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A new family of CaaX competitive inhibitors of human farnesyltransferase based on phenothiazine and
carbazole skeleton bearing a L-cysteine, L-methionine, L-serine or L-valine moiety was designed, synthe-
sized and biologically evaluated. Phenothiazine derivatives proved to be more active than carbazole-
based compounds. Phenothiazine 1b with cysteine residue was the most promising inhibitor of human
farnesyltransferase in the current study.

� 2015 Elsevier Ltd. All rights reserved.
The interest in protein farnesyltransferase (FTase) as a potential
cancer target is maintained in recent years.1–6 FTase is a heterodi-
meric zinc metalloenzyme, responsible for posttranslational mod-
ification and activation of Ras proteins. Ras proteins undergo three
sequential enzymatic posttranslational modifications. The first
step of isoprenylation is catalyzed by FTase and consists of a cova-
lent attachment of the farnesyl group of farnesyldiphosphate (FPP)
on the cysteine residue from the C-terminus of tetrapeptidic
(CaaX) sequence of Ras proteins.7 In the CaaX motif, the letter C
represents a cysteine and the letter a denotes an aliphatic amino
acid. FTase recognizes proteins carrying in X a serine, methionine,
glutamine or alanine.8,9 The isoprenylation process plays a key role
in the signaling pathway that allows cell division. Thus, preventing
the farnesylation process by inhibiting FTase can represent an
approach in cancer chemotherapy.

The main part of molecules targeting FTase are competitive
inhibitors of CaaX box. CaaX competitive inhibitors of FTase (FTIs)
will thus compete with the terminal cysteine of Ras proteins
(replacement of aliphatic amino acids by aromatic amino acids
and modification of the methylation reaction of the C-terminus).
Cell permeability problems have been reported in the past for
some CaaX competitive FTIs, due to their peptide structure,10 sen-
sitive to peptidases (e.g., compound VII, CVIM, Fig. 1). For this rea-
son, currently developed FTIs are nonpeptide. These compounds
are often capable of chelating the zinc cation of FTase and have a
methionine as X residue6,11 (e.g., compound VIII,11 Fig. 1).

Based on our previous efforts in identifying new FTIs (com-
pounds I–VI, Fig. 1)2,12–15 and in order to enrich the existing SAR
on this family of antitumoral agents, we were then interested in
the design and synthesis of CaaX competitive inhibitors of FTase
with phenothiazine or carbazole skeleton bearing a cysteine,
methionine, serine or valine residue as potential zinc chelating unit
(compounds 1a–i and 2a–i, Fig. 1).

The title compounds 1a–i, 2a–i were synthesized as outlined in
Scheme 1. Starting acids 6–8 were obtained by Michael addition
reaction of carbazole 12, phenothiazine 13 or 2-chlorophenoth-
iazine 14 with acrylonitrile in the presence of Triton B,16,17
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Figure 1. Structure of FTase inhibitors discovered in previous research work (compounds I–VIII) and of target compounds (1a–i, 2a–i).
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followed by hydrolysis of nitrile 9–11 with aqueous sodium
hydroxide in methanol.16,17 The key intermediates, activated esters
3, 4,2,13 5, were then prepared by reaction between carboxylic acids
6, 7 and 8 with N-hydroxysuccinimide in the presence of EDCI [1-
ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride].18

Furthermore, coupling reactions of activated esters 3 and 4 with
L-cysteinyl, methionyl, serinyl or valinyl esters provided the corre-
sponding esters 2a–h (Scheme 1). In these reactions, the target cys-
teinyl ester derivative 2b bearing a phenothiazine unit was
obtained in 53% yield by reacting N-hydroxysuccinimide activated
ester 7with L-cysteine ethyl ester hydrochloride, but the dimer 2bd

was also isolated in 43% yield (Scheme 2). Finally, the saponifica-
tion of esters 2a–h furnished carboxylic derivatives 1a–h
(Scheme 1). In the 2-chlorophenothiazine series, only the coupling
reaction of activated ester 5 with L-methionine methyl ester
hydrochloride was realized in order to obtain the corresponding
ester 2i, which was then saponified to the corresponding acid 1i
(Scheme 1).

In the interest of exploring the importance on the biological
efficiency of three carbon atoms chain between the phenothiazinic
nitrogen atom and the methionyl residue, the introduction of a tri-
azolyl unit as a different tensor was then envisaged. To reach the
target triazole derivative 20 (Scheme 3), phenothiazine 13was first
reacted with 1-bromo-3-chloropropane using sodium hydride as
base and provided chloro derivative 15.19 Azide 16 was next
obtained in good yield by action of sodium azide in water/chloro-
form in the presence of TBAB phase-transfer catalysis medium at
room temperature.20 The construction of 1,2,3-triazole ring in
compound 17 was then achieved by click chemistry.21,22 The
saponification of ethyl ester 17 straightforwardly provided car-
boxylic acid 18 which was further coupled, after in situ activation
in the presence of 1-hydroxybenzotriazole and EDCI, with L-me-
thionine methyl ester hydrochloride to obtain intermediate 19 in
69% yield. Synthesis of the target triazole derivative 20 was finally
achieved in very good yield by simple saponification of methyl
ester 19 (Scheme 3).

The activity of all synthesized phenothiazine and carbazole
derivatives was evaluated on human FTase.23 Results are reported
in Table 1 and Figures 2 and 3. Examination of the inhibitory profile
of these two series emphasizes, without exception, greater biolog-
ical potential for derivatives bearing a phenothiazine unit (e.g.,
phenothiazine 1b (IC50 (FTase) = 4.7 ± 0.5 lM) vs carbazole 1a
(IC50 (FTase) = 65.4 ± 5.1 lM); phenothiazine 1d (IC50 (FTase)
= 11.7 ± 0.9 lM) vs carbazole 1c (IC50 (FTase) = 40.2 ± 2.2 lM),
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Table 1). This result is in accordance with previous reported studies
which highlight the phenothiazine nucleus as well tolerated bulky
unit for the A2 binding site of human farnesyltransferase.12,13,15

The 2-chloro substitution of the phenothiazine unit is tolerated,
but does not improve the activity. Thus, methionine compound
1i has similar FTase affinity as unsubstituted derivative 1d (e.g.,
compound 1i: IC50 (FTase) = 18.9 ± 3.2 lM vs compound 1d: IC50

(FTase) = 11.7 ± 0.9 lM, Table 1). Therefore, this chemical modula-
tion was not envisaged in the cysteine, serine or valine series.
Moreover, carboxylic acids 1a–i showed superior inhibitory
potency compared to their ester analogues 2a–i (Table 1 and
Fig. 2). This highlights a better chelating power of the zinc cation
of the enzyme for carboxylic acids versus ethyl or methyl esters.
Similar tendency was previously observed in the FTase inhibitors
domain.12

The study of the nature of the aminoacid residue on the biolog-
ical properties revealed that in the carbazole series, the cysteine
and methionine analogues (e.g., carbazoles 1a and 1c, Table 1)
were more active than derivatives bearing a serine or a valine unit
(e.g., carbazoles 1e and 1g, Table 1). In the phenothiazine series,
cysteine derivative 1b was the best FTase inhibitor. Methionine
and serine analogues (compounds 1c and 1f, respectively) showed
slightly decreased activities and valine derivative 1h presented a
modest activity (IC50 (FTase) = 44.7 lM) (Table 1).

In order to gain supplementary structure–activity relationships
in the current family of CaaX competitive inhibitors of human far-
nesyltransferase, modulations have been envisaged on the spacer
between the nitrogen atom from the phenothiazine unit and the
amide function. The insertion of a 1,2,3-triazole ring as a spacer
was thus realized (Scheme 3 and Fig. 3). Since the 2-chloro substi-
tution of the phenothiazine unit in compound 1i did not result in
improved inhibitory properties (Fig. 3), the spacer variation was
realized only on compound 1d. However, the insertion of the tria-
zole unit in compound 20 and consequently, the increase of the
spacer length, was not tolerated and resulted in diminished biolog-
ical potency (e.g., compound 1d vs 20, Fig. 3). The three-carbon
atoms chain between the phenothiazine nitrogen and the amino
group from the aminoacid residue proved to be important for the
FTase inhibition.

Farnesyltransferase structure24 was taken from the 1LD7 entry
of the RCSB Protein Data Bank.25 The crystallized inhibitor and
water molecules were removed to permit docking of the studied
compounds, built from the standard fragments library of Sybyl
6.9.126 with GOLD 5.1.27 Thirty solutions were generated and
classed through an in-house scoring function based on GoldScore27

and X-Score functions.28 The consistency of the results was
assessed by visually examining the conformation cluster.

Molecular docking was realized on the best candidates issued
from this study 1b, 1d, 1f and 1i (Fig. 4) in order to validate the
zinc-chelating potential of the free carboxylic acids and under-
stand the positioning and interactions of these molecules in the
active site of FTase.

Phenothiazine derivative bearing a cysteine moiety 1b (Fig. 4
(a)) has a set of conformations placed on the same side and ori-
ented in the same direction in the active site of the protein and
with a score superior to serine derivative 1f. The carboxylic acid
is in a favorable position and interacts with the zinc atom of the
protein, a fact significant for FTase inhibitory properties.
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The methionine derivative 1d (Fig. 4(b)) occupies globally the
same place in the active site as compound 1b. Again, carboxylic
acid function is placed next to the zinc cation to insure complexa-
tion and thus, inactivation of the enzyme.

Serine derivative 1f has two possible conformations. One con-
formation seems significantly larger and is depicted in Figure 4
(c). The carboxylic acid interacts with the zinc atom of
farnesyltransferase. The tricycle lodges globally the same place as
derivatives 1b and 1d, explaining the similar biological activity.

2-Chlorophenothiazine derivative 1i is the least active of these
four compounds. It can adopt four different conformations suitably
oriented. The conformation with the best score is represented in
Figure 4(d). The tricycle location is not stable, adopting at least
three different positions in the active site.

The comparison of the various compounds seems to indicate a
two point interaction mode. The first and most evident is the interac-
tion with the zinc atom of the enzyme, which is chelated by at least
the acid moiety of all the molecules. Small substituents on the neigh-
boring branch of the side chain are able to form a second interaction,
which may count for a part of the activity of compounds 1b and 1f.
The ethyl linker in the side chain of the amino acid is too long to per-
mit a correct placement of the terminal sulfur of 1d and 1i.



Figure 2. Comparative inhibitory activity on human FTase in the carbazole and
phenothiazine series at a 100 lM concentration: esters 2a–h (in green) versus
corresponding acids 1a–h (in red).
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The second is less apparent when looking only at the docking
results but is evident when checking the biological results. The
tricyclic base of the compound has a privileged position for a high
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an activated ester coupling reaction with esters of the four differ-
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most interesting inhibitor of human farnesyltransferase in the cur-
rent study with an IC50 value in the micromolar domain. Some
important QSAR have been established on the basis of the develop-
ment and biological evaluation of this new family of CaaX compet-
itive inhibitors of human farnesyltransferase: (1) the
phenothiazine skeleton has great importance for the biological
activity on human FTase; the replacement by a carbazole unit
resulted in diminished inhibitory potential; (2) the substitution
of the phenothiazine unit in position 2 by a chloro group is toler-
ated and consequently conserves the biological properties; (3) car-
boxylic acid derivatives 1a–i are more active in vitro than
corresponding esters 2a–i, thus suggesting a greater zinc chelating
potential for the free carboxylic group compared to an ester moi-
ety; (4) cysteine derivatives have slightly improved inhibitory
properties compared to methionine and serine analogues; the vali-
nyl-substituted compounds presenting the most modest activity in
the current study; (5) finally, the spacer length between the phe-
nothiazinic nitrogen and the amide group is also important for
the affinity toward FTase; the insertion of a triazole ring, and thus
increase of the spacer length, diminishes the biological potency on
the protein.

The best candidates issued from this study could constitute
strategic hits for developing anticancer agents with improved
characteristics.
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