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Whereas nickel- and palladium-catalyzed methods for cross-
coupling aryl and vinyl halides and sulfonates with a range of
organometallic reagents have reached a fairly high level of
sophistication,[1] comparable progress has not yet been
achieved for reactions of alkyl halides and sulfonates.[2]

Recently, we and others have begun to address this short-
coming by describing catalysts for certain Suzuki,[3]

Negishi,[4,5] Kumada,[6,7] Stille,[8] and Hiyama[9] couplings of
primary alkyl electrophiles. With the exception of Suzuki's
observation that [Pd(PPh3)4] effects cross-couplings of alkyl
iodides with R-(9-BBN),[3a] the palladium-based catalysts that
were reported for coupling alkyl electrophiles have all
employed a hindered trialkylphosphane (PCy3 or
P(tBu)2Me) as the ligand.

To increase the likelihood of expanding the still-limited
scope of cross-couplings of alkyl electrophiles, we have been
exploring the use of new classes of ligands for these processes.
Herein, we establish that, in the presence of alkyldiamino-
phosphanes (PR(NR’2)2), we can accomplish palladium-
catalyzed Stille cross-couplings of alkyl bromides and iodides
not only with vinyl stannanes, but also with aryl stannanes
[Eq. (1)], a class of reaction partners that are not efficiently
coupled by Pd/PR3 (PR3= trialkylphosphane).

As a consequence of the electron-richness and the ready
accessibility of alkyldiaminophosphanes (PR(NR’2)2),
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decided to examine the utility of this family of ligands in
palladium-catalyzed couplings of alkyl electrophiles. In ear-
lier work, we determined that P(tBu)2Me is useful for Stille
cross-couplings of alkyl bromides with vinyl-, but not with
aryl-, stannanes.[11] Thus, as illustrated in Table 1, neither
P(tBu)2Me nor PCy3 is effective for the palladium-catalyzed
Stille reaction of 1-bromodecane with PhSnBu3 under our
previously reported conditions (entries 1 and 2, respec-
tively).[12]

We therefore synthesized a sterically diverse set of
alkyldiaminophosphanes, and we explored their use in this
Stille cross-coupling process. Although Pd/PMe(pyrroli-
dinyl)2 (pyrrolidinyl= 1-pyrrolidinyl) furnishes very little of
the desired product (9%; Table 1, entry 3), an increase in the
steric demand of the alkyl group can provide an improvement
in yield (Me!Et!Cy: 9%!32%!45%; entries 3–5). As
we have observed for couplings catalyzed by Pd/
PR3,

[3b–d,5,8, 9] there is a window of maximum reactivity
for alkyldiaminophosphane ligands—thus, if the alkyl
group, R, of PR(NR’2)2 becomes too large (e.g., tBu),
the yield decreases (4%; entry 5 versus entry 6). In the
presence of an aryldiaminophosphane (entry 7), a
bicyclic triaminophosphane (entry 8),[13] and PPh3
(entry 9), almost no cross-coupling occurs.

Additional optimization of the most effective
catalyst system, Pd/PCy(pyrrolidinyl)2 (45%; Table 1,
entry 5), produced an enhancement in yield (72%; Table 2,
entry 1; MTBE= tBuOMe).[14] As illustrated in Table 2,
under a standard set of conditions, an array of functionalized
alkyl bromides can be coupled at room temperature with a
variety of aryl stannanes.[15,16] Thus, the catalyst tolerates
esters (entries 2–6), nitriles (entry 7), ethers (entry 8), and
olefins (entry 9). In addition, both electron-rich and electron-
poor aryl stannanes (entries 2–8), as well as a heteroaryl
stannane (entry 9), are suitable cross-coupling partners.

We have determined that the conditions that we have
developed for Stille reactions of alkyl bromides (Table 2) can

be applied without modification to couplings of alkyl iodides
[Eq. (2)]. To the best of our knowledge, this is the first
example of a Stille cross-coupling of a simple alkyl iodide that
bears b hydrogen atoms.[17,18]

In addition to aryl stannanes, Pd/PCy(pyrrolidinyl)2 can
be employed for cross-couplings of vinyl stannanes. Thus,
under the conditions that we previously reported for Pd/
P(tBu)2Me-catalyzed processes,[8,19] Pd/PCy(pyrrolidinyl)2
catalyzes room-temperature couplings of functionalized
alkyl bromides with a range of vinyl stannanes (Table 3).[20]

Groups such as ethers, acetals, nitriles, esters, amides, and
olefins may be present, and a variety of substitution patterns
for the vinyl stannane are tolerated.

Finally, we can apply the same Pd/PCy(pyrrolidinyl)2
catalyst system to room-temperature Stille cross-couplings
of alkyl iodides with vinyl stannanes (90% yield; [Eq. (3)]).[21]

Table 1: Effect of ligand structure on the cross-coupling of 1-bromode-
cane with PhSnBu3.

Entry Ligand Yield [%][a]

1 P(tBu)2Me 12
2 PCy3 22
3 PMe(pyrrolidinyl)2 9
4 PEt(pyrrolidinyl)2 32
5 PCy(pyrrolidinyl)2 45
6 P(tBu)(pyrrolidinyl)2 4
7 PPh(pyrrolidinyl)2 7
8 P(iBuNCH2CH2)3N <2
9 PPh3 <2
10 no ligand <2

[a] Determined by GC versus a calibrated internal standard (average of
two runs).

Table 2: Room-temperature Stille cross-couplings of functionalized alkyl
bromides with aryl stannanes catalyzed by Pd/PCy(pyrrolidinyl)2.

Entry R�Br Aryl stannane Yield [%][a]

1 n-Dec�Br 72

2 63

3 71

4 57

5 61

6 62

7 68

8[b] 64

9 53

[a] Yield of isolated product (except for entry 1, which is a yield by GC
versus a calibrated internal standard), average of two runs. [b] THP=
tetrahydropyran.
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In conclusion, we have identified a new class of ligands
(alkyldiaminophosphanes, PR(NR’2)2) that are effective in
palladium-catalyzed cross-couplings of alkyl electrophiles. In
comparison with trialkylphosphanes, alkyldiaminophos-
phanes furnish more versatile catalysts for Stille reactions of
alkyl halides, thus achieving, for example, efficient couplings
with aryl stannanes. In view of the ready accessibility of a
range of alkyldiaminophosphanes, as well as the potential for
chiral variants, we anticipate that our observations will add a
significant new dimension to the development of broadly
applicable catalysts for cross-couplings of alkyl electrophiles.
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Entry R�Br Vinyl stannane Yield [%][a]

1 74

2 60

3 68

4 89

5 79

6 78

7 54

8 73

[a] Yield of the isolated product, average of two runs.
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[21] Under these conditions, we have also efficiently coupled 1-
iododecane with tributyl(vinyl)tin (93% yield by GC versus a
calibrated internal standard).
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