, S. M. Nikat, P. P. Wadgaonker, Synth. Commun. 1995, 25, 863–869; c) A. Nose, T. Kudo, Chem. Pharm. Bull. 1988, 36, 1529–1533; d) A. Nose, T. Kudo, Chem. Pharm. Bull. 1981, 29, 1159–1161; e) S. Saeki, T. Oka, T. Hayakawa, K. Sakai, Chem. Pharm. Bull. 1989, 37, 2207–2208.
- [4] A. S. Demir, I. M. AKHmedov, Ö. Sesenoglu, Turk J. Chem. 1999, 23, 123–126.
- [5] B. Das, H. Holla, Y. Srinivas, K. Venkateswarlu, Indian J. Heterocycl. Chem. 2007, 17, 1–6.
- [6] a) W. E. Truce, F. M. Perry, J. Org. Chem. 1965, 30, 1316–1317; b) J. Schut, J. B. F. N. Engberts, H. Wynberg, Synth. Commun. 1972, 2, 415–421; c) R. B. Boar, D. W. Hawkins, J. F. McGhie, D. H. R. Barton, J. Chem. Soc. Perkin Trans. 1 1973, 654–656; d) M. R. Euerby, R. D. Waigh, Synth. Commun. 1986, 16, 779–784; e) F. S., Jr. Guziec, L. M. Wasmund, Tetrahedron Lett. 1990, 31, 23.
- [7] a) D. J. Krysan, in: Comprehensive Organometallic Chemistry II, (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Elsevier, Oxford, UK, 1995, Vol. 12, p 959;

b) Modern Organonickel Chemistry, (Ed.:Y. Tamaru), Wiley-VCH, Weinheim, 2005; c) D. C. Billington, in: Comprehensive Organic Synthesis, (Eds.: B. M. Trost, I. Fleming), Pergamon Press, Oxford, 1991, Vol. 3, p 423; d) G. García-Gómez, J. M. Moréto, J. Am. Chem. Soc. 1999, 121, 878–879; e) M. L. Nadal, J. Bosch, J. M. Vila, G. Klein, S. Ricart, J. M. Moréto, J. Am. Chem. Soc. 2005, 127, 10476–10477; f) S. Ikeda, Acc. Chem. Res. 2000, 33, 511–519.

- [8] With respect to the composition of fresh nickel boride as (Ni₂B)₂·H₃, see: a) W. E. Truce, F. E. Roberta, *J. Org. Chem.* **1963**, 28, 961–964; b) T. G. Back, K. Yang, H. R. Krouse, *J. Org. Chem.* **1992**, 57, 1986–1990.
- [9] Direct hydrogenation is the conventional method for the reduction of dienes to monoolefins. This method usually leads to the regioselectivities far from satisfactory due to the harsh reaction conditions or the failure to precisely control the amount of hydrogen, and makes the purification tedious. For selected examples, see: a) K. Okura, S. Matsuoka, R. Goto, M. Inoue, Angew. Chem. 2010, 122, 339-342; Angew. Chem. Int. Ed. 2010, 49, 329-332; b) C. Gaviglio, F. Doctorovich, J. Org. Chem. 2008, 73, 5379-5384; c) J. Ornelas, R. Aranzaes, L. Salmon, D. Astruc, Chem. Eur. J. 2008, 14, 50-64; d) K. Suenaga, S. Kajiwara, S. Kuribayashi, T. Handa, H. Kigoshi, Bioorg. Med. Chem. Lett. 2008, 18, 3902-3905; e) J. Dupont, P. A. Suarez, A. P Umpierre, R. F. J. Souza, J. Braz. Chem. Soc. 2000, 11, 293-297; f) T. Mizugaki, M. Ooe, K. Ebitani, K. Kaneda, J. Mol. Cat. A: Chem. 1999, 145, 329-333; g) M. Murata, Y. Tanaka, T. Mizugaki, K. Ebitani, K. Kaneda, Chem. Lett. 2005, 34, 272-273; h) P. P. Zweni, H. Alper, Adv. Synth. Catal. 2006, 348, 725-731.
- [10] For selected references concerning 3-deoxygenation of glycals, see: a) N. Greenspoon, E. Keinan, J. Org. Chem. 1988, 53, 3723–3731; b) M. Oshima, I. Shimizu, A. Yamamoto, Organometallics 1991, 10, 1221–1223; c) M. Okabe, R. C. Sun, Tetrahedron Lett. 1989, 30, 2203–2206.
- [11] Concerning a similar mechanism of the NaBH₄-Cu₂Cl₂ reductive system, see: M. Narisada, I. Horibe, F. Watanabe, K. Takeda J. Org. Chem. **1989**, 54, 5308–5313.
- [12] For related examples about allylation reactions involving π-allylnickel complexes substituted with an electron-donating group at the 1-position, see: a) J. R. Johnson, P. S. Tully, P. B. Mackenzie, M. Sabat, J. Am. Chem. Soc. 1991, 113, 6172–6177; b) B. A. Grisso, J. R. Johnson, P. B. Mackenzie, J. Am. Chem. Soc. 1992, 114, 5160–5165.
- [13] Other mechanisms cannot be ruled out at this stage. A single electron transfer (SET) mechanism might be a choice, just like that of the Birch reduction.

3324